首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A study of variations in the critical frequency of the F2 layer (foF2) prior to a shallow-focus eartquake with a magnitude M = 5.1 which occurred in Spain on May 11, 2011, is carried out. The obtained results show that a positive disturbance in the foF2 value was observed at the ionospheric Del’ebre station, which is the closest to the earthquake epicenter. At the same time, no disturbances in foF2 are revealed at ionospheric stations located at a greater distance from the epicenter. This fact makes it possible to conclude that the positive disturbance in the F2 layer observed at the Del’ebre station could have a sesmogenic nature.  相似文献   

2.
Based on data from ground-based vertical sounding stations, the behaviors of the ionosphere F region before a strong M 6.8 earthquake off the coast of Hokkaido, Japan, and during the moderate magnetic storm before this earthquake are compared. It was found that the critical frequency of the ionosphere F region (foF2) above the Wakkanai ground-based ionosphere vertical sounding station, which was located in the preparation zone of this earthquake, suffered a long-term disturbance of slightly more than an hour nearly half a day before the earthquake. The magnitude of earthquake-induced disturbance is comparable to that caused by a magnetic storm.  相似文献   

3.
On the basis of the 15-min data from a series of ground-based vertical ionospheric sounding stations, a study of variations of the foF2 critical frequency before the strong earthquake (M = 6.3) that occurred on April 6, 2009 at L’Aquila (Italy) was carried out. The earthquake epicenter was located 85 km north-eastward from Rome. Approximately 20 h prior to the earthquake, a well-pronounced statistically significant effect of foF2 increase relative to the average background for magnetically quiet days was observed for almost 1.5 h at the Rome ionospheric station. In this case, at control stations distanced from the earthquake epicenter, no statistically significant deviations of foF2 from the background values were detected during the same observations period. This fact provides grounds for consideration of the foF2 increase observed at Rome station as a possible ionospheric precursor of this earthquake.  相似文献   

4.
The possible seismic ionospheric effects before two strong earthquakes in Italy, which took place near Rome station (January 7, 1962, M = 6.0; April 5, 1998, M = 5.3), have been studied using the data of several European stations for ground-based vertical sounding of the ionosphere. An analysis of the behavior of the foF2 critical frequencies for the earthquake that occurred on January 7, 1962, made it possible to simultaneously consider the effects, originating during earthquake preparation under quiet geomagnetic conditions and caused by the magnetic strom that began on January 10, 1962, using a unified technique. It has been indicated that the distinguished precursor effects of two considered earthquakes with magnitudes not more than 6.0 are localized in the region with an epicentral distance of about 400 km, whereas the disturbances caused by the magnetic storm are of a planetary character. The amplitude of foF2 seismic ionospheric disturbances is much smaller than the maximal variations caused by the magnetic storm; however, the absolute value of this amplitude is a factor of 1.5 as large as the standard deivation from the monthly median.  相似文献   

5.
The X17 solar flare occurred on October 28, 2003, and was followed by the X10 flare on October 29. These flares caused very strong geomagnetic storms (Halloween storms). The aim of the present study is to compare the variations in two main ionospheric parameters (foF2 and hmF2) at two chains of ionosondes located in Europe and North America for the period October 23–28, 2003. This interval began immediately before the storm of October 28 and includes its commencement. Another task of the work is to detect ionospheric precursors of the storm or substorm expansion phase. An analysis is based on SPIDR data. The main results are as follows. The positive peak of δfoF2 (where δ is the difference between disturbed and quiet values) is observed several hours before the magnetic storm or substorm commencement. This peak can serve as a disturbance precursor. The amplitude of δfoF2 values varies from 20 to 100% of the foF2 values. The elements of similarity in the variations in the δfoF2 values at two chains are as follows: (a) the above δfoF2 peak is as a rule observed simultaneously at two chains before the disturbance; (b) the δfoF2 variations are similar at all midlatitude (or, correspondingly, high-latitude) ionosondes of the chain. The differences in the δfoF2 values are as follows: (a) the effect of the main phase and the phase of strong storm recovery at one chain differs from such an effect at another chain; (b) the manifestation of disturbances at high-latitude stations of the chain differ from the manifestations at midlatitude stations. The δhmF2 variations are approximately opposite to the δfoF2 variations, and the δhmF2 values lie in the interval 15–25% of the hmF2 values. The performed study is useful and significant in studying the problems of the space weather, especially in a short-term prediction of ionospheric disturbances caused by magnetospheric storms or substorms.  相似文献   

6.
Ionospheric disturbances at heights of the F 2 layer maximum during the strong magnetic storm (the minimum value of the Dst index was ?149 nT) and the magnetic superstorm (the minimum value of the Dst index was ?387 nT) have been compared based on the data from two pairs of magnetically conjugate midlatitude ground stations for ionospheric vertical sounding. The storms began on March 19, 2001, and March 31, 2001, respectively. It has been obtained that almost only negative ionospheric disturbances were observed in the Northern and Southern hemispheres in both cases. The maximum effect in changes in the layer critical frequency (foF2) in both hemispheres has a time delay relative to the moment of the maximum disturbance in the Dst index on the order of 3–4 h for the strong storm and about 1 h for the superstorm. The disturbed variations in the foF2 critical frequency in different hemispheres correlate well with each other in the plane of one magnetic meridian, but the correlation substantially weakens at different magnetic longitudes. An assumption is made that the revealed features of the behavior of the disturbed midlatitude ionospheric F 2 layer are caused by the complex character of the thermospheric response to the energy release in the auroral zone during the considered magnetic storms.  相似文献   

7.
A method for constructing the empirical model of the F2 layer critical frequency (foF2) under magnetically quiet conditions, aimed at analyzing disturbances of any nature, is proposed. This method has been analyzed, and typical features of regular changes in foF2 of the quiet ionosphere and day-to-day foF2 variability are analyzed using the data from Irkutsk and Slough stations as an example. In particular, it has been obtained that this model differs from the international IRI model, and this difference is mainly caused by the fact that the foF2 values in the IRI model do not correspond to quiet conditions. Therefore, this model gives a larger amplitude of the annual and semiannual variations in foF2 than the IRI model. In addition, this model more accurately reproduces the rate of foF2 annual variations at a fixed local time, especially in equinoxes, when foF2 variations can exceed 1 MHz within one month.  相似文献   

8.
The observations of spread F during the nighttime hours (0000–0500 LT) have been statistically analyzed based on data of Tokyo, Akita, Wakkanai, and Yamagawa Japan vertical ionospheric sounding stations for the time intervals a month before and a month after an earthquake. The disturbances in the probability of spread F appearance before an earthquake are revealed against a background of the variations depending on season, solar activity cycle, geomagnetic and solar disturbances. The days with increased solar (Wolf number W > 100) and geomagnetic (ΣK > 30) activity are excluded from the analysis. The spread F effects are considered for more than a hundred earthquakes with magnitude M > 5 and epicenter depth h < 80 km at distances of R < 1000 km from epicenters to the vertical sounding station. An average decrease in the spread F occurrence probability one-two weeks before an earthquake has been revealed using the superposed epoch method (the probability was minimal approximately ten days before the event and then increased until the earthquake onset). Similar results are obtained for all four stations. The reliability of the effect has been estimated. The dependence of the detected effect on the magnitude and distance has been studied.  相似文献   

9.
The paper analyzes the data of manual ionograms processing of hourly measurements of the critical frequency foF2 of the F2 ionospheric layer at the Wakkanai ionospheric vertical sounding station (Japan) in a geomagnetically quiet environment before a series of earthquakes with magnitude M > 6.0, for which the station entered the earthquake preparation zone, in order to detect possible Ionospheric Disturbances Preceding Earthquakes (IDPE), and to determine their quantitative characteristics. Detected IDPE, in the opinion of the authors, can be related to the processes of preparation of the corresponding earthquakes, i.e., to be Ionospheric Precursors of Earthquakes (IPE).  相似文献   

10.
Spectral analysis of daily values of various solar indices viz. sunspot number, 10.7-cm flux, H Lyman-<alpha> and -<beta>, specific He, Fe and Mg lines and solar X-rays was carried out for two selected intervals. During interval A (May-August 1978, 123 days) the solar indices showed a prominent periodicity near 27 days, while during interval B (January-May 1979, 151 days) the solar indices showed a prominent periodicity near 13 days. For the same intervals, foF2 (max) and foF2 (average) during 1000–1500 LT were similarly analysed for the locations Cachoeira Paulista, SP, Brazil (23○S, 45○W), and Okinawa (26○N, 128○E) and Kokubunji (36○N, 139○E) in Japan. The 27-day and 13-day periodicities in solar indices were reflected in the foF2 series, but in different relative proportions at the three locations, probably due to the interference of local aerodynamical effects. Some other periodicities were common to solar indices and foF2, while some others were present in the solar indices but not in foF2, or vice versa.  相似文献   

11.
The statistics of the relative variations (δfoF2) in the critical frequency of the ionospheric F 2 region during catastrophic earthquakes with magnitude M ≥ 6 at 70 vertical sounding (VS) automatic ionospheric stations (AISs) of the global network is considered. Five-day periods including 70 such situations have been selected for 1981 and 1983–1985. Five sets of 24 foF2 measurements from 3 days before to a day after the earthquake instant are formed for each AIS. The number of AISs, for which the fourth statistical invariant is above the significance level (E ≥ 1), has been analyzed. It has been indicated that the histogram deformation at the set of AISs is substantial a day before earthquakes.  相似文献   

12.
Based on an analysis of data from the European ionospheric stations at subauroral latitudes, it has been found that the main ionospheric trough (MIT) is not characteristic for the monthly median of the F2-layer critical frequency (foF2), at least for low and moderate solar activity. In order to explain this effect, the properties of foF2 in the nocturnal subauroral ionosphere have been additionally studied for low geomagnetic activity, when the MIT localization is known quite reliably. It has been found that at low and moderate solar activity during night hours in winter, the foF2 data from ionospheric stations are often absent in the MIT area. For this reason, a model of the foF2 monthly median, which was constructed from the remaining data of these stations, contains no MIT or a very weakly pronounced MIT.  相似文献   

13.
Seismoionospheric disturbances in the parameters of the ionospheric F 2 and sporadic E layers at the chain of the Japanese stations for vertical sounding of the ionosphere before strong crustal earthquakes with M>6.5 during the period from 1968 to 1992 have been considered. The dependence of the disturbance time of appearance in the ionospheric parameters on the earthquake magnitude and epicentral distance, obtained for each specific earthquake using the selected series of ionospheric stations, made it possible to consider these disturbances among medium-term precursors of earthquakes. The velocity of the disturbance front apparent motion has been determined based on the model of horizontal radially-isotropic disturbance propagation from the projection of the impending earthquake epicenter to the ionospheric altitudes. The conclusion has been made that the distinguished seismoionospheric disturbances follow the boundary of the earthquake preparation region, expanding on the Earth’s surface.  相似文献   

14.
The criteria and requirements for consideration of rare tectonic and seismic events at the locations of nuclear power plants (NPP) were subject to comparative analysis in the context of the aftermath of the earthquake with M w = 8.9 that happened on March 11, 2011 in the southeast of Honshu Island. The main problems of regional and detailed methods for seismic hazard assessment under selection of safe placement of nuclear plants are discussed. Deterministic and probabilistic estimates of the parameters of seismic impacts on the Fukushima-1 NPP were considered taking into account the consequences of the March 11, 2011 earthquake. The development of the uniform requirements to safe placement of nuclear power stations and unified methods for seismic hazard assessment is proven to be urgent. It is necessary to take into account the possible causes of extreme seismic events able to result in the beyond design-basis accidents not considered in the project and also organizational and technical measures to reduce the radiological consequences of the beyond design-basis accidents caused by the impact of rare but severe natural and anthropogenic factors.  相似文献   

15.
On the basis of the F2-layer critical frequency foF2 for the noon at some European stations for 1958–2005, it is found that the geomagnetic activity corresponding to the foF2 median is systematically lower than that averaged over the month; the difference increases with an increase in latitude. Moreover, the dispersion of geomagnetic activity for the foF2 median at relatively high latitudes is lower than at middle latitudes. These regularities are related to the fact that high geomagnetic activity usually leads to a distinct deviation of foF2 from the typical average value, i.e., from the foF2 median, and such deviation is more substantial at relatively high latitudes. That is why the geomagnetic activity for the foF2 median is lower at relatively high latitudes than at middle latitudes.  相似文献   

16.
Analysis of changes in the critical frequency foF2 in recent decades has been performed by determination of “Delta foF2” parameter. These values determine the mean change of foF2 values from the “etalon period” (1958–1980) to later periods. The results are compared with the determination of foF2 trends, which was performed in a series of previous publications of the authors. The data of two most reliable ionospheric stations of the European region, Slough and Juliusruh, are analyzed. The results confirm all principal conclusions obtained earlier, which were based on analysis of the trends. A systematic decrease of foF2 with time occurs (which corresponds to a negative trend), and the character of changes in the Delta values with season and local time on the whole agrees with the character of changes in the trend. It is shown that the results based on the data of both considered stations show good agreement.  相似文献   

17.
The consideration of the relation between the daytime and nighttime values of the critical frequency F2, foF2 of the ionospheric F2 layer, started in the previous publication of the authors, is continued. The main regularities in variations in the correlation coefficient R(foF2) characterizing this relation are confirmed using larger statistical material (more ionospheric stations and longer observational series). Long-term trends in the R(foF2) value are found: at all stations the negative value of R(foF2) increases with time after 1980.  相似文献   

18.
Spatial and time variations in the critical frequencies foF2 before the strong earthquake of August 15, 1963, with the magnitude M = 7.75 are analyzed. The epicenter of the earthquake was located in the vicinity of the magnetic equator in the American longitudinal sector. The data of the topside ionosonde on board Alouette-1 and of the series of ground-based ionosondes has been used for this purpose. The ground-based ionosondes made it possible to detect an insignificant anomalous decrease in foF2 within the zone of earthquake preparation a few days prior to the earthquake. This result confirms the conclusion drawn earlier on the basis of the satellite data. The modification of the ionosphere at the F-region level is more evident in the satellite than in the ground-based data. It is also noted that the character of the time variations in foF2 a day before the earthquake is similar to the so called “quiet time” Q-disturbances in the ionosphere, when the electron concentration at the F region maximum differs from the median values by more than 20% under undisturbed geophysical conditions.  相似文献   

19.
The available massifs of experimental data on the critical frequency of the ionospheric F2 layer, foF2, covering the first decade of the new century, are considered. On the basis of studying these massifs, a conclusion is drawn that the scatter of foF2 values (measured by the standard deviation (SD)) relative to the dependence on solar activity has grown substantially over recent decades as compared to the period 1958–1979. The possible causes of the SD increase are considered. It is shown that the foF2 values for the period 1998–2010 decreased as compared to the period 1958–1979 by an average of 0.6 MHz which gives an estimate of the foF2 trend of ~-0.03 MHz per year. Linear trends in foF2 for some ionospheric stations are analyzed. It is obtained that, in spite of the scatter in the data, it is possible to obtain statistically significant trends for each considered situation (day and postsunset period in summer and winter). At the same time, the winter negative trends (~-0.052 MHz per year) are approximately a factor of 2 higher than the summer ones (~-0.024 MHz per year). Comparisons with the trends obtained for earlier periods show that the negative trend in foF2 increased substantially towards the first decade of our century.  相似文献   

20.
The records from wideband seismic stations are analyzed for studying the oscillations of the Earth that emerged after the earthquakes in Sumatra on December 26, 2004 (M = 9.2), Chile on February 27, 2010 (M = 8.8), and after the Tohoku megaearthquake on March 11, 2011 (M = 9.0). Attention is focused on the band with a period of 20.46 min, which includes the free radial mode 0S0. It is established that the emergence of oscillations in the frequency interval corresponding to the free oscillations of the Earth is delayed by a lag, which increases with increasing period. Pulsations of the 20.46-min band, which appear in the interval from 5 to 7 days after the earthquake and have a period of 127–129 min, are revealed. The patterns of the amplitude attenuation of the 20.46-min band are different at stations located in zones with different tectonic activity. These features manifest themselves in the search through different stations and through different earthquakes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号