首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Fine scale distribution of nitrous oxide in marine sediments   总被引:1,自引:0,他引:1  
Vertical profiles of nitrous oxide and other inorganic nitrogen compounds in the sediments in Tokyo Bay and its vicinity were measured using the whole core squeezing method. Within the bay area, vertical profiles of nitrous oxide in the interstitial waters showed one or two distinctive peaks around the depth of 2–4 cm, which corresponded to the peaks of nitrite and nitrate. In situ formation of nitrous oxide through nitrification was suggested in those sediments, which was possibly activated by the presence of benthic animals. On the other hand, at the deep sediment off Tokyo Bay the profiles of nitrous oxide, nitrite and nitrate gave a monotonous single peak, indicating less bioturbated condition. Denitrification or dissimilatory nitrate reduction might be important for the formation of nitrous oxide peaks in the latter type of sediment.  相似文献   

2.
Surface waters of Alsea Bay, an unpolluted estuary on the Oregon coast, were analysed for nitrous oxide, nitrate and nitrite on a weekly or biweekly basis during the summer of 1979. The estuary was found to be a variable source of N2O to the atmosphere. Large and rapid increases in the concentrations of N2O, NO3?, and NO2? occurred at the beginning of the sampling period and are attributed to the influx of nutrient-rich upwelling water into the estuary with the tide. The subsequent decline in concentrations of nitrate, nitrite and nitrous oxide over the remainder of the summer is attributed to a decrease in upwelling intensity, a decline in nitrification rates and to assimilatory nitrate reduction. Measurements of nitrous oxide at six stations along the Alsea River were also made in September and October before and after the onset of the rainy season. Samples taken after flood conditions were established were systematically 50% higher than pre-flood samples. The data suggest that soil runoff results in elevated concentrations of N2O in rivers.  相似文献   

3.
The rate of benthic denitrification in slope and rise sediments of a transect across the N.W. European Continental Margin (Goban Spur) was evaluated from 31 pore water nitrate profiles obtained during six cruises between May and October. All profiles had well separated zones of nitrification and denitrification. High near-surface nitrate concentrations prevented the influx of nitrate from the bottom water. The denitrification rates obtained from steady-state-modelling ranged from 0.13 to 2.56 μmol N cm−2 y−1 and showed an exponential increase both with decreasing water depth and with increasing rate of organic carbon degradation. Denitrification rates in a nearby canyon, which did not follow these relationships, were estimated to be much higher as a result of erosion and redistribution of organic matter. Denitrification at the Goban Spur slope and rise is much lower than previously reported for similar environments in the Pacific resulting predominantly from the different oxygen and nitrate concentrations in the bottom water. A weighted average for the whole slope and rise sediment system shows that 17% of the particulate organic nitrogen input (8.93 μmol N cm−2 y−1) is denitrified and only 1% is buried, the rest being released as nitrate. Although being ten times higher compared with basin sediments, denitrification on the slope and rise is several times lower than on the adjacent shelf.  相似文献   

4.
To explore the influences of semi-lunar spring and neap tidal changes on nitrogen cycling in intertidal sediments, a comparative study among waterlogged, desiccated and reflooded systems was carried out in August 2005 and February 2006 by analyzing nitrification, denitrification and N2O depth profiles in the intertidal flats of the Yangtze estuary. Laboratory experiments showed that alternating emersion and inundation resulted in the significant changes in nitrification and denitrification rates in the intertidal sediment systems. Due to the desiccation-related effects, lowest nitrification and denitrification rates were observed in the desiccated sediment cores. Highest nitrification and denitrification rates were however detected in the waterlogged and reflooded systems, respectively. It is hypothesized that the highest nitrification rates in the waterlogged sediments were mainly attributed to higher nitrifier numbers and NH4+ being more available, whereas the availability of NO3 might dominate denitrification in the reflooded sediments. In addition, the highest N2O concentrations were detected in the reflooded sediment cores, and the lowest found in the dried sediment cores. It was also shown that N2O in the intertidal sediments was mainly from nitrification under the desiccated condition. In contrast, N2O in the intertidal sediments was produced mainly via denitrification under the waterlogged and reflooded conditions. It is therefore concluded that the semi-lunar tidal cycle has a significant influence on nitrification, denitrification and N2O production in the intertidal sediment systems.  相似文献   

5.
Studies on the Arabian Sea coastal anoxia have been of immense interest, but despite its ecological significance there is sparse understanding of the microbes involved. Hence, observations were carried out off Goa (15 degrees 30'N, 72 degrees 40'E to 15 degrees 30'N, 72 degrees 59'E) to understand the processes that mediate the changes in various inorganic nitrogen species in the water column during anoxia. Water column chemistry showed a clear distinct oxic environment in the month of April and anoxic condition in October. Our study based on microbial signatures indicated that oxygen deficit appeared as a well-defined nucleus almost 40 km away from the coast during the oxic period (April) and spreads there after to the entire water column synchronizing with the water chemistry. Striking results of net changes in inorganic nitrogen species in nitrification blocked and unblocked experimental systems show that denitrification is the predominant process in the water column consuming available nitrate ( approximately 0.5 microM) to near zero levels within approximately 72 h of incubation. These observations have been supported by concomitant increase in nitrite concentration ( approximately 4 microM). Similar studies on denitrification-blocked incubations, demonstrate the potential of nitrification to feed denitrification. Nitrification could contribute almost 4.5 microM to the total nitrate pool. It was found that the relation between ammonium and total dissolved inorganic nitrogen (DIN) pool (r=0.98, p<0.001, n=122) was significant compared to the latter with nitrite and nitrate. The occurrence of high ammonium under low phosphate conditions corroborates our observations that ammonium does not appear to be locked under low oxygen regimes. It is suggested that ammonium actively produced by detrital breakdown (ammonification) is efficiently consumed through nitrification process. The three processes in concert viz. ammonification, nitrification and denitrification appear to operate in more temporal and spatial proximity than hitherto appreciated in these systems and this gives additional cues on the absence of measurable nitrate at surface waters, which was earlier attributed only to efficient algal uptake. Hence we hypothesize that the alarming nitrous oxide input into the atmosphere could be due to high productivity driven tighter nitrification-denitrification coupling, rather than denitrification driven by extraneous nitrate.  相似文献   

6.
To evaluate the effect of the tidal cycle on the pore water nitrate dynamics in intertidal sediment, concentrations of inorganic nitrogen in water and sediment were monitored during tidal cycles in the mud flat of Tama Estuary, Japan. During submergence, nitrate concentration was highest in the overlying water and decreased monotonically with increasing depth in the sediment, suggesting that the primary source of nitrate in the sediment was nitrate transported from the overlying water. Pore water nitrate decreased remarkably during the initial 3–4 hours after the onset of exposure. Thereafter, it was constant or slightly increased until tidal flooding.In situ accumulation of nitrate at the end of exposure, however, did not exceed the nitrate concentrations in the overlying water. The inhibition of nitrate reduction and the stimulation of nitrification would explain the change of nitrate concentration, both consistent with the input of oxygen into the sediment following a 10 mm drop of the water table. In Tama Estuary sediments, the effect of the tidal cycle on the removal of combined nitrogen is rather negative, because high nitrate concentrations in the overlying water canceled the positive effect of nitrate accumulation by nitrification during exposure, while tidal oxygen intrusion have an inhibitory effection sedimentary denitrification.  相似文献   

7.
Nitrification and nitrate reduction were measured simultaneously by a 15N-isotope dilution technique in the top 2 cm of sandy sediments in Great South Bay, Long Island, New York. Experiments were done at three times, under three different sets of environmental conditions. Nitrification rates remained between 0.010 and 0.015 μg-at N (g dry wt)−1 (24 h)−1 despite decreasing temperature. Nitrate reduction ranged from 0.02 to 0.11 μg-at N (g dry wt)−1 (24 h)−1. Nitrate reduction exceeded nitrification in two experiments. In the third, at low temperature and apparently high oxygen levels, rates of nitrification and nitrate reduction were comparable. We conclude that there is not a constant relationship between nitrification and nitrate reduction in this environment. Attempts to measure rates of nitrification by using the inhibitor chlorate were not successful.  相似文献   

8.
Vertical distributions of the potential activities of some key enzymes mediating nitrification and denitrification were investigated within the oxygen (O2) minimum zone of the Arabian Sea at a number of locations between latitudes 17°N and 21°N and longitudes 63°E and 68°E so as to get an insight into the predominant biochemical mode(s) of production and consumption of nitrous oxide (N2O). Results revealed that the dissimilatory nitrate (NO3) reduction activity was generally very low or absent within the σθ range 26.6–26.8, which corresponds to the Persian Gulf Watermass (PGW). Depth profiles of nitrate reductase (NaR), nitrite reductase (NiR) and ammonia monooxygenase (AMO) activities were compared with those of O2, NO3, nitrite (NO2) and N2O, and it is concluded that nitrifier denitrification rather than heterotrophic denitrification is active within the core of PGW. The presence of multiple peaks of AMO activity coinciding with distinct maxima in the O2 profile and with a trend opposite to that of NaR activity indicates that the two processes, viz., classical and nitrifier denitrification, occur in discrete layers, probably determined by the variations in the ambient O2 concentrations at various depths surrounding the PGW core. Further, it appears that at the depths where nitrifier denitrification is active in the absence of heterotrophic denitrification, N2O builds up as its consumption may be inhibited by O2. Possible reasons for the occurrence of appreciable nitrate deficit within the core of PGW, where dissimilatory NO3 reduction is lacking, are discussed.  相似文献   

9.
Pore water, sediment and microbiological samples were collected from two areas in the Gulf of Maine. The Jeffreys Basin sediments had low organic carbon and low reduced sulfur values; the quality of their pore water indicated that nitrification and subsequent denitrification were major biogeochemical processes occurring in the upper 115 cm. Sediments from the Wilkinson Basin had higher values of organic carbon and higher reduced sulfur and total plate-count bacteria. These data indicate that the major biogeochemical processes occurring in these sediments are denitrification followed by sulfate reduction. The differences in the rates of these microbially mediated processes can be related to differences in sedimentation rates at the two sites.  相似文献   

10.
The aim of the present study was to investigate seasonal and spatial patterns of soil oxygen consumption, nitrification, denitrification and fluxes of dissolved inorganic nitrogen (DIN) in a tidal salt marsh of the Lagoon of Venice, Italy. In the salt marsh, intact soil cores including overlying water were collected monthly at high tide from April to October in salt marsh creeks and in areas covered by the dominant vegetation, Limonium serotinum. In May, cores were also collected in areas with vegetation dominated by Juncus maritimus and Halimione portulacoides. In laboratory incubations at in situ temperature in the dark, flux rates of oxygen and DIN were monitored in the overlying water of the intact cores. 15N-nitrate was added to the overlying water and nitrification and denitrification were measured using isotope-dilution and -pairing techniques. The results show that highest soil oxygen consumption coincided with the highest water temperature in June and July. The highest denitrification rates were recorded in spring and autumn coinciding with the highest nitrate concentrations. Soil oxygen consumption and nitrification rates differed between sampling sites, but denitrification rates were similar among the different vegetation types. The highest rates were recorded in areas covered with L. serotinum. Burrowing soil macrofauna enhanced oxygen consumption, nitrification and denitrification in April and May. The data presented in this study indicate high temporal as well as spatial variations in the flux of oxygen and DIN, and nitrogen transformations in the tidal salt marshes of the Venice lagoon during the growth season. The results identify the salt marshes of the Venice lagoon as being metabolically very active ecosystems with a high capacity to process nitrogen.  相似文献   

11.
Denitrification may play a major role in inorganic nitrogen removal from estuarine ecosystems, particularly in those subjected to increased nitrate and organic matter loads. The Douro estuary (NW Portugal) suffers from both problems: freshwater input of nitrate and organic load from untreated wastewater discharges. To assess how these factors might control sediment denitrification, a 12-month survey was designed. Denitrification potential and nitrous oxide (N2O) production were measured at different locations using the slurry acetylene blockage technique. Denitrification rate ranged from 0.4 to 38 nmol N g−1 h−1, increasing towards the river mouth following an urban pollution gradient. N2O production, a powerful greenhouse gas implicated on the destruction of the ozone layer, was significantly related with sediment organic matter and accounted for 0.5–47% of the N gases produced. Additional enrichment experiments were consistent with the results found in the environment, showing that sediments from the upper less urban stretch of the estuary, mostly sandy, respond positively to carbon and, inversely, in organic rich sediments from the lower estuary, the denitrification potential was limited by nitrate availability. The obtained results confirmed denitrification as an important process for the removal of nitrate in estuaries. The presence of wastewater discharges appears to stimulate nitrogen removal but also the production of N2O, a powerful greenhouse gas, exacerbating the N2O:N2 ratio and thus should be controlled.  相似文献   

12.
沉积物中的异化硝酸盐还原过程对于海洋氮循环起着至关重要的作用。基于15N标记的培养技术是目前测定沉积物异化硝酸盐还原的主要手段。准确快速测定15N标记的产物(29N2、 30N2)是量化异化硝酸盐还原各个过程速率的关键。本研究自行组装膜进样质谱系统用于29N2和30N2的测定,对其测量条件进行了优化。结果表明,进样蠕动泵进样流速0.80 mL/min,进样时间3~3.5 min,恒温槽温度20~25℃,同时铜还原炉温度在300~600℃的条件下,^29N2/^28N2和^30N2/^28N2的测试精密度分别可以控制在0.1%和1%以内,比较适合29N2和30N2的测定。利用自组装的膜进样质谱系统结合15N标记的培养技术研究了青岛石老人沙滩沉积物中的异化硝酸盐还原过程。石老人沙滩沉积物不存在将硝酸盐完全还原为氮气好氧的反硝化。厌氧铵氧化、厌氧反硝化和异化硝酸盐还原为铵(Dissimilatory Nitrate Reduction to Ammonium,DNRA)的潜在速率(以湿沉积物N计)分别为(0.05±0.01) nmol/(cm^3·h),(2.32±0.21) nmol/(cm^3·h)和(1.02±0.15) nmol/(cm^3·h)。厌氧反硝化是硝酸盐异化还原主要的贡献者,其比例接近70%,其次是DNRA,比例可达30%,而厌氧铵氧化的贡献最低,仅为1%。在N2产生过程中,主要贡献者是反硝化,厌氧铵氧化的贡献仅为2%。  相似文献   

13.
Pore Water Nutrient Regeneration in Shallow Coastal Bohai Sea, China   总被引:1,自引:0,他引:1  
The regeneration of pore water nutrients was studied and the contribution of benthic nutrient fluxes to the overlying water was evaluated on the basis of field specific observations conducted in September–October 1998 and April–May 1999 in the Bohai Sea. Nutrient concentrations in sediment pore waters were examined by incubating sediment core samples with overlying seawater in air and/or nitrogen conditions. Nutrient diffusion fluxes calculated by diagenetic equations were within a factor of 2 during incubations. The factors affecting nutrient diffusion across sediment/water interface include bioturbation, nitrification, denitrification, adsorption, and dissolution. The regeneration of nutrients from sediments will increase nutrient loads of the Bohai Sea and affect nutrient atomic ratios in this region. Among nutrient sources from riverine input, atmospheric deposition and sediment regeneration, ammonium and phosphate mainly came from atmospheric deposition (>50%); nitrate was mainly transported by riverine input into the Sea, silicate from sediment regeneration accounts up to 60%. This demonstrates that nutrient regeneration in sediments contributes more silicate than riverine input and atmospheric deposition together, but benthic flux contributes very much less phosphate and nitrate relative to riverine input and atmospheric deposition. The benthic fluxes of nutrients may lead to a decrease of the amount of nitrate, an increase of phosphate, ammonia and silicate in the water column. The release of silicate from sediments may compensate the decrease of silicate due to the reduction of riverine discharge. Nutrient regeneration in sediment may have an important influence on the eutrophic character of coastal waters in this region. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

14.
By transforming fixed nitrogen (N) into nitrogen gas, the biochemical processes that support denitrification provide a function critical to maintaining the integrity of ecosystems subjected to increased loading of N from anthropogenic sources. The Louisiana coastal region receives high nitrate (NO3?) concentrations (> 100 µM) from the Mississippi–Ohio–Missouri River Basin and is also an area undergoing high rates of wetland loss. Ongoing and anticipated changes in the Louisiana coastal region promise to alter biogeochemical cycles including the net rate of denitrification by ecosystems. Projecting what these changes could mean for coastal water quality and natural resources requires an understanding of the magnitude and patterns of variation in denitrification rates and their connection to estuarine water quality at large temporal and spatial scales under current conditions. We compile and review denitrification rates reported in 32 studies conducted in a variety of habitats across coastal Louisiana during the period 1981– 2008. The acetylene inhibition and 15N flux were the preferred techniques (95%); most of the studies used sediment slurries rather than intact sediment cores. There are no estimates of denitrification rates using the N2/Ar ratio and isotope pairing techniques, which address some of the problems and limitations of the acetylene inhibition and 15N flux techniques. These studies have shown that sediments from estuaries, lakes, marshes, forested wetlands, and the coastal shelf region are capable of high potential denitrification rates when exposed to high NO3? concentrations (> 100 µM). Maximum potential denitrification rates in experimental and natural settings can reach values > 2500 µmol m2 h? 1. The lack of contemporary studies to understand the interactions among critical nitrogen transformations (e.g., organic matter mineralization, immobilization, aquatic plant assimilation, nitrification, nitrogen fixation, dissimilatory nitrate reduction to ammonium (DNRA) and anaerobic ammonium oxidation (annamox) limits our understanding of nitrogen cycling in coastal Louisiana, particularly the role of respiratory and chemolithoautotrophic denitrification in areas undergoing wetland restoration.  相似文献   

15.
Porewater nutrient dynamics during emersion and immersion were investigated during different seasons in a eutrophic intertidal sandflat of Tokyo Bay, Japan, to elucidate the role of emersion and immersion in solute transport and microbial processes. The water content in the surface sediment did not change significantly following emersion, suggesting that advective solute transport caused by water table fluctuation was negligible. The rate of change in nitrate concentration in the top 10 mm of sediments ranged from −6.6 to 4.8 μmol N l−1 bulk sed. h−1 during the whole period of emersion. Steep nutrient concentration gradients in the surface sediment generated diffusive flux of nutrients directed downwards into deeper sediments, which greatly contributed to the observed rates of change in porewater nutrient concentration for several cases. Microbial nitrate reduction within the subsurface sediment appeared to be strongly supported by the downward diffusive flux of nitrate from the surface sediment. The stimulation of estimated nitrate production rate in the subsurface layer in proportion to the emersion time indicates that oxygenation due to emersion caused changes in the sediment redox environment and affected the nitrification and/or nitrate reduction rates. The nitrate and soluble reactive phosphorus pools in the top 10 mm of sediment decreased markedly during immersion (up to 68% for nitrate and up to 44% for soluble reactive phosphorus), however, this result could not be solely explained by molecular diffusion.  相似文献   

16.
Recent constructions of the global nitrogen budget estimate that at least half of the ocean's fixed nitrogen is lost by sedimentary denitrification, the majority of which occurs in continental shelves. The Arctic contains approximately 20% of the world's continental shelf, suggesting it is a substantial contributor to the global sedimentary denitrification rate. During two cruises in the summer and spring of 2002 and 2004, respectively, denitrification rates were calculated from the downward diffusive flux of nitrate in the shelf and slope sediments of the Chukchi Sea in the western Arctic. Additionally, in the spring of 2004, denitrification rates were determined by whole-core incubations in which the flux of nitrogen gas out of the sediments was measured. Measurements were made along three transects crossing the shelf and slope (50–3000 m), each transect having different overlying water characteristics. Denitrification rates generally decreased with increasing water depth: rates varied from about 1.6 mmol N m−2 d−1 for the shallow-water sediments to undetectable in deep-water sediments. Rates showed little variation between the two seasons. However, rates were found to correspond with differences in annual overlying primary productivities and particulate organic carbon export fluxes. An extrapolation to the whole Arctic yielded an average Arctic sedimentary denitrification rate of 13 Tg N yr−1. Taken in the context of the global nitrogen budget, it is about 4–13% of the total sink of fixed nitrogen in the ocean.  相似文献   

17.
A study on biogeochemical cycling in the west coastal Bay of Bengal was undertaken during the peak discharge period to understand the influence of enhanced stratification and primary production on the possible intensification of the oxygen minimum zone (OMZ). Our study reveals that oxygen concentrations were below the detection limits in the northwestern (NW) coastal Bay of Bengal between 100 and 500 m associated with strong stratification and high phytoplankton biomass. Such low oxygen concentrations have never been reported so far from the coastal Bay of Bengal. Despite the existence of an environment conducive to denitrification in the coastal Bay of Bengal, accumulation of neither secondary nitrite nor nitrous oxide (N2O) was observed. The absence of denitrification was reported to be caused by faster scavenging of organic matter and low bacterial respiration rates; in contrast, our results suggest that neither of these factors are potential reasons for the absence of denitrification in the coastal Bay of Bengal.  相似文献   

18.
The relation between the nitrate and phosphate concentrations in the Sea of Okhotsk and the bordering waters of the Pacific Ocean were studied. The surveys were carried out in the autumn, spring, and summer of 2001–2002. For the deepwater part of the sea, the relation [NO? 3] = ((14.88 ± 0.07) × [PO3? 4] ? 5.46 ± 0.17) was found. The coefficients in the equation given are statistically different from those in the similar equation for the Pacific waters: [NO? 3] = (16.05 ± 0.15) × [PO3? 4]-(7.23 ± 0.36). In the northern part of the sea; on the shelf; in the slope area; and, especially, in the deep waters of the TINRO Depression, the linear dependence between the phosphate and nitrate concentrations was distorted. This feature was described in terms of nitrate deficiency. The maximum values of this deficiency were found in the near-bottom waters. The principal processes that might cause the nitrate deficiency were considered: the difference in the oxidation rates of the nitrogen and phosphorus organic compounds, the matter transfer between the continent and the sea, the different efficiency of the biogenic burial of nitrogen and phosphorus in the bottom sediments, and the denitrification in the upper layer of the bottom sediments. It was shown that the most probable cause of the nitrate deficiency was the denitrification. The loss of inorganic nitrogen owing to the supply of the waters of the Sea of Okhotsk to the Pacific Ocean was estimated as ~2.5 × 1011 mol N/year.  相似文献   

19.
本研究在长江口附近海域采集表层沉积物,采用实验室模拟培养与分子生物学手段相结合的方法,通过测定纳米氧化锌(ZnO NPs)和菲(Phe)胁迫下沉积物中NO-3-N和NO-2-N浓度和反硝化还原酶活性及反硝化细菌基因丰度和群落多样性变化,目的是比较研究ZnO NPs和Phe对河口区沉积物反硝化作用及功能菌群落结构的影响,并探讨其作用过程和可能的作用机制。结果表明:ZnO NPs和Phe对沉积物硝酸盐还原能力和亚硝酸还原能力均产生抑制作用,浓度越高,抑制作用越强,其中亚硝酸盐还原过程受到2种污染物抑制更强烈,加重了沉积物亚硝酸盐的累积。ZnO NPs对沉积物硝酸盐还原能力、硝酸还原酶活性、narG基因丰度的抑制程度大于Phe,Phe对沉积物亚硝酸盐还原能力、亚硝酸还原酶和nirS基因丰度的抑制程度大于ZnO NPs,表明对反硝化还原酶和反硝化功能基因的抑制是外源污染物胁迫影响反硝化过程的主要机制。ZnO NPs和Phe降低了沉积物反硝化菌群落多样性水平,增加沉积物中Halomonas的优势度,降低了Bacillus的优势度,但Phe对沉积物群落多样性和组成的影响更加明显,说明Phe对长江口海区的生态影响大于ZnO-NPs。  相似文献   

20.
Denitrification in Qi'ao Island coastal zone, the Zhujiang Estuary in China   总被引:1,自引:0,他引:1  
Samples of sediments and the overlying water were collected in the Qi'ao Island coastal zone, the Zhujiang (Pearl River) Estuary (ZE). Denitrification rates, sediment oxygen demand (SOD) , and fluxes of inorganic nitrogen compounds were investigated with N2 flux method, using a self-designed continuous flow through and auto-sampling system. The results indicate that the denitrification rates varied between 222 and 908 μmol/(m2·h) with an average of 499 μmol/(m2·h). During incubation, the sediments absorbed dissolved oxygen in the overlying water with SOD ranging from 300 to 2 363 μmol/(m2·h). The denitrification rates were highly correlated with the SOD (r2 =0.77) regardless of the NO3- + NO2- concentrations in the overlying water, organ- ic carbon contents in sediments and water temperature, suggesting that the SOD was probably the main environ-mental factor controlling the denitrification in the Qi'ao Island coastal zone. There was a net flux of NO3- + NO2-into the sediments from the overlying water. The NH4+ flux from sediments into water as the result of mineraliza-tion was between 12. 3 and 210. 3 μmol/(m2·h) ,which seems limited by both organic carbon content in sedi-ment and dissolved oxygen concentration in the overlying water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号