首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
For most iron meteorites studied, the carbon isotopic composition of nodular graphite falls in the range ?4.8 to ?8.2%. vs PDB and shows a mode between ?5 and ?6%.. Fourteen cohenite analyses from the Magura meteorite fall between ?18.1 and ?19.2%. with a pronounced clustering around ?18.5%.. Carbon of a taenite separate from the same meteorite has an isotopic composition of ?18.8%.; compositions between ?19.7 and ?22.1%. were found for taenite carbon in five other octahedrites. It is suggested that the 12C enrichment in cohenite and taenite relative to the nodular graphite is a general phenomenon in iron meteorites, and that the study of 13C abundances in iron meteorites may aid in the elucidation of their history. To this end an experimental study of carbon isotope fractionations in the system Fe-Ni-C is essential. The 13C content of carbon from several silicate inclusions in the Four Corners and ‘El Taco’ (Campo del Cielo) meteorites is generally similar to the nodular graphite, the 12C enrichment (?13%.) in one specimen may be interpreted in terms of a mixing model involving an original inclusion carbon and carbon exsolved from the taenite upon cooling.  相似文献   

2.
We report analyses of 14 group IVA iron meteorites, and the ungrouped but possibly related, Elephant Moraine (EET) 83230, for siderophile elements by laser ablation ICP-MS and isotope dilution. EET was also analyzed for oxygen isotopic composition and metallographic structure, and Fuzzy Creek, currently the IVA with the highest Ni concentration, was analyzed for metallographic structure. Highly siderophile elements (HSE) Re, Os and Ir concentrations vary by nearly three orders of magnitude over the entire range of IVA irons, while Ru, Pt and Pd vary by less than factors of five. Chondrite normalized abundances of HSE form nested patterns consistent with progressive crystal-liquid fractionation. Attempts to collectively model the HSE abundances resulting from fractional crystallization achieved best results for 3 wt.% S, compared to 0.5 or 9 wt.% S. Consistent with prior studies, concentrations of HSE and other refractory siderophile elements estimated for the bulk IVA core and its parent body are in generally chondritic proportions. Projected abundances of Pd and Au, relative to more refractory HSE, are slightly elevated and modestly differ from L/LL chondrites, which some have linked with group IVA, based on oxygen isotope similarities.Abundance trends for the moderately volatile and siderophile element Ga cannot be adequately modeled for any S concentration, the cause of which remains enigmatic. Further, concentrations of some moderately volatile and siderophile elements indicate marked, progressive depletions in the IVA system. However, if the IVA core began crystallization with ∼3 wt.% S, depletions of more volatile elements cannot be explained as a result of prior volatilization/condensation processes. The initial IVA core had an approximately chondritic Ni/Co ratio, but a fractionated Fe/Ni ratio of ∼10, indicates an Fe-depleted core. This composition is most easily accounted for by assuming that the surrounding silicate shell was enriched in iron, consistent with an oxidized parent body. The depletions in Ga may reflect decreased siderophilic behavior in a relatively oxidized body, and more favorable partitioning into the silicate portion of the parent body.Phosphate inclusions in EET show Δ17O values within the range measured for silicates in IVA iron meteorites. EET has a typical ataxitic microstructure with precipitates of kamacite within a matrix of plessite. Chemical and isotopic evidence for a genetic relation between EET and group IVA is strong, but the high Ni content and the newly determined, rapid cooling rate of this meteorite show that it should continue to be classified as ungrouped. Previously reported metallographic cooling rates for IVA iron meteorites have been interpreted to indicate an inwardly crystallizing, ∼150 km radius metallic body with little or no silicate mantle. Hence, the IVA group was likely formed as a mass of molten metal separated from a much larger parent body that was broken apart by a large impact. Given the apparent genetic relation with IVA, EET was most likely generated via crystal-liquid fractionation in another, smaller body spawned from the same initial liquid during the impact event that generated the IVA body.  相似文献   

3.
Total N has been measured in a number of meteorites by neutron activation analysis using the reaction N14(n, p)C14. From each meteorite a number of chips have been analysed to investigate the variation of N contents in a sample. Many meteorites are found to contain a heterogeneous distribution of N. Eighteen chondrites, mostly of the classes C3, H4, H5, L4, L5, L6 and LL6, and six achondrites are found to have average N contents of 10–45 ppm. These do not show any clear-cut dependence of N on petrological group. However, the inherent heterogeneity or the fact that from most meteorite classes only single falls were studied might be responsible for this lack of correlation. In Cold Bokkeveld (C2) N is high (420 ppm). Unlike C, N content of ureilites is low (26 ppm). Nitrogen is enriched in the non-magnetic as compared to the magnetic fractions in H-group chondrites. Analyses of sieved Bjurböle phases show no enrichment of N in finer matrix material, nor any depletion in chondrules. In two gas-rich meteorites, Kapoeta and Assam, there is no excess N in the dark phases. Nine iron meteorites and three mesosiderites were analysed. Twenty analyses of Canyon Diablo and seven of Odessa establish a very heterogeneous N distribution in these meteorites.  相似文献   

4.
Pb isotopic compositions and U-Pb abundances were determined in the metal phase of six iron meteorites: Canyon Diablo IA, Toluca IA, Odessa IA, Youndegin IA, Deport IA and Mundrabilla An. Prior to complete dissolution, samples were subjected to a series of leachings and partial dissolutions. Isotopic compositions and abundances of the etched Pb indicate a contamination by terrestrial Pb which is attributable to previous cutting of the meteorite. Pb isotopic compositions measured in the decontaminated samples are identical within 0.2% and essentially confirm the primordial Pb value defined by Tatsumotoet al. (1973). These data invalidate more radiogenic Pb isotopic compositions published for iron meteorites, which are the result of terrestrial Pb contamination introduced mainly by analytical procedure. Our results support the idea of a solar nebula which was isotopically homogeneous for Pb 4.55 Ga ago. The new upper limit for U-abundance in iron meteorites, 0.001 ppb, is in agreement with its expected thermodynamic solubility in the metal phase.  相似文献   

5.
We review the crystallization of the iron meteorite chemical groups, the thermal history of the irons as revealed by the metallographic cooling rates, the ages of the iron meteorites and their relationships with other meteorite types, and the formation of the iron meteorite parent bodies. Within most iron meteorite groups, chemical trends are broadly consistent with fractional crystallization, implying that each group formed from a single molten metallic pool or core. However, these pools or cores differed considerably in their S concentrations, which affect partition coefficients and crystallization conditions significantly. The silicate-bearing iron meteorite groups, IAB and IIE, have textures and poorly defined elemental trends suggesting that impacts mixed molten metal and silicates and that neither group formed from a single isolated metallic melt. Advances in the understanding of the generation of the Widmanstätten pattern, and especially the importance of P during the nucleation and growth of kamacite, have led to improved measurements of the cooling rates of iron meteorites. Typical cooling rates from fractionally crystallized iron meteorite groups at 500–700 °C are about 100–10,000 °C/Myr, with total cooling times of 10 Myr or less. The measured cooling rates vary from 60 to 300 °C/Myr for the IIIAB group and 100–6600 °C/Myr for the IVA group. The wide range of cooling rates for IVA irons and their inverse correlation with bulk Ni concentration show that they crystallized and cooled not in a mantled core but in a large metallic body of radius 150±50 km with scarcely any silicate insulation. This body may have formed in a grazing protoplanetary impact. The fractionally crystallized groups, according to Hf–W isotopic systematics, are derived originally from bodies that accreted and melted to form cores early in the history of the solar system, <1 Myr after CAI formation. The ungrouped irons likely come from at least 50 distinct parent bodies that formed in analogous ways to the fractionally crystallized groups. Contrary to traditional views about their origin, iron meteorites may have been derived originally from bodies as large as 1000 km or more in size. Most iron meteorites come directly or indirectly from bodies that accreted before the chondrites, possibly at 1–2 AU rather than in the asteroid belt. Many of these bodies may have been disrupted by impacts soon after they formed and their fragments were scattered into the asteroid belt by protoplanets.  相似文献   

6.
Based on new neutron activation data for group IVB we find that log-element — log-Ni trends are best understood in terms of core formation and fractional crystallization. The limited compositional range found in group IVB seems to reflect the fact that, because of the low concentrations of S, P and C and the high concentration of Ni, kχ values are nearer unity than are those in other magmatic groups. Mean volatile abundances in group IVB are much lower than those found in any group of chondritic meteorites, suggesting that these low abundances were not entirely the result of nebular processes, but that planetary outgassing was also involved.We calculated cooling rates on the basis of a computer simulation of the growth of kamacite crystals; these calculations are particularly straightforward for the high-Ni irons since no local bulk Ni enrichment is involved. We estimate a mean IVB cooling rate of 170–230 K/Ma, the lower values based on 20 K undercooling, the higher on no undercooling. There is no dependence of cooling rate on chemical composition. The mean cooling rate of the low-volatile groups IVB and IVA are both much higher than those typical of iron-meteorite groups. This indicates small parent bodies, and reinforces the above suggestion that the low volatile contents resulted from planetary outgassing.There is a small compositional hiatus in group IVB, but since the sets on both sides of the hiatus form continuous trends on log-element — log-Ni diagrams and have the same cooling rates, it appears that both sets originated in a single oxidized, refractory-rich parent body. This sampling hiatus corresponds to 26% of the original core, a value shown to be typical for a random sequence sampled 11 times.  相似文献   

7.
In this study kamacite was experimentally grown in taenite grains of Fe-Ni-P alloys containing between 5 and 10 wt% Ni and 0 and 1.0 wt% P. Both isothermal heat treatments and non-isothermal heat treatments at cooling rates of 2 to 5°C/day were carried out. Analytical electron microscopy was used to examine the orientation and chemical composition of the kamacite and the surrounding taenite matrix. The kamacite so produced is spindle or rod shaped and has a Widmanstätten pattern orientation. The presence of heterogeneous sites such as phosphides is necessary for the nucleation of the intergranular kamacite. During kamacite growth both Ni and P partition between kamacite and taenite with chemical equilibrium at the two phase interface. The growth kinetics are limited by the diffusion of Ni in taenite. Additional diffusion experiments showed that the volume diffusion coefficient of Ni in taenite is raised by a factor of 10 at 750°C in the presence of only 0.15 wt% P.A numerical model to simulate the growth of kamacite in Fe-Ni-P alloys, based on our experimental results, was developed and applied to estimate the cooling rates of the iron meteorites. The cooling rates predicted by the new model are two orders of magnitude greater than those of previous studies. For example the cooling rates of chemical groups I, IIIAB and IVA are 400–4000°C/106years, 150–1400°C/ 106 years and 750–6000°C/106years respectively. Previous models gave 1–4°C/106 years, 1–10°C/106 years and 3–200°C/106 years. Such fast cooling rates can be interpreted to indicate that meteorite parent bodies need only be a few kilometers in diameter or that iron meteorites can be formed near the surface of larger asteroidal bodies.  相似文献   

8.
The abundance of C in carbonaceous and ordinary chondrites decreases exponentially with increasing shock pressure as inferred from the petrologic shock classification of Scott et al. [Scott, E.R.D., Keil, K., Stoffler, D., 1992. Shock metamorphism of carbonaceous chondrites. Geochim. Cosmochim. Acta 56, 4281-4293] and Stoffler et al. [Stoffler, D., Keil, K., Scott, E.R.D., 1991. Shock metamorphism of ordinary chondrites. Geochim. Cosmochim. Acta 55, 3845-3867]. This confirms the experimental results of Tyburczy et al. [Tyburczy, J.A., Frisch, B., Ahrens, T.J., 1986. Shock-induced volatile loss from a carbonaceous chondrite: implications for planetary accretion. Earth Planet. Sci. Lett. 80, 201-207] on shock-induced devolatization of the Murchison meteorite showing that carbonaceous chondrites appear to be completely devolatilized at impact velocities greater than 2 km s-1. Both of these results suggest that C incorporation would have been most efficient in the early stages of accretion, and that the primordial C content of the Earth was between 10(24) and 10(25) g C (1-10% efficiency of incorporation). This estimate agrees well with the value of 3-7 x 10(24) g C based on the atmospheric abundance of 36Ar and the chondritic C/36Ar (Marty and Jambon, 1987). Several observations suggest that C likely was incorporated into the Earth's core during accretion. (1) Graphite and carbides are commonly present in iron meteorites, and those iron meteorites with Widmanstatten patterns reflecting the slowest cooling rates (mostly Group I and IIIb) contain the highest C abundances. The C abundance-cooling rate correlation is consistent with dissolution of C into Fe-Ni liquids that segregated to form the cores of the iron meteorite parent bodies. (2) The carbon isotopic composition of graphite in iron meteorites exhibits a uniform value of -5% [Deines, P., Wickman, F.E. 1973. The isotopic composition of 'graphitic' carbon from iron meteorites and some remarks on the troilitic sulfur of iron meteorites. Geochim. Cosmochim. Acta 37, 1295-1319; Deines, P., Wickman, F.E., 1975. A contribution to the stable carbon isotope geochemistry of iron meteorites. Geochim. Cosmochim. Acta 39, 547-557] identical to the mode in the distribution found in diamonds, carbonatites and oceanic basalts [Mattey, D.P., 1987. Carbon isotopes in the mantle. Terra Cognita 7, 31-37]. (3) The room pressure solubility of C in molten iron is 4.3 wt% C. Phase equilibria confirm that the Fe-C eutectic persists to 12 GPa, and thermochemical calculations for the Fe-C-S system by Wood [Wood, B.J., 1993. Carbon in the core. Earth Planet. Sci. Lett. 117, 593-607] predict that C is soluble in Fe liquids at core pressures. The abundance of 36Ar in chondrites decreases exponentially with increasing shock pressure as observed for C. It is well known that noble gases are positively correlated and physically associated with C in meteorites [e.g. Otting, W., Zahringer J., 1967. Total carbon content and primordial rare gases in chondrites. Geochim. Cosmochim. Acta 31, 1949-1960; Reynolds, J.H., Frick, U., Niel, J.M., Phinney, D.L., 1978. Rare-gas-rich separates from carbonaceous chondrites. Geochim. Cosmochim. Acta, 42, 1775-1797]. This suggests a mechanism by which primordial He and other noble gases may have incorporated into the Earth during accretion. The abundance of He in the primordial Earth required to sustain the modern He flux for 4 Ga (assuming a planetary 3 He/4 He; Reynolds et al. [Reynolds, J.H., Frick, U., Niel, J.M., Phinney, D.L., 1978. Rare-gas-rich separates from carbonaceous chondrites. Geochim. Cosmochim. Acta 42, 1775-1797] is calculated to be > or = 10(-8) cm3 g-1. This minimum estimate is consistent with a 1-10% efficiency of noble gas retention during accretion and the observed abundance of He in carbonaceous chondrites (10(-5) to 10(-4) cm3 g-1 excluding spallogenic contributions).  相似文献   

9.
Group IID is the fifth largest group of iron meteorites and the fourth largest magmatic group (i.e., that formed by fractional crystallization). We report neutron-activation data for 19 (of 21 known) IID irons. These confirm earlier studies showing that the group has a relatively limited range in Ir concentrations, a factor of 5. This limited range is not mainly due to incomplete sampling; Instead, it seems to indicate low solid/liquid distribution coefficients reflecting very low S contents of the parental magma, the same explanation responsible for the limited range in group IVA. Despite this similarity, these two groups have very different volatile patterns. Group IVA has very low abundances of the volatile elements Ga, Sb and Ge whereas in group IID Ga and Sb abundances are the highest known in a magmatic group of iron meteorites and Ge abundances are the second highest (after group IIAB). Group IID appears to be the only large magmatic group having high volatile abundances but low S. In the volatile-depleted groups IVA and IVB it is plausible that S was lost as a volatile from a chondritic precursor material. Because group IID seems to have experienced minimal loss of volatiles, we suggest that S was lost as an early melt having a composition near that of the Fe–FeS eutectic (315 mg/g S). When temperatures had risen 400–500 K higher P-rich melts formed, became gravitationally unstable, and drained through the first melt to form an inner core that was parental to the IID irons. As discussed by [Kracher, A., Wasson, J.T., 1982. The role of S in the evolution of the parental cores of the iron meteorites. Geochim. Cosmochim. Acta 46, 2419–2426], it is plausible that a metal-rich inner core and a S-rich outer core could coexist metastably because stratification near the interface permitted only diffusional mixing. The initial liquidus temperature of the inner, P-rich core is estimated to have been 1740 K; after >60% crystallization the increase in P and the decrease in temperature may have permitted immiscibility with the S-rich outer core. We have not recognized samples of the outer core.  相似文献   

10.
Re-Os同位素体系在陨石研究中的应用   总被引:2,自引:1,他引:2  
杨刚  谢智  陈江峰 《地学前缘》2001,8(2):339-344
铁陨石中的Re ,Os含量反映其结晶分异历史。通过铁陨石定年修正187Re的衰变常数为 :λ(187Re) =1 6 6 6× 10 -11a-1。ReOs同位素测年法可以直接用于对铁陨石的定年 ,结果表明天然铁陨石大体同时形成 ,但ReOs定年技术已有可能揭示不同化学群铁陨石形成年代的序列 ,但研究尚需深入。这些方法也可以用来探讨铁陨石和石铁陨石的形成源区、冷却历史和后期变化。虽然在石陨石中Re ,Os同位素的浓度很低 ,但也有了探索性研究成果。随着技术的不断发展 ,ReOs同位素体系在天体化学中的作用将愈加明显和重要。  相似文献   

11.
Twenty-one iron meteorites with Ge contents below 1 μg/g, including nine belonging to groups IIIF and IVB, have been analyzed by instrumental neutron activation analysis (INAA) for the elements Co, Cr, As, Au, Re, Ir and W. Groups IIIF and IVB show positive correlations of Au, As and Co (IIIF only) with published Ni analyses, and negative correlations of Ir, Re, Cr (IVB only) and W (IIIF only) with Ni. On element-Ni plots, the gradients of the least squares lines are similar to those of many other groups, excluding IAB and IIICD. With the inclusion of a new member, Klamath Falls, group IIIF has the widest range of Au, As and Co contents of any group and the steepest gradients on plots of these elements against Ni. It is likely that these trends in groups IIIF and IVB were produced by fractionation of elements between solid and liquid metal, probably during fractional crystallization.It has been suggested that some of the 15 irons with <l μg/g Ge which lie outside the groups might be related. However, the INAA data indicate that no two are as strongly related as two group members. These low-Ge irons and the members of groups IIIF, IVA and IVB tend to have low concentrations of As, Au and P, low CoNi ratios and high Cr contents. The depletion of the more volatile elements probably results from incomplete condensation into the metal from the solar nebula.The structures of low-Ge irons generally reflect fast cooling rates (20–2000 K Myr?1). When data for all iron meteorites are plotted on a logarithmic graph of cooling rate against Ge concentration and results for related irons are averaged, there is a significant negative correlation. This suggests that metal grains which inefficiently condensed Ge and other volatile elements tended to accrete into small parent bodies.  相似文献   

12.
王松山 《地质科学》1987,(4):364-373
40Ar/39Ar年龄谱是研究陨石冲击事件的重要资料。根据对55块陨石40Ar/39Ar冲击年龄和陨石暴露年龄的分析,发现陨石的冲击年龄与陨石类型之间存在对应关系。据此,将陨石冲击事件划分为九期。其中3900-4000Ma、470-540Ma和小于65Ma是陨石母体的三个重要演化阶段。阶段Ⅰ、Ⅱ和Ⅲ(冲击年龄大于30亿年)主要涉及高钙型无球粒陨石。所有球粒陨石的冲击年龄均小于30亿年。陨石暴露年龄因类型而异,铁陨石最大,石铁陨石次之,石陨石最小。  相似文献   

13.
Analyses were made of samples of the several classes of iron meteorites: (hexahedrites, octahedrites, ataxites, and troilite inclusions) in further study of the isotopic composition of primordial lead and toward establishing correlation between the distribution of lead among the mineral inclusions and the nickel-iron mass of the meteorite. Two groups of iron meteorites can be distinguished on the basis of isotopic composition lead suggesting two ages for the parent bodies of common iron meteorites. The distribution of lead in iron meteorites ranges markedly but no relation could be found between isotopic composition of lead and the several structures and compositions. The content of lead in troilites are one or two orders of magnitude higher than in the nickel-iron phase.-- M. Russell.  相似文献   

14.
The FeS content of sphalerite, a minor phase in some meteorites, is strongly dependent on pressure when the sphalerite is in equilibrium with troilite. We have determined FeS contents for sphalerite in Bogou, Gladstone, Sardis and Odessa ; these, together with published data on Odessa and Campo del Cielo, have been used to calculate pressures of formation of meteorites, assuming that FeS-diffusion in sphalerite ceases at 350°C. Calculated pressures range from 0.2 to 3.1 kbar, corresponding to formation at centres of chondritic objects from 140 to 410 km in radius, or metallic objects of from 50 to 200 km radius. Formation at shallower depths would require the objects to have been correspondingly larger.All meteorites in this study are members of Ga-Ge group I. Inverse correlation between Ge content and pressure of formation suggests formation at various depths in a compositionally zoned (fractionated?) object. Comparison between our pressure estimates and radii estimated from cooling rates (Frickeret al., 1970, Geochim. Cosmochim. Acta34, 475–492) suggests that Odessa, Bogou and possibly other Group I meteorites formed in a single object with a radius between 400 and 180 km and an overall composition richer in metal than average chondrites.  相似文献   

15.
We evaluate the performance of a hand‐held XRF (HHXRF) spectrometer for the bulk analysis of iron meteorites. Analytical precision and accuracy were tested on metal alloy certified reference materials and iron meteorites of known chemical composition. With minimal sample preparation (i.e., flat or roughly polished surfaces) HHXRF allowed the precise and accurate determination of most elements heavier than Mg, with concentrations > 0.01% m/m in metal alloy CRMs, and of major elements Fe and Ni and minor elements Co, P and S (generally ranging from 0.1 to 1% m/m) in iron meteorites. In addition, multiple HHXRF spot analyses could be used to determine the bulk chemical composition of iron meteorites, which are often characterised by sulfide and phosphide accessory minerals. In particular, it was possible to estimate the P and S bulk contents, which are of critical importance for the petrogenesis and evolution of Fe‐Ni‐rich liquids and iron meteorites. This study thus validates HHXRF as a valuable tool for use in meteoritics, allowing the rapid, non‐destructive (a) identification of the extraterrestrial origin of metallic objects (i.e., archaeological artefacts); (b) preliminary chemical classification of iron meteorites; (c) identification of mislabelled/unlabelled specimens in museums and private collections and (d) bulk analysis of iron meteorites.  相似文献   

16.
Zoning patterns of light lithophile elements (the LLE: Li, Be, and B) in pyroxenes of some Martian basaltic meteorites have been used to suggest that the parent basalts were saturated in water and exsolved an aqueous fluid phase. Here, we examine LLE zoning in the augites of a quickly cooled Martian basalt that was not water-saturated—the Northwest Africa (NWA) 817 nakhlite. Analyses for LLE were by secondary ion mass spectrometry (SIMS), supported by EMP analyses of major and minor elements. In NWA 817, zoning of Be and B is consistent with igneous fractionations while Li abundances are effectively constant across wide ranges in abundance of other incompatible elements (Be, B, Ti, and Fe*). The lack of strong zoning in Li can be ascribed to intracrystalline diffusion, despite the rapid cooling of NWA 817. Most other nakhlites, notably Nakhla and Lafayette, cooled more slowly than did NWA 817 [Treiman, A.H., 2005. The nakhlite Martian meteorites: augite-rich igneous rock from Mars. Chem. Erde65, 203-270]. In them Li abundances are constant across augite, as are abundances of other elements. In Nakhla pyroxenes, all the LLE have effectively constant abundances across significant ranges in Fe* and Ti abundance. Lafayette is more equilibrated still, and shows constant abundances of LLE and nearly constant Fe*. A pyroxene in the NWA480 shergottite has constant Li abundances, and was interpreted to represent mineral fractionation coupled with exsolution of aqueous fluid. A simple quantitative model of this process requires that the partitioning of Li between basalt and aqueous fluid, LiDaq/bas, be 15 times larger than its experimentally determined value. Thus, its seems unlikely that the Li zoning pattern in NWA480 augite represents exsolution of aqueous fluid. Late igneous or sub-solidus diffusion seems more likely as is suggested by Li isotopic studies [Beck, P., Chaussidon, M., Barrat, J.-A., Gillet, Ph., Bohn, M., 2005. An ion-microprobe study of lithium isotopes behavior in nakhlites. Meteorit. Planet. Sci.40, Abstract #5118; Beck, P., Chaussidon, M., Barrat, J.-A., Gillet, Ph., Bohn, M., 2006. Diffusion induced Li isotopic fractionation during the cooling of magmatic rocks: the case of pyroxene phenocrysts from nakhlite meteorites. Geochim. Cosmochim. Acta70, in press]. Pyroxenes of the Shergotty and Zagami meteorites have nearly constant abundances of B, and Li that decreases core-to-rim. Applying the quantitative model to the constant B in these pyroxenes requires that BDaq/bas be 25 times larger than experimentally constrained values. Li abundances in pigeonite can be fit by the model of crystal fractionation and fluid loss, but only if LiDaq/bas is 30 times the experimentally constrained value. The Li abundance pattern in augite cannot be modeled by simple fractionation, suggesting some strong crystal-composition effects. Thus, Li and B distributions in Shergotty and Zagami pyroxenes cannot be explained by igneous fractionation and exsolution of aqueous vapor. Intracrystalline diffusion, complete for B and incomplete for Li, seems more consistent with the observed zoning patterns.  相似文献   

17.
Minor elements in sphalerite and galena from Binnatal   总被引:1,自引:0,他引:1  
The trace element contents of 23 sphalerites and galenas from Binnatal, Switzerland, have been determined. Most of these samples have been previously studied in respect to lead and sulphur isotope abundances. Coloration of sphalerites — varying from yellow to black for nearly identical iron contents — seems to be strongly influenced by the manganese content. A linear relationship between sulphur isotope composition and copper content in sphalerites was found. Trace elements in galenas show a significant inverse relationship between silver and copper. With the determination of the bismuth content, it is possible to distinguish several galena types; a similar grouping has been found by lead isotope determinations. The results of the trace analyses are discussed in connection with the occurrence of a large number of very rare and special Pb-As-sulphosalt minerals in the Binnatal dolomites.  相似文献   

18.
Recent work on fission track studies of meteorite samples to obtain cooling rates of metetorite parent bodies is reviewed. The cooling rates of chondrites are in excess of 1oK/106 yr. Fission track studies of phosphate grains in mesosiderites do not support the extremely slow cooling rates of 0°1oK/108 yr for these meteorites, inferred from metallographic studies. The accumulating evidence from fission track studies indicates a gross underestimation of the cooling rates of meteorites as determined by the metallographic techniques.  相似文献   

19.
A fast procedure for chemical analysis of different meteorites is presented, based on LIBS (Laser Induced Breakdown Spectroscopy). The technique is applied to several test cases (Dhofar 019, Dhofar 461, Sahara 98222, Toluca, Sikhote Alin and Campo del Cielo) and can be useful for rapid meteorite identification providing geologists with specific chemical information for meteorite classification. Concentration profiles of Fe, Ni and Co are simultaneously detected across the Widmanstätten structure of the iron meteorite Toluca with a view to determining cooling rates. The LIBS analysis of meteorites is also used as a laboratory test for analogous studies on the respective parent bodies (Mars, asteroids) in space exploration missions where one clear advantage of the proposed technique is that no direct contact with the sample is required.  相似文献   

20.
A set of 11 impact melt rock samples from the Rochechouart impact structure, France and nine impact melt rock samples from Sääksjärvi impact structure, Finland were studied for their major and trace element compositions, including the abundances of the platinum group elements. The main goal of this study was to identify the projectile type(s) responsible for the formation of these two impact structures. The results confirmed previous studies that suggested extraterrestrial contamination in both the Rochechouart and Sääksjärvi impact melt rocks. The projectile types found for Rochechouart and Sääksjärvi are quite similar, and compatible with the composition of non-magmatic iron meteorites (IA and IIIC). This interpretation is based on: identical platinum group element patterns as well as peculiar Ni/Cr, Ni/Ir and Cr/Ir ratios, which can be explained by mixing of the different components of non-magmatic iron meteorites. This result indicates that, besides ordinary chondrites, non-magmatic iron may be among the most common material impacting the Earth, as they also represent the majority of the projectiles for craters smaller that 1.5 km. The abundance of non-magmatic irons as projectiles as well as their composition (olivine, pyroxene and iron) supports the assumption that a fraction of the S-type asteroids could by related to this type of material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号