首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
The influence on olivine/melt transition metal (Mn, Co, Ni) partitioning of substitution in the tetrahedral network of silicate melt structure has been examined at ambient pressure in the 1450-1550 °C temperature range. Experiments were conducted in the systems NaAlSiO4-Mg2SiO4- SiO2 and CaAl2Si2O8-Mg2SiO4-SiO2 with about 1 wt% each of MnO, CoO, and NiO added. These compositions were used to evaluate how, in silicate melts, substitution and ionization potential of charge-balancing cations affect activity-composition relations in silicate melts and mineral/melt partitioning.The exchange equilibrium coefficient, , is a positive and linear function of melt Al/(Al + Si) at constant degree of melt polymerization, NBO/T. The is negatively correlated with the ionic radius, r, of the M-cation and also with the ionization potential (Z/r2, Z = electrical charge) of the cation that serves to charge-balance Al3+ in tetrahedral coordination in the melts. The activity coefficient ratio, (γM/γMg)melt, is therefore similarly correlated.These melt composition relationships are governed by the distribution of Al3+ among coexisting Q-species in the peralkaline (depolymerized) melts coexisting with olivine. This distribution controls Q-speciation abundance, which, in turn, controls (γM/γMg)melt and . The relations between melt structure and olivine/melt partitioning behavior lead to the suggestion that in natural magmatic systems mineral/melt partition coefficients are more dependent on melt composition and, therefore, melt structure the more alkali-rich and the more felsic the melt. Moreover, mineral/melt partition coefficients are more sensitive to melt composition the more highly charged or the smaller the ionic radius of the cation of interest.  相似文献   

14.
Copper partitioning in a melt-vapor-brine-magnetite-pyrrhotite assemblage   总被引:4,自引:0,他引:4  
The effect of sulfur on the partitioning of Cu in a melt-vapor-brine ± magnetite ± pyrrhotite assemblage has been quantified at 800 °C, 140 MPa, fO2 = nickel-nickel oxide (NNO), logfS2=-3.0 (i.e., on the magnetite-pyrrhotite curve at NNO), logfH2S=-1.3 and logfSO2=-1. All experiments were vapor + brine saturated. Vapor and brine fluid inclusions were trapped in silicate glass and self-healed quartz fractures. Vapor and brine are dominated by NaCl, KCl and HCl in the S-free runs and NaCl, KCl and FeCl2 in S-bearing runs. Pyrrhotite served as the source of sulfur in S-bearing experiments. The composition of fluid inclusions, glass and crystals were quantified by laser-ablation inductively coupled plasma mass spectrometry. Major element, chlorine and sulfur concentrations in glass were quantified by using electron probe microanalysis. Calculated Nernst-type partition coefficients (±2σ) for Cu between melt-vapor, melt-brine and vapor-brine are , , and , respectively, in the S-free system. The partition coefficients (±2σ) for Cu between melt-vapor, melt-brine and vapor-brine are , , and , respectively, in the S-bearing system. Apparent equilibrium constants (±1σ) describing Cu and Na exchange between vapor and melt and brine and melt were also calculated. The values of are 34 ± 21 and 128 ± 29 in the S-free and S-bearing runs, respectively. The values of are 33 ± 22 and60 ± 5 in the S-free and S-bearing runs, respectively. The data presented here indicate that the presence of sulfur increases the mass transfer of Cu into vapor from silicate melt. Further, the nearly threefold increase in suggests that Cu may be transported as both a chloride and sulfide complex in magmatic vapor, in agreement with hypotheses based on data from natural systems. Most significantly, the data demonstrate that the presence of sulfur enhances the partitioning of Cu from melt into magmatic volatile phases.  相似文献   

15.
16.
17.
Many experimental studies have been performed to evaluate the composition of coexisting silicate melts and magmatic volatile phases (MVP). However, few studies have attempted to define the relationship between melt chemistry and the acidity of a chloride-bearing fluid. Here we report data on melt composition as a function of the HCl concentration of coexisting brines. We performed 35 experimental runs with a NaCl-KCl-HCl-H2O brine (70 wt% NaCl [equivalent])-silicate melt (starting composition of Qtz0.38Ab0.33Or0.29, anhydrous) assemblage at 800°C and 100 MPa. We determined an apparent equilibrium constant
  相似文献   

18.
Solubility and solution mechanisms in silicate melts of oxidized and reduced C-bearing species in the C-O-H system have been determined experimentally at 1.5 GPa and 1400 °C with mass spectrometric, NMR, and Raman spectroscopic methods. The hydrogen fugacity, fH2, was controlled in the range between that of the iron-wüstite-H2O (IW) and the magnetite-hematite-H2O (MH) buffers. The melt polymerization varied between those typical of tholeiitic and andesitic melts.The solubility of oxidized (on the order of 1-2 wt% as C) and reduced carbon (on the order of 0.15-0.35 wt% as C) is positively correlated with the NBO/Si (nonbridging oxygen per silicon) of the melt. At given NBO/Si-value, the solubility of oxidized carbon is 2-4 times greater than under reducing conditions. Oxidized carbon dioxide is dissolved as complexes, whereas the dominant reduced species in melts are CH3-groups forming bonds with Si4+ together with molecular CH4. Formation of complexes results in silicate melt polymerization (decreasing NBO/Si), whereas solution of reduced carbon results in depolymerization of melts (increasing NBO/Si).Redox melting in the Earth’s interior has been explained with the aid of the different solution mechanisms of oxidized and reduced carbon in silicate melts. Further, effects of oxidized and reduced carbon on melt viscosity and on element partitioning between melts and minerals have been evaluated from relationships between melt polymerization and dissolved carbon combined with existing experimental data that link melt properties and melt polymerization. With total carbon contents in the melts on the order of several mol%, mineral/melt element partition coefficients and melt viscosity can change by several tens to several hundred percent with variable redox conditions in the range of the Earth’s deep crust and upper mantle.  相似文献   

19.
We used an advanced charge compensation system on an X-ray Photoelectron Spectrometer to yield linewidths from O 1s, Si 2p and Pb 4f spectra of 1.22, 1.35, and 1.10 eV, respectively. These linewidths (eV) are the narrowest obtained for silicate glasses, on any X-ray Photoelectron Spectrometer, to date. The exceptional resolution reveals two O 1s peaks in the PbO-SiO2 glasses studied. One clearly resolved, high binding energy O 1s peak represents the bridging oxygen signal and the second, lower energy peak represents both non-bridging oxygen and metal-bridging oxygen contributions. These data allow quantification of bridging oxygen contents without detailed deconvolution because both the peak width and intensity are determined solely by the spectral data. The intensity of the bridging oxygen signal decreases systematically with decreased SiO2 content; however, the measured bridging oxygen abundance is greater than predicted if all Pb atoms in the glass are assumed to be associated with two non-bridging oxygen atoms (i.e., O-Pb-O units). There remains, for example, a significant quantity of bridging oxygen in the glass at the orthosilicate composition (Mol. frac.: 0.67 PbO, 0.33 SiO2). We demonstrate that bridging oxygen, non-bridging oxygen and metal-bridging oxygen exist at this composition and at all glass compositions studied, including the 0.50 PbO, 0.50 SiO2 glass. Equilibrium thermodynamic (speciation) calculations indicate that at least three silicate species dominate the glass: a network species (SiO2), a () monomeric species and a trimeric ring-like species (). With these species, the bridging oxygen contents are accurately modeled in PbO-SiO2 glasses over the compositional range 0.3 PbO, 0.70 SiO2 to 0.67 PbO, 0.33 SiO2, and there is a remarkable agreement between the modeled bridging oxygen and the measured bridging oxygen contents with this study and previous studies. However, we do not intend to imply that the SiO2, () and () are the only species present in the glass structure. In addition, this study shows that the Si 2p spectrum consists of one peak, fitted with one doublet, which shifts systematically to higher binding energy with increased SiO2 content. We propose that this shift results from a more intense signal from the networked (more siliceous) species that are located at higher binding energy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号