首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
2.
In a previous publication (Dominik and Nübold, 2002, Icarus 157, 173-186), we presented analytical expressions and theoretical considerations concerning preplanetary dust aggregation with magnetized grains in the solar nebula. The present work is dedicated to the experimental study of magnetic aggregation in a ground-based laboratory as well as under microgravity conditions on parabolic flights. We conducted aggregation experiments with dust analogues in order to study the temporal evolution and the structural outcome of grain growth processes dominated by or comprising exclusively magnetic grains. Within aggregation times ranging from a couple of seconds to a few minutes only, formation of huge chain-like and/or web-like dust aggregates was observed. After aggregate retrieval we were able to study the sizes and structures of the aggregates in great detail. We established the fractal dimension of the aggregates as Dfs=1.20±0.05 for single chains and Dfc=1.50±0.21 for inter-connected web-like structures. This is considerably lower than for non-magnetic grain growth. The dynamic exponent z for the mass increase with time according to tz was found to be z=2.7 from in-situ video images of the microgravity aggregation runs. The results are compared with the theoretical considerations presented earlier as well as with previous experimental work on the same and on related topics, respectively.  相似文献   

3.
D. Vokrouhlický  D. ?apek 《Icarus》2005,179(1):128-138
We consider the possibility of detecting the Yarkovsky orbital perturbation acting on binary systems among the near-Earth asteroids. This task is significantly more difficult than for solitary asteroids because the Yarkovsky force affects both the heliocentric orbit of the system's center of mass and the relative orbit of the two components. Nevertheless, we argue these are sufficiently well decoupled so that the major Yarkovsky perturbation is in the simpler heliocentric motion and is observable with the current means of radar astrometry. Over the long term, the Yarkovsky perturbation in the relative motion of the two components is also detectable for the best observed systems. However, here we consider a simplified version of the problem by ignoring mutual non-spherical gravitational perturbations between the two asteroids. With the orbital plane constant in space and the components' rotation poles fixed (and assumed perpendicular to the orbital plane), we do not examine the coupling between Yarkovsky and gravitational effects. While radar observations remain an essential element of Yarkovsky detections, lightcurve observations, with their ability to track occultation and eclipse phenomena, are also very important in the case of binaries. The nearest possible future detection of the Yarkovsky effect for a binary system occurs for (66063) 1998 RO1 in September 2006. Farther out, even more statistically significant detections are possible for several other systems including 2000 DP107, (66391) 1999 KW4 and 1996 FG3.  相似文献   

4.
5.
6.
P. Pravec  A.W. Harris 《Icarus》2007,190(1):250-259
We compiled a list of estimated parameters of binary systems among asteroids from near-Earth to trojan orbits. In this paper, we describe the construction of the list, and we present results of our study of angular momentum content in binary asteroids. The most abundant binary population is that of close binary systems among near-Earth, Mars-crossing, and main belt asteroids that have a primary diameter of about 10 km or smaller. They have a total angular momentum very close to, but not generally exceeding, the critical limit for a single body in a gravity regime. This suggests that they formed from parent bodies spinning at the critical rate (at the gravity spin limit for asteroids in the size range) by some sort of fission or mass shedding. The Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect is a candidate to be the dominant source of spin-up to instability. Gravitational interactions during close approaches to the terrestrial planets cannot be a primary mechanism of formation of the binaries, but it may affect properties of the NEA part of the binary population.  相似文献   

7.
Bruce Hapke 《Icarus》2008,195(2):918-926
It is well known that the bidirectional reflectance of a particulate medium such as a planetary regolith depends on the porosity, in contrast to predictions of models based on the equation of radiative transfer as usually formulated. It is shown that this failure to predict porosity dependence arises from an incorrect treatment of the light that passes between the particles. In this paper a more physically correct treatment that takes account of the necessity of preventing particles from interpenetrating is used together with the two-stream approximation to solve the radiative transfer equation and derive improved expressions for the bidirectional and directional-hemispherical reflectances. It is found that increasing the filling factor (decreasing the porosity) increases the reflectance of low and medium albedo powders, but decreases it for ones with very high albedos. The model agrees qualitatively with measured data.  相似文献   

8.
Amit Levi 《Icarus》2009,202(2):681-693
We show that for low temperatures (T∼30 K) and small, but non-negligible, gravitational fields the hydrodynamic escape of gas can be treated by Parker's theory of coronal expansion [Parker, E.N., 1963. Interplanetary Dynamical Processes. Interscience Publishers, New York]. We apply this theory to gas escape from Kuiper belt objects. We derive limits on the density and radius of the bodies for which this theory is applicable, and show how the flow depends on the mean molecular weight and internal degrees of freedom of the gas molecules. We use these results to explain the CH4 dichotomy seen on KBOs [Schaller, E.L., Brown, M.E., 2007. Astrophys. J., 659, L61-L64].  相似文献   

9.
When the observational data are not enough to compute a meaningful orbit for an asteroid/comet we can represent the data with an attributable, i.e., two angles and their time derivatives. The undetermined variables range and range rate span an admissible region of Solar System orbits, which can be sampled by a set of Virtual Asteroids (VAs) selected by means of an optimal triangulation [Milani, A., Gronchi, G.F., de' Michieli Vitturi, M., Kne?evi?, Z., 2004. Celest. Mech. Dyn. Astron. 90, 59-87]. The attributable 4 coordinates are the result of a fit and they have an uncertainty, represented by a covariance matrix. Two short arcs of observations, represented by two attributables, can be linked by considering for each VA (in the admissible region of the first arc) the covariance matrix for the prediction at the time of the second arc, and by comparing it with the attributable of the second arc with its own covariance. By defining an identification penalty we can select the VAs allowing to fit together both arcs and compute a preliminary orbit. Two attributables may not be enough to compute an orbit with convergent differential corrections. Thus the preliminary orbit is used in a constrained differential correction, providing solutions along the Line Of Variation which can be used as second generation VAs to further predict the observations at the time of a third arc. In general the identification with a third arc will ensure a well determined orbit, to which additional sets of observations can be attributed. To test these algorithms we use a large scale simulation and measure the completeness, the reliability and the efficiency of the overall procedure to build up orbits by accumulating identifications. Under the conditions expected for the next generation asteroid surveys, the methods developed in this and in the preceding papers are efficient enough to be used as primary identification methods, with very good results. One important property is that the completeness in finding the possible identifications is as good for comparatively rare orbits, such as the ones of Near-Earth Objects, as for main belt orbits.  相似文献   

10.
11.
12.
A study of the vertical cloud structure of oval BA and its red color change is presented in this third part of our complete analysis. A large interest in Jupiter’s anticyclone BA was created by its reddening that occurred between 2005 and 2006. In this work we quantify the color change in oval BA by using images taken with the Advanced Camera for Surveys (ACS) onboard the Hubble Space Telescope (HST) in six filters from the near ultraviolet (F250W) to the deep methane band in the near infrared (F892N). Reflectivity changes are noteworthy in nadir viewing geometry at the ultraviolet and blue wavelengths (F250W, F330W and F435W filters) but almost undetectable or inside error bars in the rest of filters (F550M, F658N and F892N). The observed reflectivity variations are discussed in terms of a commonly accepted vertical cloud structure model for jovian anticyclones in order to explore some causes for the color alteration. Our models of the observed reflectivity variation show that the vortex clouds did not change its vertical extension (top pressure) or its optical depth. We find that a change occurred in the absorbing properties of the particles populating the upper aerosols (single scattering albedo and imaginary refractive index). A discussion on the thermo-physical and dynamical properties of the vortex that could be in the origin of the color change is also presented.  相似文献   

13.
D.G. Korycansky  Erik Asphaug 《Icarus》2003,163(2):374-388
We explore whether the cumulative effect of small-scale meteoroid bombardment can drive asteroids into nonaxisymmetric shapes comparable to those of known objects (elongated prolate forms, twin-lobed binaries, etc). We simulate impact cratering as an excavation followed by the launch, orbit, and reimpact of ejecta. Orbits are determined by the gravity and rotation of the evolving asteroid, whose shape and spin change as cratering occurs repeatedly. For simplicity we consider an end-member evolution where impactors are all much smaller than the asteroid and where all ejecta remain bound. Given those assumptions, we find that cumulative small impacts on rotating asteroids lead to oblate shapes, irrespective of the chosen value for angle of repose or for initial angular momentum. The more rapidly a body is spinning, the more flattened the outcome, but oblateness prevails. Most actual asteroids, by contrast, appear spherical to prolate. We also evaluate the timescale for reshaping by small impacts and compare it to the timescale for catastrophic disruption. For all but the steepest size distributions of impactors, reshaping from small impacts takes more than an order of magnitude longer than catastrophic disruption. We conclude that small-scale cratering is probably not dominant in shaping asteroids, unless our assumptions are naive. We believe we have ruled out the end-member scenario; future modeling shall include angular momentum evolution from impacts, mass loss in the strength regime, and craters with diameters up to the disruption threshold. The ultimate goal is to find out how asteroids get their shapes and spins and whether tidal encounters in fact play a dominant role.  相似文献   

14.
15.
16.
17.
Quantin et al. [Quantin, C., Allemand, P., Mangold, N., Delacourt, C., 2004a. Icarus 172, 555-572] tabulated crater count data for 56 landslides along the walls of Valles Marineris. Under the assumption of a constant cratering rate after about 3 Gyr ago, as used in the 1999-2005 iterations of the crater chronology isochron system of Hartmann, and in the Hartmann and Neukum system, these data indicate a regularly increasing rate of landslides, which would be difficult to explain. We suggest that these data may support a decline in inner Solar System cratering rates by about a factor of 3 since 3 Gyr ago, not unlike predictions based on asteroid belt collision models. Such a decline is also supported by our review of data on lunar impact melts and glass spherules in a companion paper [Hartmann, W.K., Quantin, C., Mangold, N., 2007. Icarus 186, 11-23]. Such models produce not only a more uniform rate of landslides over the last 3 Gyr, but also a more uniform rate of resurfacing processes which also had an apparent increase under the assumption of a constant cratering rate.  相似文献   

18.
Amit Levi 《Icarus》2009,203(2):610-625
In Levi and Podolak (Levi, A., Podolak, M. [in press] Icarus) we applied the theory of coronal expansion to gas escape from a small, cold, object such as those found in the Kuiper belt. Here we extend the theory to include aerosols that are lifted off the surface by the escaping gas. Aerosols carried by the gas but still gravitationally bound, tend to be lifted to a height above the surface that is dependent on the aerosol radius, so that in steady state the variation of aerosol radius with height is well-defined. We develop an extension of Parker’s coronal flow theory to include the effect of aerosols carried along by the gas and use this to estimate the optical depth of such an atmosphere. For KBOs with CO evaporation from the surface and with radii in the range 245-334 km, line-of-site optical depths through the atmosphere can exceed one at heights of a few hundred kilometers above the surface. Such aerosol layers should be observable, and might be used to infer the flow proprieties of the escaping gas.  相似文献   

19.
We present color ratio curves of the S-Asteroid 15 Eunomia, which have been extracted from high-precision photometric lightcurves obtained in three different VNIR wavelength bands at the Bochum Telescope, La Silla. The measured color ratio curves and near infrared spectra were used to derive a detailed surface composition model whose shape has been computed by V-lightcurve inversions. According to this analysis, the asteroid shows on one hemisphere a higher concentration of pyroxene, which causes an increased 440/700 nm and a reduced 940/700 nm reflectance ratio as well as a pronounced 2-μm absorption band. The remaining surface shows a higher concentration of olivine, leading to a reduced 440/700 nm and slightly increased 940/700 nm color ratio. In addition, we found that the maximum of the 440/700 nm color ratio curve coincide with the minimum of the 940/700 nm color ratio curve and vice versa. We demonstrate on the basis of USGS laboratory spectra that this anti-cyclical behavior can be explained by choosing Fe-rich olivine and a pyroxene with moderate Fe content as varying mineral phases. Furthermore, our observations confirm that 15 Eunomia is an irregular elongated and at least partially differentiated body. Previous spectral investigations of several smaller fragments of the Eunomia asteroid family revealed that the amount of fragments showing an increased pyroxene content exceeds the amount of pyroxene-poor fragments (Nathues, 2000, DLR Forschungsbericht, ISSN 1434-8454). This finding together with the observation that the major fraction of Eunomia's surface is enriched in olivine let us claim that a large fraction of the original pyroxene-enriched crust layer has been lost due to a major collision that created the Eunomia asteroid family. Significant spectral evidences, consistent with high concentrations of metals have been found neither in the rotational resolved spectra of 15 Eunomia nor in its fragments. This led to the conclusion that either no core consisting mainly of metals exists or that an eventual one has not been unearthed by the impact.  相似文献   

20.
We present here the numerical application of the theoretical results derived in Correia et al. (2003, Icarus 163, 1-23) for the spin evolution of Venus since its formation. We explore a large variety of initial conditions to cover the possible formation and evolutionary scenarios. In particular, we pay special attention to the evolutions which cross the chaotic zone resulting from secular planetary perturbations (Laskar and Robutel, 1993, Nature 361, 608-612). We demonstrate that Venus’ axis can be temporarily trapped in a secular resonance with the node of Neptune’s orbit, which can prevent it from being tilted to 180° and will drive it toward 0°. We test several dissipation models and parameters to evaluate their contribution to the planet’s spin history. We confirm that despite the variations in the models, only three of the four final spin states of Venus are possible (Correia and Laskar, 2001, Nature 411, 767-770) and that the present observed retrograde spin state of Venus can be attained by two different processes. In the first scenario (π−), the axis is tilted toward 180° while its rotation rate slows down, while in the second one, the axis is driven toward 0° obliquity and the rotation rate decreases, stops, and increases again in the reverse direction to a final equilibrium value (0−).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号