首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report results of anhydrous 1 atm and piston-cylinder experiments on ID16, an Aleutian high-magnesia basalt (HMB), designed to investigate potential petrogenetic links between arc high-alumina basalts (HABs) and less common HMBs. ID16 is multiply saturated with a plagioclase/spinel iherzolite mineral assemblage (olivine, plagioclase, clinopyroxene, orthopyroxene, spinel) immediately beneath the 12 kbar liquidus. Derivative liquids produced at high temperatures in the 10–20 kbar melting interval of ID16 have compositions resembling those published of many moderate-CaO HABs, although lower-temperature liquids are poorer in CaO and richer in alkalies than are typical HABs. Isomolar pseudoternary projections and numerical mass-balance modeling suggest that derivative melts of ID16 enter into a complex reaction relationship with olivine at 10 kbar and 1,200° C–1,150° C. We sought to test such a mechanism to explain the lack of liquidus olivine in anhydrous experiments on mafic high-alumina basalts such as SSS. 1.4 (Johnston 1986). These derivative liquids, however, do not resemble typical arc high-alumina basalts, suggesting that olivine-liquid reaction does not account for Johnston's (1986) observations. Instead, we suggest that olivine can be brought onto the liquidus of such compositions only through the involvement of H2O, which will affect the influence of bulk CaO, MgO, and Al2O3 contents on the identity of HAB liquidus phases (olivine or plagioclase) at pressures less than 12 kbar.  相似文献   

2.
3.
4.
The Niutoushan basaltic cone, consisting of subalkali (quartz-tholeiite and olivine-tholeiite) and alkali basalts, is Late Tertiary in age. Its major characteristics are generalized as follows:
  1. Both early subalkali and late alkali bali basalts are formed under the same geological environment.
  2. The continuity in chemical composition from subalkali to alkali and the low FeO/MgO in alkali basalts show that they are the products of cognate magmatic differentiation.
  3. The change from low REE abundance and weak enrichment of LREE in subalkali to high REE abundance and strong enrichment of LREE in alkali basalts indicates obvious REE enrichment and fractionation during magmatic differentiation. Weak positive Eu anomalies in the REE patterns are indicative of their formation under low oxygen fugacity conditions.
  4. According to the calculated values, 70–75% of the primary olivine tholeiitic magma had been separated as subalkaline basaltic magma, the rest residual magma became alkaline basaltic magma. This result is consistent to the field observation that the outcrop area of subalkali basalts is four times as much as that of alkali basalts.
  5. The basaltic rocks of Niutoushan show an S-type distribution straddling the thermal barrier on Ol′-Ne′-Qu′ diagram and an evolution tendency for Ne to increase with increasing FeO/MgO. This is in agreement with the melting experimental data on olivine basalts at 10–20 kb.
  6. Mantle-derived inclusions (spinel lherzolite) in this area occur in both alkali olivine basalts and olivine tholeiites. The latter is of extremely rare occurrence. The formation temperature and pressure of the inclusions in alkalibasalts and olivine tholeiites have been calculated. The results show that the alkaline basaltic magma was separated from the subalkaline basaltic magma at about 20 kb.
Basaltic rocks in Niutoushan were formed through the so-called “high pressure differentiation”, that is, at about 20 kb the crystallization of clinopyroxene and orthpyroxene resulted in the separation of subalkaline basaltic magma from the primary olivine tholeiitic magma, and then the residue gradually became alkaline olivine basaltic magma.  相似文献   

5.
6.
The layered cumulus rocks of the Marum ophiolite complex in northern Papua New Guinea range from highly magnesian dunite, wehrlite, and lherzolite through pyroxenite to norite-gabbro with minor anorthosite and ferronorite-gabbro near the top of the sequence. Most of the cumulates, particularly the gabbroic rocks, are characterised by recrystallised adcumulus textures and all intercumulus melt (mesostasis) has been expelled. Trends in the cumulate sequence from Mg-rich to more Fe-, Ca- and Al-rich compositions are consistent with the formation of the layered sequence by magmatic accumulation from mafic tholeiitic magmas with varying degrees of differentiation. The cumulates are characterised by extremely low levels of ‘incompatible’ elements (K, Ba, Rb, P, Zr, Nb, Hf, Y and REE) at all levels of differentiation. REE patterns are strongly depleted in LREE; HREE abundances range from ≦0.3 chondrites in peridotite to 3 x chondrites in the norite-gabbros. The Marum cumulates resemble low-Ti peridotites and gabbros found in other orthopyroxene-bearing ophiolite sequences. The parent magmas of the Marum cumulates are inferred to have been strongly depleted in ‘incompatible’ trace elements (~ 2,000 ppm Ti, ~20 ppm Zr, 6–9 x chondrites HREE with LaN/SmN~0.5). These abundances are lower than found in typical MORB and back-arc basin basalts or their picritic parents. The dissimilarity of trace element abundances of the inferred Marum parent magmas with MORB-type high-alumina olivine tholeiites supports the conclusion drawn previously from the petrology of the cumulates that the parent magmas to the Marum ophiolite were not of MORB composition but resembled the strongly depleted, Ni-rich magnesian olivine-poor tholeiites and quartz tholeiites of the Upper Pillow Lavas of the Troodos ophiolite. The Marum parent magmas are believed to have been formed by shallow melting of refractory peridotite, and are chemically and genetically distinct from the LREE-enriched high-Ti lavas (Tumu River basalts) which occur in faulted contact. The geochemical data do not permit unequivocal assignment of a tectonic environment for the formation of either the Tumu River basalts or the plutonic suite; their juxtaposition results from thrust emplacement.  相似文献   

7.
Eighteen flows from a basal stratigraphic sequence on the Aleutian Island of Atka were analyzed for major elements, trace elements and initial 87Sr/86Sr ratios. Petrographically, these lavas contain abundant plagioclase (24–45%) and lesser amounts of olivine (<7%), magnetite and clinopyroxene phenocrysts. Compositionally, the lavas are high-alumina (20wt%) basalts (48–51 wt% SiO2) with low TiO2 (<1%) and MgO (<5%). Within the section, compositional variations for all major elements are quite small. While MgO content correlates with olivine phenocryst contents, no such relationship exists between the other oxides and phenocryst content. These lavas are characterized by 8–10 ppm Rb, high Sr (610–669 ppm), 308–348 ppm Ba and very constant Zr (23–29 ppm) and Sc (23–29 ppm) abundances. Ni and Cr display extremely large compositional ranges, 12–118 ppm and 12–213 ppm, respectively. No correlation exists between trace element concentrations and phenocryst contents. Strontium isotopic ratios show a small but significant range (0.70314–0.70345) and are slightly elevated with respect to typical MORB. No systematic correlation between stratigraphic position and petrography or geochemistry is evident. REE abundances measured on six samples are LREE enriched ((La/ Yb)N = 2.20–2.81) and display similar chondrite normalized patterns. One sample has a slight positive Eu anomaly but the other lavas do not. Compared to other Aleutian basalts of similar silica content, these lavas are less LREE enriched and have lower overall abundances. The geochemical characteristics of these basalts suggest they represent true liquid compositions despite their highly porphyritic nature. Published phase relations indicate fractionation of a more MgO-rich magma could not have produced these lavas. The high Al2O3 and low MgO and compatible element abundances suggest a predominantly oceanic crustal source for parental high-alumina basalts.  相似文献   

8.
Sulfur diffusion in basaltic melts   总被引:1,自引:0,他引:1  
We measured the diffusion coefficients of sulfur in two different basaltic melts at reduced conditions (i.e., in the sulfide stability field), temperatures from 1225°C to 1450°C, pressures of 0.5 and 1 GPa, and water concentrations of 0 and 3.5 wt%. Although each melt is characterized by slightly different sulfur diffusion coefficients, the results can be combined to create a general equation for sulfur diffusion in anhydrous basalts:
  相似文献   

9.
10.
Phase relations of natural aphyric high-alumina basalts and their intrusive equivalents were determined through rock-melting experiments at 2 kb, H2O-saturated with fO2 buffered at NNO. Experimental liquids are low-MgO high-alumina basalt or basaltic andesite, and most are saturated with olivine, calcic plagioclase, and either high-calcium pyroxene or hornblende (±magnetite). Cr-spinel or magnetite appear near the liquidus of wet high-alumina basalts because H2O lowers the appearance temperature of crystalline silicates but has a lesser effect on spinel. As a consequence, experimental liquids follow calcalkaline differentiation trends. Hornblende stability is sensitive to the Na2O content of the bulk composition as well as to H2O content, with the result that hornblende can form as a near liquidus mineral in wet sodic basalts, but does not appear until liquids reach andesitic compositions in moderate Na2O basalts. Therefore, the absence of hornblende in basalts with low-to-moderate Na2O contents is not evidence that those basalts are nearly dry. Very calcic plagioclase (>An90) forms from basaltic melts with high H2O contents but cannot form from dry melts with normal are Na2O and CaO abundances. The presence of anorthite-rich plagioclase in high-alumina basalts indicates high magmatic H2O contents. In sum, moderate pressure H2O-saturated phase relations show that magmatic H2O leads to the early crystallization of spinel, produces calcic plagioclase, and reduces the total proportion of plagioclase in the crystallizing assemblage, thereby promoting the development of the calc-alkaline differentiation trend.  相似文献   

11.
In this paper, the concept of a geochemical structure (Yaroshevskii, 2004) was applied to describe chemical variations in the Early Carboniferous volcanic complexes and their distribution over the tectonic zones of the Southern Urals and Transuralian region in order to clarify the geodynamic settings of their formation. The cluster analysis of a geochemical dataset including 325 analyses of volcanic rocks from the Magnitogorsk, Southern Ural, Transuralian, and Valer’yanovskii tectonic zones allowed us to reduce the geochemical diversity of rocks to eight large geochemical groups. Based on average compositions, these geochemical groups (clusters) can be classed with the following rocks: (1) low-K tholeiitic basalts, (2) high-Ti subalkaline basalts, (3) high-Al subalkaline basalts, (4) subalkaline andesites, (5) subalkaline rhyolites, (6) Na subalkaline rhyolites, (7) potassic subalkaline rhyolites, and (8) high-Al potassic trachyandesibasalts. The distribution of these clusters in tectonic zones of the Southern Urals and Transuralian makes it possible to organize these complexes into four groups. The first group includes a differentiated series from high-Ti subalkaline basalts to sodic subalkaline rhyolites with the predominance of aluminous subalkaline basalts and subalkaline andesites. This group is most widespread in the Magnitogorsk and Valer’yanovskii zones. The second group corresponds to a differentiated series from low-K basalts to Na subalkaline rhyolites with a strong prevalence of high-Ti subalkaline basalts and less abundant aluminous subalkaline basalts. This group is widespread in the Eastern Ural zone. The third group includes subalkaline andesites and rhyolites with subordinate ultrapotassic rhyolites and trachyandesibasalts, which compose the Uya-Novoorenburg suture. The fourth group comprises high-Ti subalkaline basalts occurring in the Transuralian zone. Such a distinct distribution of the geochemical types of volcanic rocks is well consistent with concepts on the formation of the Southern Ural volcanic belts at the East European paleocontinent margin in a Californian-type setting. The Valer’yanovskii belt was formed at the active margin of the Kazakhstan paleocontinent.  相似文献   

12.
13.
The genesis of basaltic magmas   总被引:29,自引:2,他引:29  
This paper reports the results of a detailed experimental investigation of fractionation of natural basaltic compositions under conditions of high pressure and high temperature. A single stage, piston-cylinder apparatus has been used in the pressure range up to 27 kb and at temperatures up to 1500° C to study the melting behaviour of several basaltic compositions. The compositions chosen are olivine-rich (20% or more normative olivine) and include olivine tholeiite (12% normative hypersthene), olivine basalt (1% normative hypersthene) alkali olivine basalt (2% normative nepheline) and picrite (3% normative hypersthene). The liquidus phases of the olivine tholeiite and olivine basalt are olivine at 1 Atmosphere, 4.5 kb and 9 kb, orthopyroxene at 13.5 and 18 kb, clinopyroxene at 22.5 kb and garnet at 27 kb. In the alkali olivine basalt composition, the liquidus phases are olivine at 1 Atmosphere and 9 kb, orthopyroxene with clinopyroxene at 13.5 kb, clinopyroxene at 18 kb and garnet at 27 kb. The sequence of appearance of phases below the liquidus has also been studied in detail. The electron probe micro-analyser has been used to make partial quantitative analyses of olivines, orthopyroxenes, clinopyroxenes and garnets which have crystallized at high pressure.These experimental and analytical results are used to determine the directions of fractionation of basaltic magmas during crystallization over a wide range of pressures. At pressures corresponding to depths of 35–70 km separation of aluminous enstatite from olivine tholeiite magma produces a direct fractionation trend from olivine tholeiites through olivine basalts to alkali olivine basalts. Co-precipitation of sub-calcic, aluminous clinopyroxene with the orthopyroxene in the more undersaturated compositions of this sequence produces derivative liquids of basanite type. Magmas of alkali olivine basalt and basanite type represent the lower temperature liquids derived by approximately 30% crystallization of olivine-rich tholeiite at 35–70 km depth. At depths of about 30 km, fractionation of olivine-rich tholeiite with separation of both olivine and low-alumina enstatite, joined at lower temperatures by sub-calcic clinopyroxene, leads to derivative liquids with relatively constant SiO2 (48 to 50%) increasingly high Al2O3 (15–17%) contents and retaining olivine + hypersthene normative chemistry (5–15% normative olivine). These have the composition of typical high-alumina olivine tholeiites. The effects of low pressure fractionation may be superimposed on magma compositions derived from various depths within the mantle. These lead to divergence of the alkali olivine basalt and tholeiitic series but convergence of both the low-alumina and high-alumina tholeiites towards quartz tholeiite derivative liquids.The general problem of derivation of basaltic magmas from a mantle of peridotitic composition is discussed in some detail. Magmas are considered to be a consequence of partial melting but the composition of a magma is determined not by the depth of partial melting but by the depth at which magma segregation from residual crystals occurs. Magma generation from parental peridotite (pyrolite) at depths up to 100 km involves liquid-crystal equilibria between basaltic liquids and olivine + aluminous pyroxenes and does not involve garnet. At 35–70 km depth, basaltic liquids segregating from a pyrolite mantle will be of alkali olivine basalt type with about 20% partial melting but with increasing degrees of partial melting, liquids will change to olivine-rich tholeiite type with about 30% melting. If the depth of magma segregation is about 30 km, then magmas produced by 20–25% partial melting will be of high-alumina olivine tholeiite type, similar to the oceanic tholeiites occurring on the sea floor along the mid-oceanic ridges.Hypotheses of magma fractionation and generation by partial melting are considered in relation to the abundances and ratios of trace elements and in relation to isotopic abundance data on natural basalts. It is shown that there is a group of elements (including K, Ti, P, U, Th, Ba, Rb, Sr, Cs, Zr, Hf and the rare-earth elements) which show enrichment factors in alkali olivine basalts and in some tholeiites, which are inconsistent with simple crystal fractionation relationships between the magma types. This group of elements has been called incompatible elements referring to their inability to substitute to any appreciable extent in the major minerals of the upper mantle (olivine, aluminous pyroxenes). Because of the lack of temperature contrast between magma and wall-rock for a body of magma near to its depth of segregation in the mantle, cooling of the magma involves complementary processes of reaction with the wall-rook, including selective melting and extraction of the lowest melting fraction. The incompatible elements are probably highly concentrated in the lowest melting fraction of the pyrolite. The production of large overall enrichments in incompatible elements in a magma by reaction with and highly selective sampling of large volumes of mantle wall-rock during slow ascent of a magma is considered to be a normal, complementary process to crystal fractionation in the mantle. This process has been called wall-rock reaction. Magma generation in the mantle is rarely a simple, closed-system partial melting process and the isotopic abundances and incompatible element abundances of a basalt as observed at the earth's surface may be largely determined by the degree of reaction with the mantle or lower crustal wall-rocks and bear little relation to the abundances and ratios of the original parental mantle material (pyrolite).Occurrences of cognate xenoliths and xenocrysts in basalts are considered in relation to the experimental data on liquid-crystal equilibria at high pressure. It is inferred that the lherzolite nodules largely represent residual material after extraction of alkali olivine basalt from mantle pyrolite or pyrolite which has been selectively depleted in incompatible elements by wall-rock reaction processes. Lherzolite nodules included in tholeiitic magmas would melt to a relatively large extent and disintegrate, but would have a largely refractory character if included in alkali olivine basalt magma. Other examples of xenocrystal material in basalts are shown to be probable liquidus crystals or accumulates at high pressure from basaltic magma and provide a useful link between the experimental study and natural processes.  相似文献   

14.
Summary The mineralogy and petrology of three lithic fragments of alkalic highalumina basalt (Kreep) composition from the Apollo 12 coarse fines was studied in detail, using an electron microprobe, in order to gain insight into their crystallization histories. Most rocks of this composition are brecciated and our study indicates that a variety of environments of crystallization can be distinguished for mineral fragments and matrices. Mineral fragments are derived from members of the ANT suite (probably troctolites) in fragments 2 and 5, and the alkalic high-alumina basalt suite in fragment 3. The rocks from which they were derived were coarse-grained, recrystallized and equilibrated, as indicated by major, and especially, minor elements. Minor elements in plagioclase, olivine, pyroxene, and zircon are consistently lower in mineral fragments as compared with matrix minerals. The origin of large zircon fragments is problematic but they are probably from the alkalic high-alumina basalt suite. Mineral fragments may have been derived from plutonic rocks (none have yet been recognized from the alkalic high-alumina basalt suite), but possibly also from breccia fragments which were recrystallized in hot, thick ejecta blankets. The matrix of the lithic fragments is of alkalic high-alumina basalt composition and is either igneous or metamorphic, or both. Hence, lithic fragments 2 and 5 are polymict breccias whereas fragment 3 is a monomict breccia. Matrix glasses in fragments 2 and 3 represent melts fractionated along the orthopyroxeneplagioclase cotectic in the olivine-anorthite-silica pseudoternary system. If these liquids could be separated from the residuum and crystallized they would be, as yet, unrecognized members of the alkalic high-alumina basalt suite. The alkalic high-alumina basalt mixing component of fragment 5 (a polymict breccia) has such a composition and may be derived from such a fractionated rock. A mineral fragment of pyroxene intergrown with ilmenite, approximately parallel to (001), is interpreted as decorated shock lamellae rather than as a deep-seated intergrowth, as found in kimberlites. A glass coating on one side of fragment 3 has SiO2-rich and feldspathic schlieren and appears to be derived, by impact melting, from a rock of granite composition.
Petrologie einiger Gesteinsfragmente mit alkalic high-alumina basalt Chemismus aus dem Grobanteil von Apollo 12 Bodenproben
Zusammenfassung Drei Gesteinsfragmente mit alkalic high-alumina basalt (Kreep) Chemismus aus der Grobraktion von Apollo 12 Bodenproben wurden mittels einer Elektronenstrahl-Mikrosonde einer detaillierten Studie unterzogen, um Einblick in ihre Genese zu gewinnen. Der überwiegende Teil von Gesteinen dieser Zusammensetzung ist brekziös und unsere Studie zeigt, daß unterschiedliche Kristallisationsbedingungen für die Mineralfragmente und Matrizes herrschten. Die Mineralfragmente in den Fragmenten 2 und 5 stammen von Gesteinen der ANT- (Anorthositisch-Noritisch-Troctolitischen) Reihe (wahrscheinlich von Troctoliten) und in Fragment 3 von Gesteinen der alkalic high-alumina basalt-Reihe.Die Verteilung der Haupt- und Nebenelemente in den Mineralfragmenten zeigt, daß diese von rekristallisierten und equilibrierten, grobkörnigen Gesteinen stammen. Die Konzentrationen der Nebenelemente sind in allen Mineralfragmenten (Plagioklas, Olivin und Zirkon) deutlich geringer als in den Mineralen der Matrix. Die Herkunft der großen Zirkon-Fragmente ist nicht genau zu klären. Sie stammen jedoch wahrscheinlich von Gesteinen der alkalic high-alumina basalt-Reihe. Alle Mineralfragmente könnten von plutonischen Gesteinen stammen (solche sind von der alkalic highalumina basalt-Reihe zur Zeit noch nicht bekannt), sie könnten ihren Ursprung jedoch auch in prä-existenten Brekzien haben, welche in dichten, heißen Auswurfdecken rekristallisierten. Die Matrix der Gesteinsfragmente hat durchwegs eine alkalic high-alumina basalt Zusammensetzung und ist entweder magmatisch oder metamorph, oder beides. Die Fragmente 2 und 5 sind daher als polymikte und das Fragment 3 als monomikte Brekzie zu bezeichnen.Die Matrixgläser in den fragmenten 2 und 3 repräsentieren Rest-schmelzen, welche entlang der Orthopyroxen-Plagioklas-Kotektik im Olivin-Anorthit-SiO2-System fraktionierten. Diese Schmelzen würden-könnten sie vom System getrennt werden-bisher noch nicht bekannte Glieder der alkalic high-alumina basalt-Reihe darstellen. Eine derartige Zusammensetzung hat jedoch die Mischkomponente im Fragment 5 (eine polymikte Brekzie), welche von einem auf diesem Wege fraktioniertem Gestein stammen könnte.Ilmenit-Lamellen [subparallel zu (001)] in einem Pyroxenfragment stellen eher dekorierte Schocklamellen als Verwachsungen, wie sie aus Kimberliten bekannt sind, dar. Fragment 3 ist einseitig mit einem schlierigen Glas bedeckt, dessen Schlieren angenähert die Zusammensetzung von Alkalifeldspat und reinem SiO2 haben. Dieses Glas ist offensichtlich eine Impakt-Schmelze eines Gesteines von granitischer Zusammensetzung.


With 5 Figures  相似文献   

15.
Sulfur isotope ratios have been determined in 27 selected volcanic rocks from Iceland together with their whole rock chemistry. The 34S of analyzed basalts ranges from –2.0 to +0.4 with an average value of –0.8 Tholeiitic and alkaline rocks exhibit little difference in 34S values but the intermediate and acid rocks analyzed have higher 34S values up to +4.2 It is suggested that the overall variation in sulfur isotope composition of the basalts is caused by degassing. The small range of the 34S values and its similarity to other oceanic and continental basalts, suggest that the depleted mantle is homogeneous in its sulfur isotope composition. The 34S of the depleted mantle is estimated to be within the range for undegassed oceanic basalts, –0.5 to +1.0  相似文献   

16.
Phenocryst assemblages in ocean-ridge basalts generally show an increasing proportion of plagioclase as the total amount of phenocrysts increases. The variations in phase assemblages, as well as most crystal-liquid Kd's, are similar to variations (equimodal trends) predicted by low-pressure laboratory experiments, suggesting that many of these basalts have experienced varying degrees of low-pressure cyrstallization prior to quenching, with little sorting of crystals and liquid. Important exceptions include moderately to highly phyric basalts enriched either in plagioclase or olivine which lie well off the experimental trends. In these basalts, megacrysts and xenocrysts usually cited as evidence for magma mixing commonly represent a small proportion of the total crystalline phase assemblage. However, phase proportions for many of these basalts lie well outside the range that could be produced by simple mixing; selective gravitative sorting either prior or subsequent to mixing appears to be the likely explanation for these phyric basalts. A relation between spreading rate and phase proportions is neither supported nor refuted by the data, which as yet do not adequately represent fast-spreading ridges. Pyroxene-phyric varieties are especially common among LIL-element enriched (Group 2) basalts, and these basalts also show the greatest abundance of olivine-enriched (picritic) samples. Selective enrichment in plagioclase is more common among LIL-element depleted (Group 1) basalts, and pyroxene appears in Group 1 basalts only at relatively high degrees of crystallinity. These differences are consistent with expected compositional effects (including volatiles) on phase boundaries, as well as likely differences in depth (pressure) of mantle melting and magma fractionation. Sparsely to moderately phyric basalts tend to contain only olivine (±spinel) as phenocrysts, and lie in the olivine field in the projection from plagioclase in the CMAS tetrahedron. This is consistent with the concept that these magmas approach low-pressure equilibrium by olivine fractionation from a more picritic parent. The origin of these basalts, and relationships between them, remains an important fundamental problem. Phenocryst phase assemblages are consistent with the low-pressure phase saturation indicated by the projected positions of the associated glasses in CMAS. It is suggested that, in contrast to the classical practice of classifying basalts according to phase proportions, a classification based on presence and/or first appearance of each crystalline phase is both practical and petrogenetically significant for water-quenched submarine basalts.  相似文献   

17.
Prior experimental work has shown that in the laboratory the mineralogy of eclogites is sensitive to the ratio of CaO ∶ MgO ∶ FeO and that the reaction pyroxene + kyanite?garnet + quartz proceeds to the right at high pressures in rocks rich in magnesium and to the left in rocks rich in calcium and iron. Typical basalts crystallized at high pressure never contain kyanite. The chemistry and mineralogy of a large number of naturally occurring eclogites show they belong to three classes.
  1. Kyanite-free magmatic eclogites, rich in magnesium, from:
  2. kimberlites
  3. dunites and serpentinites.
  4. Kyanite-bearing eclogites and grosspydites rich in CaO and low in FeO with intermediate MgO from:
  5. kimberlites
  6. gneisses.
  7. Kyanite-free eclogites of metamorphic origin rich in iron with low magnesium and intermediate amounts of calcium from:
  8. glaucophane schists
  9. gneisses.
  相似文献   

18.
19.
Besshi-type volcanogenic Cu-Zn deposits in the Scandinavian Caledonides are hosted by Ordovician metabasalts and clastic sediments of the Storen, Fundsjo and Sulitjelma groups. The basalts are transitional between T-MORB and marginal basin tholeiites in composition and are characterised by Nd and Pb isotopic compositions which overlap the more radiogenic values of Lower Palaeozoic MORB. These features, along with the intercalation of the basalts with tuffs and continentally derived sediments, indicate an epicontinental rift or marginal basin origin, possibly analogous to the present Red Sea and Gulf of Aden rifts. This implies the development of a restricted ocean basin in the north of Iapetus between the Laurentian and Baltoscandian microcontinents during the Cambrian and Early Ordovician.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号