首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
We analyze the future dryness over Korea based on the projected temperature and precipitation. For fine-scale climate information, the ECHAM5/MPI-OM A1B simulation has been dynamically downscaled using the RegCM3 double-nested system. A 130-year long-term climatology (1971?C2100) from the mother domain (East Asia: 60 km) and nested domain (South Korea: 20 km) is discussed. Based on the intercomparison with CMIP3 participant models, the ECHAM5/MPI-OM provides climatic change information over the East Asia that is not markedly different from other projections. However, the reduction of summer precipitation over Korea is rather different with ensemble mean of CMIP3 participant models. The downscaled results generally follow the behavior of ECHAM5/MPIOM, but substantial fine-scale details are found in the spatial pattern and the change signals become more enhanced at the local scale. In the future projection, significant warming is found regardless of the season and region while the change in precipitation shows a mixed feature with both increasing and decreasing patterns. The increase of temperature enhances the evapotranspiration, and hence the actual water stress becomes more pronounced in the warmer climate. This is related to the negative trends of the self-calibrating Palmer Drought Severity Index (PDSI) to measure the drought condition in Korea. Although PDSI is overall associated with the precipitation variation, its long-term trend tends to be modulated by the temperature trend. It is confirmed that the detrended temperature is shown to mask the decreasing tendency of the PDSI. The result indicates that without an increase in precipitation appropriate for atmospheric moisture demand, future dryness is a more likely condition under global warming.  相似文献   

3.
Li  Jianying  Mao  Jiangyu 《Climate Dynamics》2016,47(12):3713-3736
Climate Dynamics - The 30–60-day boreal summer intraseasonal oscillation (BSISO) is the predominant intraseasonal variability in the Asian summer monsoon (ASM) region, representing the...  相似文献   

4.
 A potential consequence of climate change is an alteration of the frequency of extreme coastal storm surge events. It is these extreme events which, from an impacts point of view, will be of more concern than the slow inundation of coastal areas by century scale changes in mean sea level. In this study, a 35 km resolution storm surge model of the North west European continental shelf region has been driven by winds and pressures from the Hadley Centre nested regional climate model. Simulations of both present day and future climate (the end of the twentyfirst century) have been performed. The results suggest that, in addition to the effect of rising mean sea level, at many locations around the United Kingdom coastline future changes in local meteorology will lead to further significant changes in the return periods of extreme storm surge events. At most sites, this meteorologically forced change represents a reduction in return period. Received: 18 September 2000 / Accepted: 8 February 2001  相似文献   

5.
6.
In this study the potential future changes in various aspects of daily precipitation events over Europe as a consequence of the anticipated future increase in the atmospheric greenhouse gas concentrations are investigated. This is done by comparing two 3-member ensembles of simulations with the HIRHAM regional climate model for the period 1961–1990 and 2071–2100, respectively. Daily precipitation events are characterized by their frequency and intensity, and heavy precipitation events are described via 30-year return levels of daily precipitation. Further, extended periods with and without rainfall (wet and dry spells) are studied, considering their frequency and length as well as the average and extreme amounts of precipitation accumulated during wet spells, the latter again described via 30-year return levels. The simulations show marked changes in the characteristics of daily precipitation in Europe due to the anticipated greenhouse warming. In winter, for instance, the frequency of wet days is enhanced over most of the European continent except for the region on the Norwegian west coast and the Mediterranean region. The changes in the intensity and the 30-year return level of daily precipitation are characterized by a similar pattern except for central Europe with a tendency of decreased 30-year return levels and increased precipitation intensity. In summer, on the other hand, the frequency of wet days is decreased over most of Europe except for northern Scandinavia and the Baltic Sea region. In contrast, the precipitation intensity and the 30-year return level of daily precipitation are increased over entire Scandinavia, central and eastern Europe. The changes in the 30-year return level of daily precipitation are generally stronger than the corresponding changes in the precipitation intensity but can have opposite signs in some regions. Also the distribution of wet days is changed in the future. During summer, for instance, both the frequency and the length of dry spells are substantially increased over most of the European continent except for the Iberian Peninsula. The frequency and the length of wet spells, on the other hand, are generally reduced during summer and increased during winter, again, with the exception of the Iberian Peninsula. The future changes in the frequency of wet days in winter are related to a change in the large-scale flow over the North Atlantic and a corresponding shift of the North Atlantic storm track. The reduction in the frequency of wet days in summer is related to a northward extension of the dry subtropical region in the future, with a reduction of the convective activity because of the large-scale sinking motion in the downward branch of the Hadley cell. Because the atmosphere contains more moisture in the warmer future climate, the amount of precipitation associated with individual low-pressure systems or with individual convective events is increased, leading to a general increase in the intensity of individual precipitation events. Only in regions, where all the moisture evaporates from the ground already in spring, the intensity of precipitation events is reduced in summer.  相似文献   

7.
Over the past three decades, the drawdown of atmospheric CO2 in vegetation and soil has fueled net ecosystem production (NEP). Here, a global land-surface model (CABLE) is used to estimate the trend in NEP and its response to atmospheric CO2, climate change, biological nitrogen (N) fixation, and N deposition under future conditions from 2031 to 2100 in the Belt and Road region. The trend of NEP simulated by CABLE decreases from 0.015 Pg carbon (C) yr?2 under present conditions (1936–2005) to ?0.023 Pg C yr?2 under future conditions. In contrast, the trend in NEP of the CMIP6 ensemble changes from 0.014 Pg C yr?2 under present conditions to ?0.009 Pg C yr?2 under future conditions. This suggests that the trend in the C sink for the Belt and Road region will likely decline in the future. The significant difference in the NEP trend between present and future conditions is mainly caused by the difference in the impact of climate change on NEP. Considering the responses of soil respiration (RH) or net primary production (NPP) to surface air temperature, the trend in surface air temperature changes from0.01°C yr?1 under present conditions to 0.05°C yr?1 under future conditions. CABLE simulates a greater response of RH to surface temperature than that of NPP under future conditions, which causes a decreasing trend in NEP. In addition, the greater decreasing trend in NEP under future conditions indicates that the C–climate–N interaction at the regional scale should be considered. It is important to estimate the direction and magnitude of C sinks under the C neutrality target.摘要目前, 在区域尺度, NEP趋势变化的强度和影响机制还存在很大的不确定性. 针对这一问题, 我们选取了一带一路覆盖的区域为研究对象, 基于全球陆面模式 (CABLE)和第六次国际耦合模式比较计划 (CMIP6), 评估了历史和未来NEP趋势的变化, 分析了影响的机制. 从过去到未来, CABLE结果表明NEP的趋势从 0.015 Pg C yr?2 减少到 –0.023 Pg C yr?2; CMIP6结果为从0.014 Pg C yr?2转变为–0.009 Pg C yr?2. 气候变化是引起这一变化的主因. 我们的研究结果强调了碳-气候-氮相互作用的重要性, 这对碳中和目标下碳汇潜力的准确估算尤为重要.  相似文献   

8.
利用MM5V3区域气候模式单向嵌套ECHAM5全球环流模式的结果,对中国地区实际温室气体浓度下当代气候(1981—2000年)及IPCC A1B情景下21世纪中期气候(2041—2060年)分别进行了水平分辨率为50 km的模拟试验。首先检验全球和区域模式对当代气候的模拟情况,结果表明:区域模式对中国地区地面温度和降水空间分布的模拟能力优于全球模式;与实际观测相比,区域模式模拟的地面温度在中国大部分地区偏低,模拟的降水量偏多,降水位置偏北。IPCCA1B情景下中国地区21世纪中期气候变化的模式结果显示:各季节地面温度在全国范围内都将比当代升高1.2~3.9℃,且升温幅度具有北方大于南方、冬季大于夏季的时空分布特征;降水变化具有一定的区域性和季节性,秋季和冬季降水在全国大部分地区都将增加10%~30%,春季和夏季降水则呈现"北方减少、南方增多"的趋势,变化幅度在-10%~10%之间。21世纪中期地面温度和降水变化还具有一定的年际特征:地面温度在中国地区各子区域均表现为上升趋势,升温速率在0.7~0.9℃/10a之间,温度变率也比当代有所增大;降水在西北地区略呈下降趋势,在其它子区域均为上升,降水变率的变化具有区域性特征。  相似文献   

9.
王彬雁  赵琳娜  许晖  刘莹 《暴雨灾害》2018,11(2):115-123

利用2010—2016年5—9月四川省157个国家自动气象站小时降水资料,采用皮尔逊Ⅲ型概率分布模型对四川全省小时降水进行拟合,给出全省超过不同阈值的降水累积概率空间分布;在此基础上,计算最大小时降水量的概率分布及其重现期极值。结果表明:四川盆地西部沿山一带出现降水频次较少,但易发生较大量级的小时降水,攀西地区东部虽是降水高发区,但出现大量级小时降水的可能性小;50 a一遇小时降水高值中心分布在乐山市北部、遂宁市西北部与绵阳交界处以及达州市北部,其极值可达60 mm以上;100 a一遇小时降水极值分布趋势同50 a一遇的基本一致,其极值达70 mm;小时降水的皮尔逊Ⅲ型概率分布模型偏差系数与降水站点的海拔高度呈对数递减关系,决定系数达0.654 5,表明地形高度对四川小时降水分布有一定影响;此外用k均值聚类法可很好地对四川小时降水进行分区。

  相似文献   

10.
Changes of the winter climate in the Mediterranean Basin (MB) for future A2 conditions are investigated for the period 2071–2100 and compared with the control period 1961–1990. The analysis is based on time-slice simulations of the latest version of the ECHAM model. First, the control simulation is evaluated with reanalysis data. The emphasis is given to synoptic and large-scale features and their variability in the MB. The model is found to be capable of reproducing the main features of the MB and southern Europe in the winter season. Second, the A2 simulation is compared with the control simulation, revealing considerable changes of the synoptic variability. Focusing on the synoptic spatio-temporal scale aims to unfold the dynamic background of the climatic changes. The Mediterranean cyclones, which are individually detected and tracked, decrease by 10% in the Western Mediterranean (WM) whereas no significant change is found in the Eastern Mediterranean. The cyclone intensity is slightly reduced in the entire region. To understand these changes, the underlying dynamical background is analyzed. It is found that changes in baroclinicity, static stability, transformation from eddy kinetic energy to kinetic energy of the mean flow and stationary wave activity are significant in particular in the WM and the coastline of North Africa. The reduction of cyclonic activity severely impacts the precipitation mainly in the southern part of the WM.  相似文献   

11.
新标准下江淮梅雨特征的分析   总被引:6,自引:4,他引:2  
陈旭  李栋梁 《气象科学》2016,36(2):165-175
根据中国气象局2014年印发的《梅雨监测业务规定》中的入、出梅标准,以及江淮地区72个气象站1960—2012年近53 a逐日气象资料,采用经验正交分解(EOF)方法和相似方法分析了江淮梅雨降水的时空变化,并以温度、湿度和雨日频率作为判据,将梅雨划分为典型和非典型两类,对其变化特征进行了讨论。结果表明:江淮梅雨期内,雨日比例减少,阴天比例增加,且发生在白天的降水比例上升;此外,中雨的贡献率显著减小,大暴雨的贡献率显著增加。相同年代际内,全区一致枯型梅雨与南枯北丰型梅雨出现概率相当,全区一致丰型梅雨则与南丰北枯型和南北丰中部枯型梅雨发生概率相近。江淮梅雨的典型程度(高湿高温多雨)在时间尺度上呈减弱趋势,非典型程度整体呈增加趋势,其中以所占比例最大的低湿高温少雨型的增长最为明显,且这种变化趋势在整个江淮地区表现一致。空间尺度上,典型梅雨发生的范围存在缩小趋势,非典型梅雨发生的范围则有扩大趋势。即近53 a来,江淮梅雨在时空尺度上均发生了由典型向非典型的转移,且2000s以来这种转变尤其显著。  相似文献   

12.
基于BCC-CSM11模式降尺度预估结果,通过构建极端天气气候事件的危险性指数,考察和分析了中国东部极端降水和气温未来气候情景下可能的变化趋势和危险性分布格局。结果表明: 1)在中等排放情景(RCP4.5)下,近期(2021—2050年)极端降水和极端高温危险性呈现增强趋势,危险性指数增幅分别约为2%和10%,而极端低温危险性则呈减弱趋势,危险性指数降幅约为4%。21世纪末期(2070—2099年),极端降水和气温危险性均基本保持现有水平,未有明显趋势。在高等排放情景(RCP8.5)下,极端降水和极端高温危险性将持续增强,至21世纪末危险性指数增幅分别约为5%和60%;极端低温危险性持续减弱,危险性指数降幅约为5%。2)在未来气候情景下,中国东部极端高温的危险性以全域持续增强为主要特征,特别是西南地区、长江以南地区和东南沿海危险性增强最为显著。至21世纪末,在高排放情景下的危险性指数增幅为30%—60%。极端降水危险性在黄河上游、长江上游和下游以及东北地区中南部等地区呈增强趋势,危险性指数增幅为3%—5%。极端低温危险性全域呈减弱趋势,至21世纪末期高等排放情景下的危险性指数最高降幅为7%—9%。  相似文献   

13.
Storm tracks play a major role in regulating the precipitation and hydrological cycle in midlatitudes. The changes in the location and amplitude of the storm tracks in response to global warming will have significant impacts on the poleward transport of heat, momentum and moisture and on the hydrological cycle. Recent studies have indicated a poleward shift of the storm tracks and the midlatitude precipitation zone in the warming world that will lead to subtropical drying and higher latitude moistening. This study agrees with this key feature for not only the annual mean but also different seasons and for the zonal mean as well as horizontal structures based on the analysis of Geophysical Fluid Dynamics Laboratory (GFDL) CM2.1 model simulations. Further analyses show that the meridional sensible and latent heat fluxes associated with the storm tracks shift poleward and intensify in both boreal summer and winter in the late twenty-first century (years 2081?C2100) relative to the latter half of the twentieth century (years 1961?C2000). The maximum dry Eady growth rate is examined to determine the effect of global warming on the time mean state and associated available potential energy for transient growth. The trend in maximum Eady growth rate is generally consistent with the poleward shift and intensification of the storm tracks in the middle latitudes of both hemispheres in both seasons. However, in the lower troposphere in northern winter, increased meridional eddy transfer within the storm tracks is more associated with increased eddy velocity, stronger correlation between eddy velocity and eddy moist static energy, and longer eddy length scale. The changing characteristics of baroclinic instability are, therefore, needed to explain the storm track response as climate warms. Diagnosis of the latitude-by-latitude energy budget for the current and future climate demonstrates how the coupling between radiative and surface heat fluxes and eddy heat and moisture transport influences the midlatitude storm track response to global warming. Through radiative forcing by increased atmospheric carbon dioxide and water vapor, more energy is gained within the tropics and subtropics, while in the middle and high latitudes energy is reduced through increased outgoing terrestrial radiation in the Northern Hemisphere and increased ocean heat uptake in the Southern Hemisphere. This enhanced energy imbalance in the future climate requires larger atmospheric energy transports in the midlatitudes which are partially accomplished by intensified storm tracks. Finally a sequence of cause and effect for the storm track response in the warming world is proposed that combines energy budget constraints with baroclinic instability theory.  相似文献   

14.
Sahelian rainfall has recorded a high variability during the last century with a significant decrease (more than 20 %) in the annual rainfall amount since 1970. Using a linear regression model, the fluctuations of the annual rainfall from the observations over Burkina Faso during 1961–2009 period are described through the changes in the characteristics of the rainy season. The methodology is then applied to simulated rainfall data produced by five regional climate models under A1B scenario over two periods: 1971–2000 as reference period and 2021–2050 as projection period. As found with other climate models, the projected change in annual rainfall for West Africa is very uncertain. However, the present study shows that some features of the impact of climate change on rainfall regime in the region are robust. The number of the low rainfall events (0.1–5 mm/d) is projected to decrease by 3 % and the number of strong rainfall events (>50 mm/d) is expected to increase by 15 % on average. In addition, the rainy season onset is projected by all models to be delayed by one week on average and a consensus exists on the lengthening of the dry spells at about 20 %. Furthermore, the simulated relationship between changed annual rainfall amounts and the number of rain days or their intensity varies strongly from one model to another and some changes do not correspond to what is observed for the rainfall variability over the last 50 years.  相似文献   

15.
采用恒定的现代外部强迫驱动第一版NUIST地球系统模式,进行了40年全球热带气旋活动模拟,分析了热带气旋活动的气候特征,并与1977—2016年观测资料对比分析。结果表明:该模式能够模拟出与热带气旋类似的结构特征,在热带气旋活动活跃的海区,模拟热带气旋生成的空间分布和影响范围与观测基本一致,但是各个海区热带气旋的生成频数与观测还存在差异。除了北印度洋海区,各个海区热带气旋生成频数的季节变化与观测相似。模式在西北太平洋海区模拟结果最好,能模拟出热带气旋的生成范围和盛行路径;在北印度洋地区模拟结果较差,北印度洋海区的相对涡度模拟与观测存在较大差异,这是模式未能模拟出北印度洋热带气旋双峰特征的主要原因。  相似文献   

16.
Observations have shown a largely enhanced seasonal amplitude of northern atmospheric CO2 in the past several decades, and this enhancement is attributable to the increased seasonal amplitude of northern net ecosystem productivity (NEP amplitude). In the future, however, the changes in NEP amplitude are not clear, because of the uncertainties in climate change and vegetation dynamics. This study investigated the changes in NEP amplitude north of 45°N under future global warming by using a dynamic global vegetation model (DGVM). The authors conducted two sets of simulations: a present-day simulation (1981–2000) and future simulations (2081–2100) forced by RCP8.5 outputs from CMIP5. The results showed an overall enhanced northern NEP amplitude under the RCP8.5 scenario because of the increased maximum NEP and the decreased minimum NEP. The increases (decreases) in the maximum (minimum) NEP resulted from stronger (weaker) positive changes in gross primary production (GPP) than ecosystem respiration (ER). Changes in GPP and ER are both dominantly driven by surface air temperature and vegetation dynamics. This work highlights the key role of vegetation dynamics in regulating the northern terrestrial carbon cycle and the importance of including a DGVM in Earth system models.摘要观测显示过去几十年北半球大气二氧化碳季节幅度大幅增加, 这主要是由北半球陆地净生态系统生产力季节幅度的增加所致. 但是, 因为气候变化和植被动态的不确定性, 未来陆地净生态系统生产力季节幅度的变化还很不清楚. 本工作利用全球植被动力学模式研究了全球变暖背景下北纬45°以北陆地净生态系统生产力季节幅度的变化. 作者做了两大类试验: 当代试验 (1981−2000) 和CMIP5 RCP8.5 变暖情景驱动的未来试验 (2081−2100) . 结果显示, 在RCP8.5变暖情景下北半球中高纬陆地净生态系统生产力季节幅度整体增加, 这是因为陆地净生态系统生产力的月最大值增加且月最小值减小. 最大 (最小) 陆地净生态系统生产力的增加 (减小) 是由于总初级生产力的增加强 (弱) 于生态系统总呼吸. 总初级生产力和生态系统总呼吸的变化都主要受地表气温和植被动态的驱动. 本工作强调了植被动态对北半球中高纬陆地生态系统碳循环的关键调制作用, 也强调了在地球系统模式中包含全球植被动力学模式的重要性.  相似文献   

17.
满文敏  周天军  张洁  吴波 《气象学报》2011,69(4):644-654
分析了中国科学院大气物理研究所大气科学和地球流体力学国家重点实验室(LASG/IAP)发展的快速耦合气候系统模式FGOALS_gl对近100年气温变化的模拟,讨论了20世纪气温变化的机理。结果表明,在自然因素和人为因素的共同强迫作用下,FGOALS_gl能够合理再现20世纪全球平均和纬向平均地表气温随时间的演变。利用太阳辐照度等自然强迫、温室气体和气溶胶等人为强迫因子来驱动耦合模式,能够模拟出过去100年全球平均气温的增温趋势和年代际变化。耦合模式可以较好地模拟出20世纪全球气温变化趋势的空间分布。对区域气温变化模拟效果的分析表明,除北大西洋外,FGOALS_gl对其他地区具有较高的模拟技巧,表明外强迫是造成多数地区气温变化的主要原因。FGOALS_gl的主要缺陷在于模拟的变暖强度偏弱,大气模式自身的偏差以及耦合模式对温室气体响应的敏感度偏低是造成上述缺陷的主要原因。总体而言,FGOALS_gl对20世纪气温变化的模拟效果较为理想,特别是在全球、半球和大陆尺度上,该模式对过去100年气温变化的模拟较为合理。  相似文献   

18.
Simulations of the Regional Climate Model Version 3 (RegCM3) under the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) A1B scenario were employed to investigate possible decadal changes and long-term trends of annual mean atmospheric water balance components over China in the 21st century with reference to the period of 1981-2000. An evaluation showed that RegCM3 can reasonably reproduce annual evapotranspiration, precipitation, and water vapor transport over China, with a better performance for March-June. It was found that the water vapor exchange between the land surface and atmosphere would be significantly intensified in Northwest China by the mid-to late-21st century and that the region would possibly shift to a wetter or drought-mitigated state under global warming. Conversely, the water vapor exchange evidently weakened over the Tibetan Plateau and South-west China by the mid-to late-21st century. In addition, there appears to be a drier state for Northeast China and the middle and lower reaches of the Yangtze River valley by the mid-to late-21st century, with slight mitigation by the end compared with the mid-21st century. The westerly and southwesterly water vapor transport over China generally presents an increasing trend, with increasing diver-gence over the Tibetan Plateau and Northeast China, corresponding to a loss of atmospheric water vapor by water vapor transport.  相似文献   

19.
Liu  Qin  Yan  Changrong  Ju  Hui  Garré  Sarah 《Theoretical and Applied Climatology》2018,132(1-2):387-401
Theoretical and Applied Climatology - Climate change is widely accepted to be one of the most critical problems faced by the Huang-Huai-Hai Plain (3H Plain), which is a region in which there is an...  相似文献   

20.
A variable-grid atmospheric general circulation model, LMDZ, with a local zoom over southeast China is used to investigate regional climate changes in terms of both means and extremes. Two time slices of 30?years are chosen to represent, respectively, the end of the 20th century and the middle of the 21st century. The lower-boundary conditions (sea-surface temperature and sea-ice extension) are taken from the outputs of three global coupled climate models: Institut Pierre-Simon Laplace (IPSL), Centre National de Recherches Météorologiques (CNRM) and Geophysical Fluid Dynamics Laboratory (GFDL). Results from a two-way nesting system between LMDZ-global and LMDZ-regional are also presented. The evaluation of simulated temperature and precipitation for the current climate shows that LMDZ reproduces generally well the spatial distribution of mean climate and extreme climate events in southeast China, but the model has systematic cold biases in temperature and tends to overestimate the extreme precipitation. The two-way nesting model can reduce the ??cold bias?? to some extent compared to the one-way nesting model. Results with greenhouse gas forcing from the SRES-A2 emission scenario show that there is a significant increase for mean, daily-maximum and minimum temperature in the entire region, associated with a decrease in the number of frost days and an increase in the heat wave duration. The annual frost days are projected to significantly decrease by 12?C19?days while the heat wave duration to increase by about 7?days. A warming environment gives rise to changes in extreme precipitation events. Except two simulations (LMDZ/GFDL and LMDZ/IPSL2) that project a decrease in maximum 5-day precipitation (R5d) for winter, other precipitation extremes are projected to increase over most of southeast China in all seasons, and among the three global scenarios. The domain-averaged values for annual simple daily intensity index (SDII), R5d and fraction of total rainfall from extreme events (R95t) are projected to increase by 6?C7, 10?C13 and 11?C14%, respectively, relative to their present-day values. However, it is clear that more research will be needed to assess the uncertainties on the projection in future of climate extremes at local scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号