首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Surface samples of sea water collected in the Seto Inland Sea were analyzed for232Th and228Th. The concentrations of232Th were generally less than 2 dpm/1,0001 and these values are probably an upper limit for the232Th concentration in surface waters of the Seto Inland Sea. The228Th concentrations ranged between 4.2 to 42.3 dpm/1,0001. Remarkable seasonal and temporal variations in228Th concentrations were found, in comparison with the minimal variations in228Ra concentrations reported previously. The activity ratios of228Th/228Ra were about 0.18 in the southern part of the Kii and the Bungo Channels, and decreased markedly from the open ocean toward the central region of the Seto Inland Sea. The average value of the228Th/228Ra ratio in the central region of the Seto Inland Sea was 0.032±0.020. This suggests that removal residence time of228Th can be estimated to be about 34±22 days in surface waters of the Seto Inland Sea.  相似文献   

2.
The distribution of228Ra in surface and subsurface waters in the Japan Sea was studied. The concentrations of228Ra in surface waters were around 100 dpm/1000l which were much higher than those reported for Pacific surface waters. The concentrations of228Ra decreased with increasing depth to less than 10 dpm/1000l in the Japan Sea Proper Water. Based on the comparison between observed values of228Ra and calculated profile through the near-surface water mass and the underlying main water mass in the Japan Sea, the apparent vertical eddy diffusion coefficient was estimated to be about 2 cm2 s–1.  相似文献   

3.
226Ra and 228Ra have non-conservative excess concentrations in the mixing zones of the Pee Dee River-Winyah Bay estuary, the Yangtze River estuary, and the Delaware Bay estuary. Laboratory experiments, using Pee Dee River sediment, indicate desorption of 226Ra to increase with increasing salinities up to 20‰. In Winyah Bay desorption from river-borne sediments could contribute almost all of the increases for both isotopes. Desorption adds only a portion of the excess 228Ra measured in the Yangtse River and adjacent Shelf waters and Delaware Bay. In the Yangtze River the mixing zone extends over a considerable portion of the Continental Shelf where 228Ra is added to the water column by diffusion from bottom sediments, while 226Ra concentrations decrease from dilution. Diffusion of 228Ra from bottom sediments in Delaware Bay primarily occurs in the upper part of the bay (< 22‰ water) where fine grained sediments predominate. A diffusive flux for 228Ra of 0·33 dpm cm−2 year was determined for Delaware Bay.  相似文献   

4.
Vertical and horizontal distributions of manganese in Harima Sound (Harima Nada, Seto Inland Sea) were measured in August and December 1979. High concentrations of dissolved and particulate manganese were found in bottom waters in August, suggesting that the bottom enrichment is probably due to the diffusion of dissolved manganese out of the sediment. From measured distributions, we estimate the annual flux of manganese at the sediment-water interface to be more than 800 tons per year, if Harima Sound is a closed system for manganese.  相似文献   

5.
Using manganese-impregnated fiber extraction and high-efficiency gamma counting techniques, we measured the distribution of 228Ra and 226Ra in surface waters near the coast of Japan and in the western North Pacific. There is no evidence in our data that any significant amount of 228Ra is added to open ocean surface waters from the coastal waters around Tokyo Bay. High 228Ra concentrations (> 10 dpm/103 kg), were observed along the Kuroshio Current as compared to < 2.5 dpm/103 kg between 10° and 30°N of the central gyre, and hence the major source of 228Ra in the surface water is likely to be the East Asian continental shelf zones. A simple one-dimensional eddy diffusion and advection model is used to explain the observed decrease of 228Ra from coast to the open ocean. The model results indicate two mixing regimes across the Kuroshio Current System with apparent eddy diffusion coefficients of Ky = 4 × 105 cm2 s−1 at distance y < 200 km from the coast, and Ky = 4 × 107 cm2 s−1 at y > 200 km. Along 40°N where an eastward flow of the ‘Kuroshio Extension’ prevails, an advective flow of > 0.1 knot is consistent with the observation of nearly constant 228Ra along the track.The geographical distribution pattern of 228Ra is clearly different from that of atmospherically derived 210Pb. Thus the 228Ra in surface water serves as a useful tracer that accompanies fluvially and coastally derived elements during their subsequent lateral transport toward the central gyre.  相似文献   

6.
Constant flows, as well as oscillatory tidal flow, play an important role in the long-term dispersion of water in the Seto Inland Sea. Two kinds of numerical model (1-line and 2-line models) of the Seto Inland Sea have been developed to determine the role of density-induced currents, one type of the constant flow, in water dispersion in the Inland Sea. The seasonal variations of temperature, salinity and density fields are simulated and the density-induced current field is predicted at the same time. It is found that the most appropriate value of the longitudinal eddy diffusion coefficient,K x, is 5×106–7×106 cm2sec–1. The value of the overall mean dispersion coefficient is of the order of 107cm2sec–1 (Hayami and Unoki, 1970). Consequently, it is suggested that 50–70% of the total dispersion in the Seto Inland Sea can be attributed to currents other than density-induced currents,i.e., tidal currents, tide-induced currents and wind-driven currents.In winter, both density and velocity fields, calculated using the 1-line model, satisfy the conditions for the existence of a coastal front in Kii Channel and in the eastern Iyo-nada.  相似文献   

7.
Observations were made of time variations of carbon dioxide in seawater, pCO2, and in the atmosphere, PCO2, in the Seto Inland Sea of Japan. The pCO2 data showed well defined diurnal variation; high values at nighttime and low values during daylight hours. The pCO2 correlated negatively with dissolved oxygen. These results denote that the diurnal variation of pCO2 is associated with effects of photoplankton's activity in seawater. The pCO2 measured in the Seto Inland Sea showed higher values than the PCO2 during June to November, denoting transport of carbon dioxide from the sea surface to the atmosphere, and lower values during December to May, denoting transport of carbon dioxide from the atmosphere to the sea surface. The exchange rates of carbon dioxide were calculated using working formula given by Andriéet al. (1986). The results showed that the Seto Inland Sea gained carbon dioxide of 1.0 m-mol m–2 d–1 from the atmosphere in March and lost 1.7 m-mol m–2 d–1 to the atmosphere in August.  相似文献   

8.
In the current study, low-background γ-spectrometry was employed to determine the 228Ra/226Ra activity ratio and 137Cs activity of 84 coastal water samples collected at six sites along the main island of Japan (Honshu Island) within the Sea of Japan, including the Tsushima Strait, and two other representative sites on Honshu Island (a Pacific shore and the Tsugaru Strait) at 1-month intervals in 2006.The 228Ra/226Ra ratio of coastal waters in the Sea of Japan exhibited similar patterns of seasonal variation, with minimum values during early summer (228Ra/226Ra = 0.6–0.8), maximum values during autumn (228Ra/226Ra = 1.5–3), and a time lag in their temporal changes ( 2.5 months and over  1300 km distance). However, the 2 other sites represented no clear periodic variation.In contrast to the positive correlation between 137Cs activity (0.6–1.7 mBq/L) and salinity (15–35), the 228Ra/226Ra ratio of coastal water samples from the Sea of Japan was not observed to correlate with salinity, and the increase in the 228Ra/226Ra ratio was not as marked (0.5–1; May–June 2004 and 2005) during the migration along Honshu Island. The input of land-derived water and/or the diffusion of radium from coastal sediments is unlikely to have affected the wide seasonal variation in the 228Ra/226Ra ratio observed in these water samples.The seasonal variation in the 228Ra/226Ra ratio recorded for the coastal waters of the Sea of Japan is considered to be mainly controlled by the remarkable changes in the mixing ratio of the 228Ra-poor Kuroshio and the 228Ra-rich continental shelf waters within the East China Sea (ECS). After passing through the Tsushima Strait, this water mass moves northeast along the coastline of the Sea of Japan as the Tsushima Coastal Branch Current (TCBC).  相似文献   

9.
In order to assess the roles of Fe and Cu in outbreaks ofChattonella antiqua red tide, concentrations of these metals in the surface seawater were monitored around the Ie-shima Islands in the Seto Inland Sea during the summers of 1986–1988. Bioassay of the surface seawater with respect to Fe and Cu was also conducted using a cultured strain ofC. antiqua.Concentrations of Fe and Cu in the filtered seawater (FeF and CuF) were in the range of 3.9–10.0 and 9.3–11.2 nM, respectively. The bioassay with respect to Fe revealed that Fe at the surface layer was usually insufficient to support the maximum growth rate ofC. antiqua, except whenC. antiqua was dominant in the field. However, correlations between FeF and the growth rate of the control cultures (Fe, EDTA=not enriched; N, P, B12=enriched at optimum levels) were not apparent, probably because FeF did not reflect the concentration of available Fe.The bioassay with respect to Cu was coupled with the CuF values obtained. The results indicated that Cu at the surface layer was detoxified by complexation with natural organic ligand(s), and that pCu (=minus log of cupric ion activity) was 11.5–11.7, optimum for the growth ofC. antiqua, throughout the survey period. It is suggested that Fe, but not Cu, is a potentially important factor in regulating the natural populations ofC. antiqua in the Seto Inland Sea.  相似文献   

10.
Heat and salt balances in the Seto Inland Sea   总被引:1,自引:0,他引:1  
Seasonal variations of heat and salt balances are estimated in the Seto Inland Sea with the use of a numerical experiment.The surface effect is dominant with respect to the heat balance. In spring, however, the effect of the horizontal heat transport is the same as or greater than that of the surface heating (or cooling). Annual mean heat transport is 85 cal cm–2 day–1 (356 J cm–2 day–1) which is supplied from the open ocean and lost through the sea surface in the Inland Sea as a whole. Because of the shallow water depth, heat is supplied through the surface and carried out by the horizontal heat transport in Hiuchi- and Bingo-nada in the annual mean. The heat transport has the opposite sense to that in the whole Seto Inland Sea and annual mean transport is negative (–10 cal cm–2 day–1,i.e., –42 J cm–2 day–1).The salt balance is primarily controlled by the river discharge and the surface effect (precipitation) in June and July. In the other months, the effects of horizontal salt transport, of river inflow and of sea surface exchange (especially of the evaporation in autumn) are comparable to each other. In the Bungo Channel the river effect is relatively small. Osaka Bay and the Kii Channel are characterized by a smaller surface effect.Contribution No. 446 from Tohoku Regional Fisheries Research Laboratory.  相似文献   

11.
Submarine groundwater discharge (SGD) is now recognized as an important pathway for water and chemical species fluxes to the coastal ocean. In order to determinate SGD to the Gulf of Lion (France), we measured the activities of 226Ra and 228Ra by thermal ionization mass spectrometry (TIMS) in coastal waters and in the deep aquifer waters of the Rhone deltaic plain after pre-concentration of radium by MnO2. Compared to conventional counting techniques, TIMS requires lower quantities of water for the analyses, and leads to higher analytical precision. Radium isotopes were thus measured on 0.25–2 L water samples containing as little as 20 fg of 226Ra and 0.2–0.4 fg of 228Ra with precision equal to 2%. We demonstrate that coastal surface waters samples are enriched in 226Ra and 228Ra compared to the samples further offshore. The high precision radium measurements display a small but significant 226Ra and 228Ra enrichment within a strip of circa 30 km from the coast. Radium activities decrease beyond this region, entrained in the northern current along the shelf break or controlled by eddy diffusion. The radium excess in the first 30 km cannot be accounted for by the river nor by the early diagenesis. The primary source of the radium enrichment must therefore be ascribed to the discharge of submarine groundwater. Using a mass-balance model, we estimated the advective fluxes of 226Ra and 228Ra through SGD to be 5.2 × 1010 and 21 × 1010 dpm/d respectively. The 226Ra activities measured in the groundwater from the Rhone deltaic plain aquifer are comparable to those from other coastal groundwater studies throughout the world. By contrast, 228Ra activities are higher by up to one order of magnitude. Taking those groundwater radium activities as typical of the submarine groundwater end-member, a minimum volume of 0.24–4.5 × 1010 l/d is required to support the excess radium isotopes on the inner shelf. This has to be compared with the average rivers water runoff of 15.4 × 1010 l/d during the study period (1.6 to 29% of the river flow).  相似文献   

12.
Time series of the vertical distribution of resuspended matter and bottom current were collected concurrently during summer at a few anchored stations in the Seto Inland Sea. The vertical distribution of resuspended matter was measured every hour for about one tidal cycle and the three components of current fluctuation were obtained at each sampling station. Current data at each sampling station show that the bottom is hydraulically smooth.Assuming that the averaged vertical distribution of resuspended matter for one tidal cycle shows a steady state distribution, the settling velocityWs of resuspended matter is estimated to be in the range of 1.2×10–2 to 5.7×10–2 cm sec–1 from analysis of the averaged distributions.The relation between the erosion rate and the bottom shear stress for this study area is investigated and is compared with that for other areas. The results show that the erosion of sediment in the Seto Inland Sea during summer occurs even due to the low bottom shear stress which is considered as almost smooth hydraulically.  相似文献   

13.
226Ra and 228Ra have non-conservative excess concentrations in the mixing zones of the Pee Dee River-Winyah Bay estuary, the Yangtze River estuary, and the Delaware Bay estuary. Laboratory experiments, using Pee Dee River sediment, indicate desorption of 226Ra to increase with increasing salinities up to 20‰. In Winyah Bay desorption from river-borne sediments could contribute almost all of the increases for both isotopes. Desorption adds only a portion of the excess 228Ra measured in the Yangtse River and adjacent Shelf waters and Delaware Bay. In the Yangtze River the mixing zone extends over a considerable portion of the Continental Shelf where 228Ra is added to the water column by diffusion from bottom sediments, while 226Ra concentrations decrease from dilution. Diffusion of 228Ra from bottom sediments in Delaware Bay primarily occurs in the upper part of the bay (< 22‰ water) where fine grained sediments predominate. A diffusive flux for 228Ra of 0·33 dpm cm?2 year was determined for Delaware Bay.  相似文献   

14.
The tidal volume transport in the Seto Inland Sea is calculated. The cross-section where the volume transport of the M2 tide is zero, is located around the western part of Bisan Strait. The tidal energy dissipation of the M2 tide by friction is 6.30×1016 ergs s–1 in the Seto Inland Sea. The quality factorQ for the M2 tide is 20.2. The total energy dissipation of the M2, S2, K1 and O1 tides is 7.99×1016 ergs s–1.  相似文献   

15.
Sedimentation rates were determined with the210Pb technique in six sediment cores from Harima Nada (Harima Sound), Seto Inland Sea. The rate of deposition varies from 0.11 g cm–2y–1 in the northern part to 0.33 g cm–2 y–1 in the southern part of the basin. A marked increase in copper and zinc content was observed above a depth in the core corresponding to about 1900 A.D. as a result of increasing human activities. Anthropogenic input of copper and zinc decreased slightly after 1970. Natural background levels of copper and zinc in the sediment in this sound are 11–16 ppm and 100–120 ppm, respectively. The total amounts of anthropogenic copper and zinc in the sediments were estimated to be 110–180g cm–2 and 610–1,280g cm–2, respectively. These values constitute 40–50% of the total sedimentary input of copper and zinc in the sediments since about 1900 A.D.  相似文献   

16.
Biomass and primary productivity of benthic microalgae (BMA) and planktonic algae in Suo Nada, the western part of the Seto Inland Sea, Japan were compared in terms of unit area with regard to their seasonal and spatial distribution in 2002. Judging from light compensation depth and water depth, the southwestern part of Suo Nada was considered to be a potential habitat for BMA. Whereas the contribution of sedimented planktonic algae was high in biomass at the sediment surface, BMA was obviously significant both in biomass and primary production in the shallow southwestern part. However, the contribution of BMA to the total biomass in the entire water column was 7% in winter and 2% in summer. The primary production of BMA varied between 4.0 and 74.0 mg C m−2 d−1 in the southwestern part, accounting for 2–12% of the whole water column primary production. The ecological roles of BMA in the Suo Nada ecosystem are discussed, such as reduction of benthic nutrient flux, oxidation of surface sediments and feed for higher animals.  相似文献   

17.
In the Suo-Nada area of the Seto Inland Sea, Japan, sedimentation rates and the sedimentary record of anthropogenic metal loads were determined by combining the Pb-210 dating technique with heavy metal analysis of the sediments. The sedimentation rates vary from 0.11 to 0.27 g cm–2 yr–1. Lower sedimentation rates were observed in the eastern part of the basin which is characterized by a bottom with sand and gravel, and fast tidal currents.Anthropogenic and natural loads of copper and zinc into the sediments are 34 and 326, and 65 and 375 ton yr–1, respectively. The anthropogenic loads are fairly low compared with those of the other main areas of sediment accumulation in the Seto Inland Sea. The highest level of zinc and copper pollution was observed in the western part of the basin because of waste discharge from an old and big ironworks outside basin since the early 1900's.  相似文献   

18.
The metal load into sediments and the change in the sedimentary environment of Osaka Bay in the Seto Inland Sea have been studied through geochemical analysis of core sediments, using both Pb-210 dating and a selective chemical leaching technique. Analytical results from a 6-m core of sediment show that copper and zinc pollution started in the late 1800's and the present enrichment ratios of copper and zinc, relative to background levels (20 mg kg–1 for Cu and 94 mg kg–1 for Zn), are 2.8 and 4.1, respectively. The present anthropogenic copper and zinc loads into Osaka Bay sediments, are 47 and 368 ton yr–1, while natural copper and zinc loads are 40 and 186 ton yr–1, respectively. Osaka Bay sediment at the present day is considered to be seriously polluted by zinc, now. The vertical profiles of copper and zinc in four successively separated fractions (10% acetic acid soluble fraction: F-HAC, 0.1M hydrochloric acid-soluble fraction: F-HCl, hydrogen peroxide-soluble fraction: F-H2O2 and hydrofluoric acid-soluble fraction: F-HF) from the core sediments indicate that enrichments of copper and zinc in the upper layer of the sediment are dependent on increases in the metal contents of the F-HAC, F-HCl and F-H2O2 fractions. Copper in F-HAC, and zinc in F-HAC and F-HCl, seem to be of anthropogenic origin.Results of sequential studies of the whole Seto Inland Sea can be summarized as follows: At the present time, the sedimentary loads of copper and zinc over the whole Seto Inland Sea area are 630 and 3,500 ton yr–1, respectively, while the natural and anthropogenic loads are 320 and 310 ton yr–1 for copper and 1,800 and 1,700 ton yr–1 for zinc, respectively.  相似文献   

19.
Submarine groundwater discharge (SGD) to coastal southern Rhode Island was estimated from measurements of the naturally-occurring radioisotopes 226Ra (t1/2 = 1600 y) and 228Ra (t1/2 = 5.75 y). Surface water and porewater samples were collected quarterly in Winnapaug, Quonochontaug, Ninigret, Green Hill, and Pt. Judith–Potter Ponds, as well as nearly monthly in the surface water of Rhode Island Sound, from January 2002 to August 2003; additional porewater samples were collected in August 2005. Surface water activities ranged from 12–83 dpm 100 L− 1 (60 dpm = 1 Bq) and 21–256 dpm 100 L− 1 for 226Ra and 228Ra, respectively. Porewater 226Ra activities ranged from 16–736 dpm 100 L− 1 (2002–2003) and 95–815 dpm 100 L− 1 (2005), while porewater 228Ra activities ranged from 23–1265 dpm 100 L− 1. Combining these data with a simple box model provided average 226Ra-based submarine groundwater fluxes ranging from 11–159 L m− 2 d− 1 and average 228Ra-derived fluxes of 15–259 L m− 2 d− 1. Seasonal changes in Ra-derived SGD were apparent in all ponds as well as between ponds, with SGD values of 30–472 L m− 2 d− 1 (Winnapaug Pond), 6–20 L m− 2 d− 1 (Quonochontaug Pond), 36–273 L m− 2 d− 1 (Ninigret Pond), 29–76 L m− 2 d− 1 (Green Hill Pond), and 19–83 L m− 2 d− 1 (Pt. Judith–Potter Pond). These Ra-derived fluxes are up to two orders of magnitude higher than results predicted by a numerical model of groundwater flow, estimates of aquifer recharge for the study period, and values published in previous Ra-based SGD studies in Rhode Island. This disparity may result from differences in the type of flow (recirculated seawater versus fresh groundwater) determined using each technique, as well as variability in porewater Ra activity.  相似文献   

20.
In order to clarify the structure of the strong tidal current at the Naruto Strait in the Seto Inland Sea of Japan, the sea-level values were observed in the strait and the current measurements were made with an Acoustic Doppler Current Profiler (ADCP).The tidal volume transports for M2 and S2 tides were about 74×103 and 26×103 m3 sec–1, respectively. The horizontal profile of the velocity at the phase of the strong tidal current compares favorably with a theoretical profile of the two-dimensional steady turbulent jet except for the side parts of the profile. Moreover, the entrainment rate of the surrounding water into the strong tidal jet was estimated from the difference of mass flux between two cross-sections at the strait, the entrainment rate and entrainment constant for both the northward and southward flows being about 1.3–2.5×10–4m–1 and about 0.03–0.05, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号