首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Mega‐scale glacial lineations (MSGLs) are a characteristic landform on ice stream beds. Solving the puzzle of their formation is key to understanding how ice interacts with its bed and how this, in turn, influences the dynamics of ice streams. However, a comprehensive and detailed characterization of this landform's size, shape and spatial arrangement, which might serve to test and refine formational theories, is largely lacking. This paper presents a detailed morphometric analysis and comparison of 4043 MSGLs from eight palaeo‐ice stream settings: three offshore (Norway and Antarctica), four onshore (Canada), and one from under a modern ice stream in West Antarctica. The length of MSGLs is lower than previously suggested (mode 1000–2000 m; median 2892 m), and they initiate and terminate at various locations on an ice stream bed. Their spatial arrangement reveals a pattern that is characterized by an exceptional parallel conformity (80% of all mapped MSGLs have an azimuth within 5° from the mean values), and a fairly constant lateral spacing (mode 200–300 m; median 330 m), which we interpret as an indication that MSGLs are a spatially self‐organized phenomenon. Results show that size, shape and spatial arrangement of MSGLs are consistent both within and also generally between different ice stream beds. We suggest this results from a common mechanism of formation, which is largely insensitive to local factors. Although the elongation of MSGLs (mode 6–8; median 12.2) is typically higher than features described as drumlins, these values and those of their width (mode 100–200 m; median 268 m) overlap, which suggests the two landforms are part of a morphological continuum and may share a similar origin. We compare their morphometry with explicit predictions made by the groove‐ploughing and rilling instability theories of MSGL formation. Although the latter was most compatible, neither is fully supported by observations. © 2014 The Authors. Earth Surface Processes and Landforms Published by John Wiley & Sons Ltd.  相似文献   

2.
During the last glacial cycle an intriguing feature of the British-Irish Ice Sheet was the North Sea Lobe (NSL); fed from the Firth of Forth and which flowed south and parallel to the English east coast. The controls on the formation and behaviour of the NSL have long been debated, but in the southern North Sea recent work suggests the NSL formed a dynamic, oscillating terrestrial margin operating over a deforming bed. Further north, however, little is known of the behaviour of the NSL or under what conditions it operated. This paper analyses new acoustic, sedimentary and geomorphic data in order to evaluate the glacial landsystem imprint and deglacial history of the NSL offshore from NE England. Subglacial tills (AF2/3) form a discontinuous mosaic interspersed with bedrock outcrops across the seafloor, with the partial excavation and advection of subglacial sediment during both advance and retreat producing mega-scale glacial lineations and grounding zone wedges. The resultant ‘mixed-bed’ glacial landsystem is the product of a dynamic switch from a terrestrial piedmont-lobe margin with a net surplus of sediment to a partially erosive, quasi-stable, marine-terminating, ice stream lobe as the NSL withdrew northwards. Glaciomarine sediments (AF4) drape the underlying subglacial mixed-bed imprint and point to a switch to tidewater conditions between 19.9 and 16.5 ka cal BP as the North Sea became inundated. The dominant controls on NSL recession during this period were changing ice flux through the Firth of Forth ice stream onset zone and water depths at the grounding line; the development of the mixed-bed landsystem being a response to grounding line instability. © 2018 John Wiley & Sons, Ltd.  相似文献   

3.
4.
Quantifying glacial erosion contributes to our understanding of landscape evolution and topographic relief production in high altitude and high latitude areas. Combining in situ 10Be and 26Al analysis of bedrock, boulder, and river sand samples, geomorphological mapping, and field investigations, we examine glacial erosion patterns of former ice caps in the Shaluli Shan of the southeastern Tibetan Plateau. The general landform pattern shows a zonal pattern of landscape modification produced by ice caps of up to 4000 km2 during pre-LGM (Last Glacial Maximum) glaciations, while the dating results and landforms on the plateau surface imply that the LGM ice cap further modified the scoured terrain into different zones. Modeled glacial erosion depth of 0–0.38 m per 100 ka bedrock sample located close to the western margin of the LGM ice cap, indicates limited erosion prior to LGM and Late Glacial moraine deposition. A strong erosion zone exists proximal to the LGM ice cap marginal zone, indicated by modeled glacial erosion depth >2.23 m per 100 ka from bedrock samples. Modeled glacial erosion depths of 0–1.77 m per 100 ka from samples collected along the edge of a central upland, confirm the presence of a zone of intermediate erosion in-between the central upland and the strong erosion zone. Significant nuclide inheritance in river sand samples from basins on the scoured plateau surface also indicate restricted glacial erosion during the last glaciation. Our study, for the first time, shows clear evidence for preservation of glacial landforms formed during previous glaciations under non-erosive ice on the Tibetan Plateau. As patterns of glacial erosion intensity are largely driven by the basal thermal regime, our results confirm earlier inferences from geomorphology for a concentric basal thermal pattern for the Haizishan ice cap during the LGM. © 2018 John Wiley & Sons, Ltd.  相似文献   

5.
The glacial records of the inner-core regions of the Laurentide Ice Sheet (LIS) document complex yet coherent patterns reflecting ice-sheet change (e.g. ice-divide migration), providing unique insights into past glacial conditions. This study develops a conceptual model of subglacial dynamics evolution within a major ice-dispersal centre of the LIS in northeastern Quebec, Canada using a GIS-based analysis of the surficial geologic record. Multiple proxies of subglacial conditions (subglacial streamlined landforms, lake density and lake area over thin drift/bedrock) were analysed through grid-overlay techniques and then classified based on different proxy variables ranging from highly mobile warm-based to immobile cold-based conditions. An additional proxy (till blanket) was used to identify areas of thick till deposition, but with few proxies (few lake or landform metrics). Based on local ice-flow reconstructions, the most ‘relict’ glacial terrain zone (GTZ1) has warm-based conditions over 66% of its area and is remarkably well preserved, suggesting laterally extensive warm-based conditions during the oldest identified ice-flow phase. This relict glacial terrain is partially overprinted by two subsequent ice-flow phases in spatially restricted zones in the northeast (73% warm-based), east-central (41% warm-based), and northwest (33% warm-based) of the study area. A zone of more sluggish conditions (only 3% warm-based) was identified in the highlands at the centre of the study area, characterized by thin till cover, few landforms, yet with large patches of relatively abundant small lakes, indicative of areal scouring. No clear evidence of sustained cold-based conditions (i.e. high chemical index of alteration values or high 10Be abundances) was found in the study area. These results suggest that warm-based conditions (active erosion and/or deposition) were uniformly widespread during the earliest ice-flow phase, later becoming more spatially restricted with broader sluggish ice conditions. These spatially restricted regions of warm-based subglacial regimes were likely controlled by surrounding and down-flow ice streaming. © 2020 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd  相似文献   

6.
Geomorphological observations, geoelectrical soundings and photogrammetric measurements of surface movement on the Muragl glacier forefield were used to obtain an integrative analysis of a highly complex glacial and periglacial landform consisting of a push moraine, creeping permafrost and permafrost‐free glacial till in close proximity. Electrical resistivity tomography is considered as an important multifunctional geophysical method for research in periglacial permafrost related environments. Joint application with measurements of surface displacements offers a promising tool for investigating periglacial landforms related to ice‐rich permafrost for a more comprehensive characterization of permafrost characteristics and geomorphological interpretation of periglacial morphodynamics. The patchy permafrost distribution pattern described in this paper is determined by several factors, including the sediment characteristics, the snow cover distribution and duration, the aspect and the former glacier distribution and thermal regime. Recent and modern permafrost dynamics within the glacier forefield comprise aggradation, degradation and permafrost creep. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
The orientation of several landforms, e.g. drumlins, flutes, crag-and-tails, and mega-scale glacial lineations, records the direction of the overlying ice flow that created them. Populations of such features are used routinely to infer former ice-flow patterns, which serve as the building blocks of reconstructions of palaeo ice-sheet evolution. Currently, the conceptualisation of flow patterns from these flow-direction records is done manually and qualitatively, so the extractable glaciological information is limited. We describe a kriging method (with Matlab code implementation) that calculates continuous fields of ice-flow direction, convergence, and curvature from the flow-direction records, and which yields quantitative results with uncertainty estimates. We test the method by application to the subglacial bedforms of the Tweed Valley Basin, UK. The results quantify the convergent flow pattern of the Tweed Palaeo-Ice Stream in detail and pinpoint its former lateral shear margins and where ice flowed around basal bumps. Ice-flow parameters retrieved by this method can enrich ice-sheet reconstructions and investigations of subglacial till processes and bedform genesis. © 2018 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

8.
High-resolution multibeam bathymetric data and acoustic sub-bottom profiles were recently collected in Grand Lake (Labrador), one of the deepest lake basins in eastern North America, to reconstruct: (1) the retreat of the Laurentide Ice Sheet (LIS) west of Lake Melville and (2) the history of sedimentation since deglaciation in this 54 km-long, 3 km-wide fjord-lake. Our results provide a morphostratigraphical framework that brings new insights to the style and pattern of retreat of the LIS in the region, as well as deglacial and postglacial sedimentary dynamics. Terrestrial glacial lineations observed on a digital elevation model (DEM) provide evidence of a previously undocumented ice stream in the Grand Lake area. This newly mapped ice stream suggests that the calving bay formed in Lake Melville triggered a reorganization of the regional drainage pattern of the LIS. The sedimentary infill of Grand Lake consists of a sequence of deglacial to postglacial sediments that contain deposits related to a series of mass movements. The 8.2 cal ka BP cold event is recorded in Grand Lake by a series of closely spaced moraines deposited at the outlet of the fjord-lake to form a morainic complex similar to the Cockburn morainic complex on Baffin Island. During deglaciation, a dense dendritic network of proglacial gullies incised into the steep sidewalls of the lake. Since deglaciation, paraglacial and postglacial sedimentation has led to the deposition of large prograding deltas at the fjord head, where density currents remain active today and have formed a series of sediment waves on the frontal slopes and a prodeltaic environment. © 2019 John Wiley & Sons, Ltd.  相似文献   

9.
Because it is located both on the Mid‐Atlantic Ridge and on a mantle plume, Iceland is a region of intense tectonics and volcanism. During the last glaciation, the island was covered by an ice sheet approximately 1000 m thick. A reconstruction of the ice flow lines, based on glacial directional features, shows that the ice sheet was partly drained through fast‐flowing streams. Fast flow of the ice streams has been recorded in megascale lineations and flutes visible on the currently deglaciated bedrock, and is confirmed by simple mass balance considerations. Locations of the major drainage routes correlate with locations of geothermal anomalies, suggesting that ice stream activity was favoured by lubrication of the bed by meltwater produced in regions of high geothermal heat flux. Similar control of ice flow by geothermal activity is expected in ice sheets currently covering tectonically and volcanically active area such as the West Antarctic ice sheet. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

10.
The results of a high-resolution mineral magnetic study combined with major element geochemistry analysis, oxygen isotopes and 14C AMS stratigraphy are reported for deep-sea gravity cores MD77-169 and MD77-180 located in the Andaman Sea and the Bay of Bengal, respectively. Core MD77-169 covers the last 280 kyr and core MD77-180 covers the last 160 kyr. In both cores, rock magnetic parameters indicate that the magnetic assemblage is dominated by pseudo-single domain titanomagnetite grains, with grain-size variations following a strong 23 kyr periodicity. Smaller magnetic grain sizes are observed during periods characterized by a strong summer monsoon. In addition, in core MD77-180, we observe a correlation between magnetic grain size and a chemical index of alteration. This suggests that these magnetic grain-size changes are related to chemical weathering driven by summer monsoon rainfall. A comparison of the GISP2 ice core isotopic record and the magnetic grain-size record of the Bay of Bengal shows that rapid temperature variations documented in the ice core (Dansgaard–Oeschger cycles and Heinrich events), during the last glacial period are also present in the magnetic grain-size record. Heinrich events and cold stadial events are characterized by relatively large magnetic grain sizes. Furthermore, Heinrich events are characterized by lower values of the chemical index of alteration implying a lower degree of chemical weathering related to significantly drier conditions on the continent. We suggest that rapid cold events of the North Atlantic (Heinrich events) during the last glacial stages are characterized by a weaker summer monsoon rainfall over the Himalaya via an atmospheric teleconnection.  相似文献   

11.
基于远震接收函数的南极大陆冰盖厚度研究   总被引:1,自引:1,他引:0       下载免费PDF全文
冰盖厚度是研究南极冰盖质量、建立冰盖动力学模型的基本参数,对于冰川均衡调整、冰盖物质平衡及全球气候变化研究具有重要意义.基于地震学的远震接收函数和H-Kappa格网搜索方法可以用于地震台站下方冰盖厚度的可靠探测,不仅能与冰雷达获得的冰盖厚度进行独立对比,还可以与冰雷达方法相互补充,进一步填补南极大陆冰盖厚度探测空白区.本文利用布设于南极大陆冰盖上方的流动地震台阵记录到的远震波形数据,基于接收函数方法对台阵下方的冰盖厚度进行了研究.结果显示:基于远震接收函数方法的冰盖厚度与Bedmap2冰厚格网模型相比,二者差别大多在200 m以内;少数台站差值达到600 m左右,这一差别可能与Bedmap2测线分布空区、冰雷达测深不确定性以及冰盖内部复杂波速结构等因素有关.本文研究结果表明:利用南极大陆冰盖上方的流动地震台阵,基于远震接收函数方法可以获得比较可靠的南极冰盖厚度,为独立验证冰雷达的探测结果并弥补冰雷达探测空白区提供了有效方法.同时,部分台站接收函数波形的复杂性可能暗示了南极大陆数千米厚的冰盖内部结构不是均一的,仍然存在比较复杂的内部结构变化.因此,有必要进一步利用包括接收函数波形拟合、地震面波反演等方法对南极大陆冰盖厚度及其内部精细结构进行更为深入的研究.  相似文献   

12.
High resolution DEMs obtained from LiDAR topographic data have led to improved landform inventories (e.g. landslides and fault scarps) and understanding of geomorphic event frequency. Here we use airborne LiDAR mapping to investigate meltwater pathways associated with the Tweed Valley palaeo ice‐stream (UK). In particular we focus on a gorge downstream of Palaeolake Milfield, previously mapped as a sub‐glacial meltwater channel, where the identification of abandoned headcut channels, run‐up bars, rock‐cut terrace surfaces and eddy flow features attest to formation by a sub‐aerial glacial lake outburst flood (GLOF) caused by breaching of a sediment dam, likely an esker ridge. Mapping of these landforms combined with analysis of the gorge rim elevations and cross‐section variability revealed a two phase event with another breach site downstream following flow blockage by higher elevation drumlin topography. We estimate the magnitude of peak flow to be 1–3 × 103 m3/s, duration of the event to range from 16–155 days, and a specific sediment yield of 107–109 m3/km2/yr. We identified other outburst pathways in the lower Tweed basin that help delineate an ice margin position of the retreating Tweed Valley ice stream. The results suggest that low magnitude outburst floods are under‐represented in Quaternary geomorphological maps. We therefore recommend regional LiDAR mapping of meltwater pathways to identify other GLOFs in order to better quantify the pattern of freshwater and sediment fluxes from melting ice sheets to oceans. Despite the relatively low magnitude of the Till outburst event, it had a significant impact on the landscape development of the lower Tweed Valley through the creation of a new tributary pathway and triggering of rapid knickpoint retreat encouraging new regional models of post‐glacial fluvial landscape response. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
Ice streams are integral components of an ice sheet's mass balance and directly impact on sea level. Their flow is governed by processes at the ice‐bed interface which create landforms that, in turn, modulate ice stream dynamics through their influence on bed topography and basal shear stresses. Thus, ice stream geomorphology is critical to understanding and modelling ice streams and ice sheet dynamics. This paper reviews developments in our understanding of ice stream geomorphology from a historical perspective, with a focus on the extent to which studies of modern and palaeo‐ice streams have converged to take us from a position of near‐complete ignorance to a detailed understanding of their bed morphology. During the 1970s and 1980s, our knowledge was limited and largely gleaned from geophysical investigations of modern ice stream beds in Antarctica. Very few palaeo‐ice streams had been identified with any confidence. During the 1990s, however, glacial geomorphologists began to recognise their distinctive geomorphology, which included distinct patterns of highly elongated mega‐scale glacial lineations, ice stream shear margin moraines, and major sedimentary depocentres. However, studying relict features could say little about the time‐scales over which this geomorphology evolved and under what glaciological conditions. This began to be addressed in the early 2000s, through continued efforts to scrutinise modern ice stream beds at higher resolution, but our current understanding of how landforms relate to processes remains subject to large uncertainties, particularly in relation to the mechanisms and time‐scales of sediment erosion, transport and deposition, and how these lead to the growth and decay of subglacial bedforms. This represents the next key challenge and will require even closer cooperation between glaciology, glacial geomorphology, sedimentology, and numerical modelling, together with more sophisticated methods to quantify and analyse the anticipated growth of geomorphological data from beneath active ice streams. © 2017 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

14.
We examined air trapped in ancient ice from three shallow cores (<35 m deep) recovered from stagnant portions of the Mullins glacier, an 8 km long debris-covered alpine glacier in the McMurdo Dry Valleys that is overlain by several in-situ volcanic ash-fall deposits. Previously reported 40Ar/39Ar dates on ash-fall in the vicinity of the core sites average 4.0 Ma, and underlying ice is presumably as old in some areas. We analyzed the elemental and isotopic composition of O2, N2, and Ar and total air content of the glacial ice. We also dated the trapped air directly to an uncertainty of ±220 kyr (1σ) by measuring its 40Ar/36Ar and 38Ar/36Ar ratios. Our results suggest that the air analyzed is likely a mixture of ancient atmosphere trapped at the time of ice formation and more recent air introduced via cracks in the ice that penetrate to at least 33 m. The isotopic signatures of gases have been complicated by gas loss, as well as a mixture of thermal and gravitational fractionation. The oldest age estimated for the trapped air dates to 1.6 Ma, indicating that the original air is at least as old as 1.6 ± 0.2 Ma. A convergence to older ice ages with increasing depth in the deepest core analyzed (33 m) hints at the possibility that pristine air might be recovered at greater depths. Minor interstitial debris present in the glacial ice (<1%), along with geochemical evidence for in-situ microbial respiration, prohibit direct analysis of CO2. We measured the triple isotopic composition of O2 as a proxy for CO2 and infer that, in the air represented in our ice samples, CO2 concentrations are within the range observed over the last 800 ka.  相似文献   

15.
New imagery of ~14 100 km2 of seafloor along a 640 km stretch of the Alaska and Beaufort margins (ABM) in water depths from 250 to 2800 m depicts a repetitive association of glaciogenic bedforms (lineations and iceberg scours), broad erosional bathymetric features and adjacent downslope turbidite gullies. These bedforms have styles, depths and orientations similar to features discovered earlier on the Chukchi Borderland, up to 800 km northwest of the ABM. Lineations occur across the surface of a flattened bathymetric bench interpreted to have formed by an ice shelf sliding along the continental slope and scraping the seafloor at temporary grounding locations. The glacial geology of surrounding areas suggests that an ice shelf probably flowed from the mouths of overdeepened glacial troughs in the Canadian Arctic Archipelago westward along the ABM and across the Chukchi Borderland. This curved pathway indicates an obstruction to ice flow in the central Canada Basin, possibly caused by either a basin‐wide ice shelf or by a pile‐up of mega‐bergs originating from the Eurasian side of the Arctic Ocean. The ice shelf that affected the ABM may have formed between Oxygen Isotopic Stage 4 to 5b, possibly correlating to an inferred intra‐Stage 5 widespread Beringian glaciation. Evidence for glaciogenic features on the ABM corroborates suggestions that large ice volumes and extents existed in the Arctic during Pleistocene glacial periods. These findings have far‐reaching implications for Arctic climate studies, ocean circulation, sediment stratigraphy and the stability of circum‐Arctic continental ice masses. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
Lake shapes and their spatial distribution are important geomorphological indicators in previously glaciated areas. Their shapes are influenced by the underlying geological structure and processes of glacial sediment deposition or erosion. Since these processes act on large areas, distribution of lakes can reflect the intensity of glacial erosional/depositional processes and their spatial extent. Landsat imagery was used to extract lake outlines from a selected pilot‐study area on the widest ice‐free coastal margin of the south‐western Greenland north of Kangerlussuaq. Analysis included image classification and spatial analysis of lakes with elevation data using geographic information system (GIS) tools. A morphometric index was applied to extract kettle lakes as indicators of a specific glacial process – ice stagnation. Analysis of their spatial distribution helped in the reconstruction of glacial dynamics in formerly glaciated terrain. Our results show that spatial lake distribution combined with elevation analysis can be used to identify zones of glacial erosion and deposition. The highest concentrations of lakes within the study area occupy the elevation range between 164 and 361 m above sea level (a.s.l.). This zone can be identified as an area where intensive glacial erosion took place in the past. The widespread distribution of modeled kettle lake features within the same elevation range and across the study area suggests that the last deglaciation process was accompanied by abandonment of blocks of stagnant ice. This conclusion is supported by surface exposure ages obtained in the same study area and published elsewhere. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
Drumlins are landforms essential to understanding of ice sheet movement over soft beds, sediment transport along the ice/bed interface, and the formation of a wide range of glacial deposits. Although investigated more than any other glacial landform, the origin of drumlins remains contentious. Using high-resolution LiDAR imagery and field data, we investigate the geomorphology and internal composition of one of the biggest drumlin fields in the North European Lowland. The Stargard drumlin field consists of over 1300 drumlins and related streamlined subglacial bedforms in a terminal part of a major Weichselian palaeo-ice stream of the southern Scandinavian Ice Sheet. The drumlins are typically 600-800 m long, 200-250 m wide, 3-6 m high and have axial elongation ratios ~2 but in some cases exceeding 15. Several subzones inferred from drumlin morphometry exist reflecting different ice flow dynamics. The most elongated drumlins occur in areas where ice moved down-slope and where thick fine-grained deposits of low hydraulic conductivity occur in the substratum. The largest portion of land occupied by drumlins and the greatest frequency density of drumlins occur where the ice moved up-slope. Stargard drumlins are composed of a wide variety of glacial deposits including various types of tills and meltwater sediments, which range from undisturbed to heavily deformed. There is no correlation between the deposits in the drumlins and the drumlin forms indicating that the deposits pre-date the drumlinizing process. It is suggested that the drumlin field was generated by a combination of direct glacial erosion and subglacial meltwater erosion by removing antecedent material from the inter-drumlin areas and streamlining the resultant bumps. Our data support the search for a unifying theory of drumlin formation and suggest erosion as the most plausible single mechanism generating drumlin landscapes. © 2019 John Wiley & Sons, Ltd.  相似文献   

18.
The chemical composition of sediment sampled from a network of ice boreholes contacting the bed of the ablation zone of the Greenland Ice Sheet is compared to the composition of intact bedrock clasts. This sediment is enriched in silica and depleted in reactive cations compared to the underlying bedrock. In order to test whether these differences result from grain size biases either in sample collection or due to natural sorting, sediment samples were analyzed by grain size aliquots. Enrichment of silicon and depletion of cations is consistent across grain size classes and the compositions of bedrock and subglacial sediment are statistically separate. The difference in composition between subglacial sediment and rock aligns closely with the composition of dissolved solutes in waters sampled from the same field sites and is dissimilar to the composition of the sites' suspended sediment. This implies that chemical weathering rather than disproportionate physical removal of friable minerals is responsible for the compositional differences between rock and sediment. Mass balance analysis implies 3–10% of the sediment's mass is lost to solute dissolution, with approximately double that amount precipitated as clay minerals (a large portion of which may have been physically expelled). This result implies that temperate ice sheet subglacial environments may be more chemically active than previously realized. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
Glacier recession and landform development in a debris‐charged glacial landsystem characterized by an overdeepening is quantified using digital photogrammetry, digital elevation model (DEM) construction and mapping of the Icelandic glacier Kvíárjökull for the period 1945–2003. Melting of ice‐cores is recorded by surface lowering rates of 0·8 m yr–1 (1945–1964), 0·3 m yr–1 (1964–1980), 0·015 m yr–1 (1980–1998) and 0·044 m yr–1 (1998–2003). The distribution/preservation of pushed and stacked ice‐cored moraine complexes are determined by the location of the long‐term glacial drainage network in combination with retreat from the overdeepening, into which glacifluvial sediment is being directed and where debris‐rich ice masses are being reworked and replaced by esker networks produced in englacial meltwater pathways that bypassed the overdeepening and connected to outwash fans prograding over the snout. Recent accelerated retreat of Kvíárjökull, potentially due to increased mass balance sensitivity, has made the snout highly unstable, especially now that the overdeepening is being uncovered and the snout flooded by an expanding pro‐glacial, and partially supraglacial, lake. This case study indicates that thick sequences of debris‐charged basal ice/controlled moraine have a very low preservation potential but ice‐cored moraine complexes can develop into hummocky moraine belts in de‐glaciated terrains because they are related to the process of incremental stagnation, which at Kvíárjökull has involved periodic switches from transport‐dominant to ablation‐dominant conditions. Glacier recession is therefore recorded temporally and spatially by two suites of landforms relating to two phases of landform production which are likely typical for glaciers occupying overdeepenings: an early phase of active, temperate recession recorded by push moraines and lateral moraines and unconfined pro‐glacial meltwater drainage; and a later phase of incremental stagnation and pitted outwash head development initiated by the increasing topographic constraints of the latero‐frontal moraine arc and the increasing importance of the overdeepening as a depo‐centre. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
Since 1991, the altimeters of the ERS European Satellites allow the observation of 80% of the Antarctica ice sheet and the whole Greenland ice sheet: They thus offer for the first time a unique vision of polar ice caps. Indeed, surface topography is an essential data thanks to its capacity to highlight the physical processes which control the surface shape, or to test models. Moreover, the altimeter is also a radar which makes it possible to estimate the snow surface or subsurface characteristics, such as surface roughness induced by the strong katabatic wind or ice grain size. The polar ice caps may not be in a stationary state, they continue to respond to the climatic warming of the beginning of the Holocene, that is 18000 years ago, and possibly start to react to present climatic warming: the altimeter offers the unique means of estimating the variations of volume and thus the contribution of polar ice caps to present sea level change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号