首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The importance of energetic particles in the generation of solar flares and related phenomena has been underestimated if not completely neglected. A reexamination of their role in the light of recent observations carried out during the last solar maximum by a number of experiments on SMM and Hinotori satellites points out the continuous and violent evolution of the solar atmosphere. Most observed features can be better explained by the old idea that particles are trapped in magnetic loops above active regions where they are first heated and then accelerated by absorbing part of the wave energy flowing upwards continuously from the convection zone. Their catastrophic release into the chromosphere as a consequence of an instability in the region such as chromospheric heating or due to the emergence of new magnetic flux is considered as being the flare proper. Since the trapping of the particles involves the generation of resonant waves, a reassessment of the isotopic overabundance problem as well as a search for these waves in interplanetary space are proposed.  相似文献   

2.
In 1966 and 1967 many long-lived streams of low-energy solar electrons and protons were observed near Earth. These streams were sometimes associated with bright flares which occurred many hours earlier and sometimes no individual flare could be found. In the latter case the particles are evidently to be associated in a general way with solar active centers as Fan et al. (1968) have done. The long-lived solar events discussed here include energetic storm particles, delayed events and fluxes associated with solar active regions. It is suggested here that these are all probably the same basic phenomena viewed in somewhat different ways depending on the age of the region and its location on the solar disc. These events are usually associated with a depression in the sea-level neutron intensity and one or more sudden commencements or sudden impulses. Both electrons and protons are present in these events but in several cases electrons were not detected. The most unusual feature is that when both particle species are present, the electron flux is centered several hours before the proton flux.  相似文献   

3.
The heliosphere is the region filled with magnetized plasma of mainly solar origin. It extends from the solar corona to well beyond the planets, and is separated from the interstellar medium by the heliopause. The latter is embedded in a complex and still unexplored boundary region. The characteristics of heliospheric plasma, fields, and energetic particles depend on highly variable internal boundary conditions, and also on quasi-stationary external ones. Both galactic cosmic rays and energetic particles of solar and heliospheric origin are subject to intensity variations over individual solar cycles and also from cycle to cycle. Particle propagation is controlled by spatially and temporally varying interplanetary magnetic fields, frozen into the solar wind. An overview is presented of the main heliospheric components and processes, and also of the relevant missions and data sets. Particular attention is given to flux variations over the last few solar cycles, and to extrapolated effects on the terrestrial environment.  相似文献   

4.
Differential energy spectra of low abundant elements between silicon and iron of energetic solar particles (SEP) in the August 4, 1972 event were measured in the energy region of 10 to 40 MeV amu–1 using rocket-borne Lexan detectors. The relative abundances of elements were determined and abundance enhancements, i.e., SEP/photospheric ratios, and their energy dependence were derived in 10–40 MeV amu–1 interval. It is found that there are four types of abundance enhancements as a function of energy as follows: (a) silicon, iron, and calcium show fairly strong energy dependence which decreases with increasing energy and at 20–40 MeV amu–1 reaches photospheric values; (b) in case of sulphur enhancement factors are independent of energy and the values are close to unity; (c) argon shows energy independent enhancements of about 3 to 4 in 10–40 MeV amu–1; (d) titanium and chromium show weakly energy-dependent, but very high abundance enhancement factor of about 10 to 40. These features are to be understood in terms of the atomic properties of these elements and on the physical conditions in the accelerating region. These are important not only for solar phenomena but also to gain insight into the abundance enhancements of cosmic-ray heavy nuclei.on leave from Tata Institute of Fundamental Research, Bombay, India.  相似文献   

5.
The relationship between the proton intensity in the interplanetary space and radio bursts of type II for 78 proton events for the period of 1989–2005 is studied based on the data of the Radio Solar Telescope Network. Two families of events have been revealed in plots describing the dependence of the intensity of protons with different energies and the rate of the frequency drift of meter-decameter radio bursts. This suggests the generation of shock waves both in the region of flare energy release and at the fronts of coronal mass ejection.  相似文献   

6.
The origin of a large co-rotating solar particle event in August, 1970, is discussed. Proton data from spacecraft at five widely separated heliocentric longitudes are used to identify two distinct release points which are over 100° apart in solar longitude. Optical flare data shows a high incidence of time-overlapping flares between plage regions close to the two release points, indicating a good connection between them. Unusual X-ray and radio emissions are also observed from these regions. The spectrum of the relativistic electrons in the co-rotating particle event is represented by a power law with index γ ≈ ?4, considerably steeper than that usually observed from a solar flare. It is concluded that there is a large magnetic loop structure connecting points over 100° apart on the Sun which is able to trap energetic protons and electrons from an earlier solar flare. Subsequent release of these particles establishes an intense, long-lived co-rotating event.  相似文献   

7.
Abstract We present Kr and Xe isotope data obtained by closed system stepped etching of ilmenite separates from two lunar samples exposed to the solar corpuscular radiation at different epochs. Helium, neon, and argon in the same samples were reported to consist of two components: isotopically unfractionated solar wind (SW) released in the first steps, and an isotopically heavier component (SEP) released later and, thus, sited at larger depth. The same release characteristic is now observed for the heavy noble gases. We also conclude that solar Kr and Xe consist of two isotopically different components, implanted with different energies. The SW-Kr in a recently irradiated soil has a composition very close to atmospheric Kr, which agrees with other newly reported data from stepped etch- and combustion runs. No clear evidence for temporally variable SW-Kr or SW-Xe spectra was found. “Surface correlated” Kr and Xe components “SUCOR” and “BEOC 12001” are a mixture of SW and SEP. The isotopic fractionation factors relating SW and SEP are close to the square of the mass ratios for all five noble gases. We infer that the measured Kr/Xe ratio in ilmenite is essentially identical to this ratio in the solar corpuscular radiation.  相似文献   

8.
Crank-Nicholson solutions are obtained to the time-dependent Fokker-Planck equation for propagation in the interplanetary medium following a point in time injection of energetic solar particles and including the acceleration terms $$\frac{\partial }{{\partial T}}\left( {D_{TT} \frac{{\partial U}}{{\partial T}}} \right) - \frac{\partial }{{\partial T}}\left( {\frac{{D_{TT} U}}{{2T}}} \right)$$ . The diffusion coefficient in kinetic energyD TT is allowed to be either independent of radial distance,R(AU), or follow the lawD TT=D0T2R 0 2 /(A2+R2) in either case with the 1 AU value ofD TT at 10 MeV ranging between 10?4 (MeV)2 s?1 and zero. The spatial diffusion mean free path at the Earth's orbit is fixed at λ AU at 10 MeV according to numerical estimates made by Moussas and Quenby. However, a variety ofR dependences are allowed. Reasonable agreement with experimental data out to 4 AU is obtained with the above values ofD TT and the spatial diffusion coefficientK r=K0R?2 forR«1 andK r=K0R0.4 forR»1 AU. It is only in the decay phases of prompt events as seen at 2–4 AU that significant differences in the temporal behaviour of the events can be distinguished, depending on the value ofD TT chosen within the above range. Experimental determination of the decay constant is difficult.  相似文献   

9.
Yung Mok 《Solar physics》1985,95(1):181-188
The microscopic stability of an electron stream flowing down to the photosphere from the corona is examined. It is found that, while a power-law distribution is stable in the low-density corona, it is unstable against the generation of magnetized electron plasma waves in the high-density photosphere. The scattering of these energetic electrons may alter their radiation signatures.  相似文献   

10.
A new series of solar flare energetic X-ray events has been detected by an ionization chamber on the OGO-I and OGO-III satellites in free space. These X-rays lie in the range 10–50 keV, and a study has been made of their relationship to 3 and 10 cm radio bursts and with the emission of electrons and protons observed in space. The onset times, times of maximum intensity and total duration are very similar for the radio and X-ray emission. Also, the average decay is similar and usually follows an exponential type behavior. However, this good correlation applies most often to the flash phase of flares, whereas subsequent surges of activity from the same eruption may produce microwave emission or further X-ray bursts not closely correlated. An approximate proportionality is found between the total energy content of the X-rays and of the 3 and 10 cm integrated radio fluxes. These measurements suggest that the X-ray and microwave emission have a common energizing process which determines the time profile of both. The recording of electrons greater than 40 keV by the Interplanetary Monitoring Probe (IMP satellite) has been found to correlate very well with flares producing X-ray and microwave emission provided the propagation path to the sun is favorable. There is evidence that the acceleration of solar protons may not be closely associated with the processes responsible for the production of microwaves, X-rays, and interplanetary electrons.The OGO ionization chamber responds to energies (10–50 keV) intermediate between the soft X-rays giving SID disturbances (1–10 keV) and energetic quanta previously measured with balloons (50–500 keV). Proposed source mechanisms should be capable of covering this range of energies including the most energetic quanta occasionally observed.  相似文献   

11.
Abstract— We report mass‐spectrometric measurements of light noble gases pyrolytically extracted from 28 interplanetary dust particles (IDPs) and discuss these new data in the context of earlier analyses of 44 IDPs at the University of Minnesota. The noble gas database for IDPs is still very sparse, especially given their wide mineralogic and chemical variability, but two intriguing differences from isotopic distributions observed in lunar and meteoritic regolith grains are already apparent. First are puzzling overabundances of 3He, manifested as often strikingly elevated 3He/4He ratios—up to >40x the solar‐wind value—‐and found primarily but not exclusively in shards of some of the larger IDPs (“cluster particles”) that fragmented on impact with the collectors carried by high‐altitude aircraft. It is difficult to attribute these high ratios to 3He production by cosmic‐ray‐induced spallation during estimated space residence times of IDPs, or by direct implantation of solar‐flare He. Minimum exposure ages inferred from the 3He excesses range from ~50 Ma to an impossible >10 Ga, compared to Poynting‐Robertson drag lifetimes for low‐density 20–30 μm particles on the order of ~0.1 Ma for an asteroidal source and ~10 Ma for origin in the Kuiper belt. The second difference is a dominant contribution of solar‐energetic‐particle (SEP) gases, to the virtual exclusion of solar‐wind (SW) components, in several particles scattered throughout the various datasets but most clearly and consistently observed in recent measurements of a group of individual and cluster IDPs from three different collectors. Values of the SEP/SW fluence ratio in interplanetary space from a simple model utilizing these data are ~1% of the relative SEP/SW abundances observed in lunar regolith grains, but still factors of approximately 10–100 above estimates for this ratio in low‐energy solar particle emission.  相似文献   

12.
S. R. Kane 《Solar physics》1982,113(1-2):145-164
The propagation, cofinement and total energy of energetic (>25 keV) electrons in solar flares are examined through a brief review of the following hard X-ray measurements: (1) spatially resolved observations obtained by imaging instruments; (2) stereoscopic observations of partially occulted sources providing radial (vertical) spatial resolution; and (3) directivity of the emission measured through stereoscopic observations and the center-to-limb variation of the occurrence frequency of hard X-ray flares. The characteristics of the energetic electrons are found to be quite distinct in impulsive and gradual hard X-ray flares. In impulsive flares the non-thermal electron spectrum seems to extend down to 2 keV indicating that the total energy of non-thermal electrons is much larger than that assumed in the past.  相似文献   

13.
Kane  S. R. 《Solar physics》1987,113(1-2):145-164
Solar Physics - The propagation, cofinement and total energy of energetic (>25 keV) electrons in solar flares are examined through a brief review of the following hard X-ray measurements:...  相似文献   

14.
Energetic particle response in electromagnetic fields of ULF HM-waves in the magnetosphere is reviewed. Pc4–5 geomagnetic pulsations observed at the synchronous altitude are classified into three types, in respect to their major magnetic field polarization in different directions, local time dependence, and different characteristics of accompanied flux modulations of energetic particles, i.e., two nearly transverse waves with the azimuthal and the radial polarization, and the compressional stormtime pulsations. Firstly, we formulate the drift kinetic theory of particle flux modulations under the constraint of the magnetic moment conservation. A generalized energy integral of the particle motion interacting with a ULF-wave with the three-dimensional structure propagating to the azimuthal direction is obtained in the L-shell coordinate of a mirror magnetic field. Its linearized form is reduced to the same form as the previously derived energy change, including the bounce-drift resonant interaction. It is shown that the perturbed guiding center distribution function of energetic particles consists of four contributions, the adiabatic mirror effect corresponding to pitch-angle change, the kinetic effects due to energy change and the accompanying L-shell displacement, and the bounceaveraged drift phase bunching. Secondly, the basic HM-wave modes constitutingcoupling ULF oscillations in non-uniform plasmas are discussed in different models of approach for different plasma states. The diamagnetic drift Alfvén wave and the compressional drift wave with a larger azimuthal mode number in a high-beta plasma are candidates for the stormtimes pulsations. The former is intrinsically a guided localized mode, while the latter is a non-localized mode. By making use of the above preparation, we apply the developed drift kinetic theory to interpret the phase relationships between the ion flux modulation and the geomagnetic pulsation in some selected examples of observations, demonstrating a fair agreement in theoretical results with the observations.  相似文献   

15.
Power-law distribution for solar energetic proton events   总被引:1,自引:0,他引:1  
Analyses of the time-integrated fluxes of solar energetic particle events during the period 1965–1990 show that the differential distribution of events with flux F is given by a power law, with indices between 1.2 and 1.4 depending on energy. The power law represents a good fit over three to four orders of magnitude in fluence. Similar power-law distributions have been found for peak proton and electron fluxes, X-ray flares and radio and type III bursts. At fluences greater than 109 cm–2, the slope of the distribution steepens and beyond 1010 cm–2 the power-law index is estimated to be 3.5. At energies greater than 10 MeV, the slope of the distribution was found to be essentially independent of solar cycle, when the active years of solar cycles 20, 21, and 22 were analysed. The results presented are the first for a complete period of 27 years, covering nearly 3 complete solar cycles. Other new aspects of the results include the invariance of the exponent with solar cycle and also with integral energy.  相似文献   

16.
Abstract— Helium and neon isotope ratios were determined for 16 interplanetary dust particles (IDPs) collected in the stratosphere. The concentration of helium observed varied greatly from particle to particle, with the highest values approaching those found for lunar surface fines and some gas-rich meteorites. With the exception of one particle, for which the 3He/4He was (1.45 ± 0.05) × 10?3, the remainder of the particles had ratios falling between 1.4 and 3.1 × 10?4, with an average of (2.4 ± 0.3) × 10?4, substantially less than is associated with the solar wind or observed in average lunar fines or in lunar fines having sizes comparable to those of the IDPs studied. The average 20Ne/22Ne found was 12.0 ± 0.5. Only three reasonably reliable 21Ne/22Ne ratios could be determined, and for these the average was 0.035 ± 0.006. The isotopic ratios appear to preclude the presence of any appreciable amount of cosmic ray-produced spallogenic products. The high 4He concentrations observed for some of the particles, approaching those observed for lunar surface grains, suggest they were not heated to high temperatures and degassed as they descended in the earth's atmosphere. From Flynn's study of the dynamics of IDPs entering the earth's atmosphere this could mean they entered the atmosphere at relatively low velocities, and hence may be primarily of asteroidal rather than cometary origin.  相似文献   

17.
Multiple energetic injections in a strong spike-like solar burst   总被引:1,自引:0,他引:1  
An intense and fast spike-like solar burst was observed with high sensitivity in microwaves and hard X-rays, on December 18,1980, at 19h21m20s UT. It is shown that the burst was built up of short time scale structures superimposed on an underlying gradual emission, the time evolution of which showed remarkable proportionality between hard X-ray and microwave fluxes. The finer time structures were best defined at mm-microwaves. At the peak of the event the finer structures repeat every 30–60 ms (displaying an equivalent repetition rate of 16–20 s-1). The more slowly varying component with a time scale of about 1 s was identified in microwaves and hard X-rays throughout the burst duration. Similarly to what has been found for mm-microwave burst emission, we suggest that X-ray fluxes might also be proportional to the repetition rate of basic units of energy injection (quasi-quantized). We estimate that one such injection produces a pulse of hard X-ray photons with about 4 × 1021 erg, for 25 keV. We use this figure to estimate the relevant parameters of one primary energy release site both in the case where hard X-rays are produced primarily by thick-target bremsstrahlung, and when they are purely thermal, and also discuss the relation of this figure to global energy considerations. We find, in particular, that a thick-target interpretation only becomes possible if individual pulses have durations larger than 0.2 s.  相似文献   

18.
A model is developed to account for the release of solar cosmic rays from the Sun. The solar atmosphere out to 3–5 solar radii above the photosphere is permeated with magnetic field lines which trap low rigidity ( 50 MV) flare particles. Plasma heated by the flare process disturbs the trapping field, and not until the disturbance reaches 3–5 solar radii can the low rigidity flare particles have access to interplanetary space. If the plasma is not heated sufficiently to overcome the coronal field, flare particles are trapped, efficiently. Subsequent leakage of these particles into interplanetary space forms corotating streams. Reference is made to satellite observations of solar electromagnetic radiation and charged particles.  相似文献   

19.
The longitudinal changes in drift velocity and bounce period are obtained using two theorems on magnetic flux conservation. As a consequence radial diffusion due to pitch-angle scattering is derived. The use of the same analytical model enables the comparison of this process with radial diffusion due to compressions of the magnetosphere. The two processes are competitive for intermediate colatitudes.  相似文献   

20.
The year 1991 is a part of the declining phase of the solar cycle 22, during which high energetic flares have been produced by active regions NOAA/USAF 6659 in June. The associated solar proton events have affected the Earth environment and their proton fluxes have been measured by GOES space craft. The evaluation of solar activity during the first half of June 1991, have been carried out by applying a method for high energetic solar flares prediction on the flares of June 1991. The method depends on cumulative summation curves according to observed H-alpha flares, X-ray bursts, in the active region 6659 during one rotation when the energetic solar flares of June 1991 have occurred. It has been found that the steep trend of increased activity sets on several tens of hours prior to the occurrence of the energetic flare, which can be used, together with other methods, for forecasts of major flares. All the used data at the present work are received from NOAA, Boulder, Colorado, USA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号