首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
赣中变质岩带的组成及构造变质变形特征   总被引:1,自引:0,他引:1  
赣中变质岩带不是简单的一套震旦纪地层 ,而是由结晶基底中元古界中深变质岩系 (斜长角闪岩的Sm Nd全岩等时线年龄为 1113± 4 9Ma)和褶皱基底变质较浅的震旦系组成。两者之间以具热流体参与的混合岩化、韧性剪切带和递进变质三位一体组成的动热变质带接触。结晶基底经历了4期构造变质变形的叠加改造 ,每期构造变形都在变质岩石构造单元内留下各种变形形迹 ,变质作用表现为时间上的递进和空间上的叠加演化系列 ,是一套以众多的不平衡结构和多相共生混存的矿物组合 ,热变质带为一套动热变质塑性变形带 ,空间上依次形成绢云母—绿泥石带、黑云母带、石榴石带、十字石带以及夕线石带  相似文献   

2.
浙西南八都群泥质麻粒岩的变质演化与pT轨迹   总被引:2,自引:0,他引:2  
浙西南古元古界八都群是目前华夏地块最古老的变质基底,以往研究认为其变质程度仅达角闪岩相。近来在对遂昌地区八都群富铝片麻岩的研究过程中,发现了具有"石榴石+夕线石+正/反条纹长石+黑云母"特征组合的泥质麻粒岩,表明该地体曾经历麻粒岩相变质改造。通过岩相学与矿物化学分析,确定该岩石经历了3个阶段的演化过程,即:早期进变质阶段(M1),形成"石榴石+黑云母+白云母+夕线石+斜长石+石英"的矿物组合;变质峰期阶段(M2-3),形成"石榴石+夕线石+三元长石+黑云母+石英"的矿物组合;峰期后降压冷却阶段(M4),形成"黑云母+白云母+新生斜长石+石英"的矿物组合。岩石中石榴石普遍发育与降温过程有关的扩散成分环带和与降压过程有关的斜长石后生合晶。通过石榴石-黑云母温度计和GASP压力计估算变质峰期的温压条件为800~850℃、0.6~0.7 GPa,峰期后退变质阶段的温压条件为560~590℃、0.25~0.33 GPa,具有顺时针样式的pT演化轨迹,反映一种陆壳碰撞增厚、后又拉伸减薄的动力学过程。  相似文献   

3.
Pelitic schists from contact aureoles surrounding mafic–ultramafic plutons in Westchester County, NY record a high‐P (~0.8 GPa) high‐T (~790 °C) contact overprint on a Taconic regional metamorphic assemblage (~0.5 GPa). The contact metamorphic assemblage of a pelitic sample in the innermost aureole of the Croton Falls pluton, a small (<10 km2) gabbroic body, consists of quartz–plagioclase–biotite–garnet–sillimanite–ilmenite–graphite–Zn‐rich Al‐spinel. Both K‐feldspar and muscovite are absent, and abundant biotite, plagioclase, sillimanite, quartz and ilmenite inclusions are found within subhedral garnet crystals. Unusually low bulk‐rock Na and K contents imply depletion of alkalic components and silica through anatexis and melt extraction during contact heating relative to typical metapelites outside the aureole. Thermobarometry on nearby samples lacking a contact overprint yields 620–640 °C and 0.5–0.6 GPa. In the aureole sample, WDS X‐ray chemical maps show distinct Ca‐enriched rims on both garnet and matrix plagioclase. Furthermore, biotite inclusions within garnet have significantly higher Mg concentration than matrix biotite. Thermobarometry using GASP and garnet–biotite Mg–Fe exchange equilibria on inclusions and adjacent garnet host interior to the high‐Ca rim zone yield ~0.5 ± 0.1 GPa and ~620 ± 50 °C. Pairs in the modified garnet rim zone yield ~0.9 ± 0.1 GPa and ~790 ± 50 °C. Thermocalc average P–T calculations yield similar results for core (~0.5 ± ~0.1 GPa, ~640 ± ~80 °C) and rim (~0.9 ± ~0.1 GPa, ~800 ± ~90 °C) equilibria. The core assemblages are interpreted to record the P–T conditions of peak metamorphism during the Taconic regional event whereas the rim compositions and matrix assemblages are interpreted to record the P–T conditions during the contact event. The high pressures deduced for this later event are interpreted to reflect loading due to the emplacement of Taconic allochthons in the northern Appalachians during the waning stages of regional metamorphism (after c. 465 Ma) and before contact metamorphism (c. 435 Ma). In the absence of contact metamorphism‐induced recrystallization, it is likely that this regional‐scale loading would remain cryptic or unrecorded.  相似文献   

4.
A combined metamorphic and isotopic study of lit‐par‐lit migmatites exposed in the hanging wall of the Main Central Thrust (MCT) from Sikkim has provided a unique insight into the pressure–temperature–time path of the High Himalayan Crystalline Series of the eastern Himalaya. The petrology and geochemistry of one such migmatite indicates that the leucosome comprises a crystallized peraluminous granite coexisting with sillimanite and alkali feldspar. Large garnet crystals (2–3 mm across) are strongly zoned and grew initially within the kyanite stability field. The melanosome is a biotite–garnet pelitic gneiss, with fibrolitic sillimanite resulting from polymorphic inversion of kyanite. By combining garnet zoning profiles with the NaCaMnKFMASHTO pseudosection appropriate to the bulk composition of a migmatite retrieved from c. 1 km above the thrust zone, it has been established that early garnet formed at pressures of 10–12 kbar, and that subsequent decompression caused the rock to enter the melt field at c. 8 kbar and c. 750 °C, generating peritectic sillimanite and alkali feldspar by the incongruent melting of muscovite. Continuing exhumation resulted in resorption of garnet. Sm–Nd growth ages of garnet cores and rim, indicate pre‐decompression garnet growth at 23 ± 3 Ma and near‐peak temperatures during melting at 16 ± 2 Ma. This provides a decompression rate of 2 ± 1 mm yr?1 that is consistent with exhumation rates inferred from mineral cooling ages from the eastern Himalaya. Simple 1D thermal modelling confirms that exhumation at this rate would result in a near‐isothermal decompression path, a result that is supported by the phase relations in both the melanosome and leucosome components of the migmatite. Results from this study suggest that anatexis of Miocene granite protoliths from the Himalaya was a consequence of rapid decompression, probably in response to movement on the MCT and on the South Tibetan detachment to the north.  相似文献   

5.
During the Late Palaeozoic Variscan Orogeny, Cambro‐Ordovician and/or Neoproterozoic metasedimentary rocks of the Albera Massif (Eastern Pyrenees) were subject to low‐pressure/high‐temperature (LPHT) regional metamorphism, with the development of a sequence of prograde metamorphic zones (chlorite‐muscovite, biotite, andalusite‐cordierite, sillimanite and migmatite). LPHT metamorphism and magmatism occurred in a broadly compressional tectonic regime, which started with a phase of southward thrusting (D1) and ended with a wrench‐dominated dextral transpressional event (D2). D1 occurred under prograde metamorphic conditions. D2 started before the P–T metamorphic climax and continued during and after the metamorphic peak, and was associated with igneous activity. P–T estimates show that rocks from the biotite‐in isograd reached peak‐metamorphic conditions of 2.5 kbar, 400 °C; rocks in the low‐grade part of the andalusite‐cordierite zone reached peak metamorphic conditions of 2.8 kbar, 535 °C; rocks located at the transition between andalusite‐cordierite zone and the sillimanite zone reached peak metamorphic conditions of 3.3 kbar, 625 °C; rocks located at the beginning of the anatectic domain reached peak metamorphic conditions of 3.5 kbar, 655 °C; and rocks located at the bottom of the metamorphic series of the massif reached peak metamorphic conditions of 4.5 kbar, 730 °C. A clockwise P–T trajectory is inferred using a combination of reaction microstructures with appropriate P–T pseudosections. It is proposed that heat from asthenospheric material that rose to shallow mantle levels provided the ultimate heat source for the LPHT metamorphism and extensive lower crustal melting, generating various types of granitoid magmas. This thermal pulse occurred during an episode of transpression, and is interpreted to reflect breakoff of the underlying, downwarped mantle lithosphere during the final stages of oblique continental collision.  相似文献   

6.
点苍山变质杂岩新生代变质-变形演化及其区域构造内涵   总被引:3,自引:2,他引:1  
点苍山变质杂岩体是哀牢山-红河韧性剪切带四个变质杂岩体之一,遭受了多期多阶段变质-变形作用改造。本文重点针对点苍山杂岩的新生代变质-变形作用,尤其是以富铝质高级变质岩即夕线石榴黑云片麻岩和侵位于其中的糜棱岩化细晶花岗质岩石开展了深入研究。对夕线石榴黑云片麻岩的显微构造分析与矿物共生组合研究,确定了高角闪岩相和低角闪岩相变质矿物共生组合,分别为:石榴石(Grt)+夕线石(Sil)+钾长石(Kfs)+黑云母(Bi)+斜长石(Pl)±石英(Q)和夕线石(Sil)+白云母(Ms)+黑云母(Bi)+石英(Q)。对其中的变质锆石进行SHRIMP U-Pb测试,获得了新生代三个阶段的变质作用年龄,即54.2±1.7Ma、31.5±1.5Ma和27.5±1.2Ma.本文还深入研究了侵位于高级变质岩中的一个花岗岩质糜棱岩的宏观与显微构造特点,其LA-ICP-MS年龄为24.4±0.89Ma,代表着同剪切就位花岗质岩浆侵位和结晶年龄。夕线石榴黑云片麻岩中变质锆石从2150~27Ma多期多阶段表观年龄的发育,表明点苍山变质杂岩体具有复杂的构造演化史。点苍山杂岩的多阶段新生代构造-热演化归咎于印度-欧亚板块会聚与碰撞作用(约54Ma)、造山后伸展作用(大约40~30Ma)和沿着哀牢山-红河剪切带大规模左行走滑变形作用(约27~21Ma)。  相似文献   

7.
喜马拉雅结晶岩系中的石榴子石   总被引:1,自引:0,他引:1       下载免费PDF全文
高喜马拉雅地区广泛分布着一套结晶岩系,它是由前寒武系铁铝榴石-闪岩相的巴罗型区域变质岩系、混合岩和第三纪花岗岩组成。在我国境内聂拉木一带出露宽度达50公里。应思淮(1973)把这套岩系命名为珠穆朗玛群,张旗(1979)把它叫做聂拉木群。对于其中区域变质岩的变质带划分,存在不同的看法。  相似文献   

8.
Bulk chemical and mineral analyses were carried out on a progressiveseries of low-pressure metamorphic pelites and psammites ofthe Bavarian Forest. The variation of rock compositions in thelower grade (=sillimanite-K-feldspar) zone with coexisting biotite+sillimanite(+K-feldspar+quartz) is essentially the same as that in thehigher grade (=cordierite-K-feldspar) zone with coexisting biotite+cordierite±sillimanite(+K-feldspar+quartz), so that nearly isochemical conditionscan be assumed for the metamorphic processes. The two metamorphiczones are related to each other through the multivariant reaction: biotite+sillimanite+quartz = cordierite+K-feldspar+H2O, but analyses of coexisting biotites and cordierites indicatethat metamorphism continues to increase even within the cordierite-K-feldsparzone. This increase is signalized through a continuous shiftof the 3-phase AFM field cordierite-biotite-sillimanite fromMg-rich to more Fe-rich compositions according to the abovereaction. At the highest grade detected the coexistence of biotite+sillimanitein the presence of quartz+K-feldspar is discontinued in favourof cordierite+garnet. Comparison with other metamorphic areas exhibiting the sameAFM assemblages leads to the tenative conclusion that the shiftdetected here is mainly due to increasing temperatures of metamorphism,whereas increasing pressures would shift the 3-phase AFM fieldin the opposite direction, that is towards more Mg-rich compositions.Thus the position of the biotite-sillimanite-cordierite fieldwithin the AFM plot can be used as indicator of metamorphicconditions in seemingly similar cordierite-sillimanite-biotite-quartz-K-feldspargneisses of variable provenance. Assuming water pressure toequal total pressure the conditions that lead to the cordierite-potashfeldspar zone studied here are estimated as 2-3 kb, 650-700°C.  相似文献   

9.
18O/16O ratios have been obtained for 134 whole-rocks and minerals from metamorphic and granitic rocks of the Yanai district in the Ryoke belt, Southwest Japan. The 18O/16O ratios of pelitic rocks of the marginal metamorphic zone decrease progressively with increasing metamorphic grade. In the gneiss-granite complex (zone of migmatite [1]), the most characteristic feature of the rocks is that oxygen isotopic homogenization proceeds on both local and regional scales in parallel with “granitization” or chemical homogenization. Granitic rocks of various origin are fairly uniform in isotopic composition with δ 18O of quartz of 12 to 14‰ (SMOW) and δ 18O of biotite of 7 to 9‰ and are about 3 to 4‰ enriched in 18O compared to other Cretaceous granites of non-metamorphic terranes in Japan. The high 18O/16O ratios of granitic rocks of this district were discussed in relation to the 18O-depletion in metasediments. Oxygen isotopic fractionations among coexisting minerals from various rock-types of the gneiss-granite complex indicate that these minerals were formed under near isotopic equilibrium at a temperature of about 600 to 700° C. Some abnormal fractionations of quartz-biotite pairs also were obtained for rocks which had undergone a progressive 18O-depletion or 18O-enrichment. This is due to high resistivity of quartz and contrastive susceptibility of biotite to isotopic exchange during metamorphism and “granitization”.  相似文献   

10.
浙西南遂昌-大柘地区八都岩群在印支期变质事件影响下发生变质变形,通过详细野外调查和岩相学研究,可将其划分为3期变质变形序列:S1变形期,NW向片麻理记录的残留紧闭褶皱,共生矿物组合为石榴子石变斑晶及其内部定向分布的包裹体矿物,石榴子石+黑云母+石英(泥质)和石榴子石+角闪石+斜长石+石英(长英质);S2变形期,区域性宽缓褶皱及NE向缓倾透入性片麻理,共生矿物组合为石榴子石变斑晶及定向分布的基质矿物,矽线石+石榴子石+黑云母+石英+斜长石±钾长石(泥质)和石榴子石+钾长石+斜长石+黑云母+石英(长英质);S3变形期,NE向陡倾透入性片麻理及韧脆性断裂大部分被花岗斑岩脉填充,共生矿物组合为石榴子石变斑晶及其周围退变矿物,石榴子石+矽线石+堇青石+斜长石+黑云母+石英±钾长石(泥质)和角闪石+斜长石+黑云母+钛铁矿(长英质)。结合前人研究成果,八都岩群印支期变质事件峰期变质程度达到麻粒岩相,显示顺时针近等温降压(ITD)型的p-T演化轨迹,S1-S3变质变形反映出从俯冲碰撞到快速折返冷却的演化过程,伴随S3同期侵位的花岗斑岩锆石U-Pb定年结果,将该演化过程完成时间约束在229.7 Ma,可能是浙西南地区对印支期古特提斯洋域内印支-华南-华北板块之间俯冲-碰撞过程的响应。  相似文献   

11.
The South Karakorum margin, east of the Himalayan syntaxis, consist of an E–W elongated zone of young (10–3 Ma) high‐grade metamorphic rocks (M2) and related migmatitic domes. This late tectono‐metamorphic event post‐dates the Palaeogene (55–37 Ma) phase of thickening of the belt featured by NW–SE structures and associated M1 amphibolite facies metamorphism (0.7 GPa, 700 °C). This M2 metamorphism is characterised by low‐pressure, high‐temperature conditions coeval with migmatite formation in response to a thermal increase of c. 150 °C compared to M1, culminating at a temperature of c. 770 °C and a pressure of 0.5–0.6 GPa. Rapid exhumation of migmatitic domes, at a rate of 5 mm yr?1, was accommodated by vertical extrusion, in the core of E–W crustal‐scale folds. These crustal‐scale folds formed in response to N–S syn‐collisional shortening and were enhanced by thermal weakening of the migmatised continental crust. M2 metamorphism is spatially and temporarily associated with granitoids showing a mantle affinity, firmly suggesting that this could be the advective heat source for the granite and syenite generation and the subsequent migmatisation of the mid‐crustal level. Such relationships between a mantle‐related magmatism and a high‐temperature metamorphism in a convergent shortening context are suggestive of the breakoff of the subducted Indian slab since 20 Ma.  相似文献   

12.
A complete Barrovian sequence ranging from unmetamorphosed shales to sillimanite–K-feldspar zone metapelitic gneisses crops out in a region extending from the Hudson River in south-eastern New York state, USA, to the high-grade core of the Taconic range in western Connecticut. NNE-trending subparallel biotite, garnet, staurolite, kyanite, sillimanite and sillimanite–K-feldspar isograds have been identified, although the assignment of Barrovian zones in the high-grade rocks is complicated by the appearance of fibrolitic sillimanite at the kyanite isograd. Thermobarometric results and reaction textures are used to characterize the metamorphic history of the sequence. Pressure–temperature estimates indicate maximum metamorphic conditions of 475 °C, c. 3–4 kbar in the garnet zone to >720 °C, c. 5–6 kbar in the highest grade rocks exposed. Some samples in the kyanite zone record anomalous (low) peak conditions because garnet composition has been modified by fluid-assisted reactions. There is abundant petrographic and mineral chemical information indicating that the sequence (with the possible exception of the granulite facies zone) was infiltrated by a water-rich fluid after garnet growth was nearly completed. The truncation of fluid inclusion trails in garnet by rim growth or recrystallization, however, indicates that metamorphic reactions involving garnet continued subsequent to initial infiltration. The presence of these textures in some zones of a well-constrained Barrovian sequence allows determination of the timing of fluid infiltration relative to the P–T paths. Thermobarometric results obtained using garnet compositions at the boundary between fluid–inclusion-rich and inclusion-free regions of the garnet are interpreted to represent peak metamorphic conditions, whereas rim compositions record slightly lower pressures and temperatures. Assuming that garnet grew during a single metamorphic event, infiltration must have occurred at or slightly after the peak of metamorphism, i.e. 4–5 kbar and a temperature of c. 525–550 °C for staurolite and kyanite zone rocks.  相似文献   

13.
The early Precambrian khondalite series is widely distributed in the Jining-Zhuozi-Fengzhen-Liangcheng area, southeastern Inner Mongolia. The khondalite series mainly consists of sillimanite garnet potash feldspar (or two-feldspar) gneiss and garnet biotite plagioclase gneiss. These gneissic rocks have commonly experienced granulite-facies metamorphism. In zircons separated from sillimanite garnet potash feldspar gneisses, many mineral inclusions, including Sil, Grt, Ky, Kfs, Qtz and Ap, have been identified by the Laser Raman spectroscopy. Generally, prograde metamorphic mineral inclusion assemblages such as Ky + Kfs + Qtz + Ap and Ky + Grt + Kfs + Qtz are preserved in the core of zircon, while peak granulite-facies metamorphic minerals including Sil + Grt + Kfs + Qtz and Sil + Grt + Kfs + Qtz + Ap are identified in the mantle and rim of the same zircon. However, in some zircons are only preserved the peak metamorphic minerals such as Sil + Grt + Kfs + Qtz and Sil + Grt + Kfs + Qtz + Ap from core to ri  相似文献   

14.
The Leverburgh Belt and South Harris Igneous Complex in South Harris (northwest Scotland) experienced high-pressure granulite facies metamorphism during the Palaeoproterozoic. The metamorphic history has been determined from the following mineral textures and compositions observed in samples of pelitic, quartzofeldspathic and mafic gneisses, especially in pelitic gneisses from the Leverburgh Belt: (1) some coarse-grained garnet in the pelitic gneiss includes biotite and quartz in the inner core, sillimanite in the outer core, and is overgrown by kyanite at the rims; (2) garnet in the pelitic gneiss shows a progressive increase in grossular content from outer core to rims; (3) the AlVI/AlIV ratio of clinopyroxene from mafic gneiss increases from core to rim; (4) retrograde reaction coronas of cordierite and hercynite+cordierite are formed between garnet and kyanite, and orthopyroxene+cordierite and orthopyroxene+plagioclase reaction coronas develop between garnet and quartz; (5) a P–T path is deduced from inclusion assemblages in garnet and from staurolite breakdown reactions to produce garnet+sillimanite and garnet+sillimanite+hercynite with increasing temperature; and (6) in sheared and foliated rocks, hydrous minerals such as biotite, muscovite and hornblende form a foliation, modifying pre-existing textures. The inferred metamorphic history of the Leverburgh Belt is divided into four stages, as follows: (M1) prograde metamorphism with increasing temperature; (M2) prograde metamorphism with increasing pressure; (M3) retrograde decompressional metamorphism with decreasing pressure and temperature; and (M4) retrograde metamorphism accompanied by shearing. Peak P–T conditions of the M2 stage are 800±30 °C, 13–14 kbar. Pressure increasing from M1 to M2 suggests thrusting of continental crust over the South Harris belt during continent–continent collision. The inferred P–T path and tectonic history of the South Harris belt are different from those of the Lewisian of the mainland.  相似文献   

15.
The Fosdick migmatite–granite complex in West Antarctica records evidence for two high‐temperature metamorphic events, the first during the Devonian–Carboniferous and the second during the Cretaceous. The conditions of each high‐temperature metamorphic event, both of which involved melting and multiple melt‐loss events, are investigated using phase equilibria modelling during successive melt‐loss events, microstructural observations and mineral chemistry. In situ SHRIMP monazite and TIMS Sm–Nd garnet ages are integrated with these results to constrain the timing of the two events. In areas that preferentially preserve the Devonian–Carboniferous (M1) event, monazite grains in leucosomes and core domains of monazite inclusions in Cretaceous cordierite yield an age of c. 346 Ma, which is interpreted to record the timing of monazite growth during peak M1 metamorphism (~820–870 °C, 7.5–11.5 kbar) and the formation of garnet–sillimanite–biotite–melt‐bearing assemblages. Slightly younger monazite spot ages between c. 331 and 314 Ma are identified from grains located in fractured garnet porphyroblasts, and from inclusions in plagioclase that surround relict garnet and in matrix biotite. These ages record the growth of monazite during garnet breakdown associated with cooling from peak M1 conditions. The Cretaceous (M2) overprint is recorded in compositionally homogeneous monazite grains and rim domains in zoned monazite grains. This monazite yields a protracted range of spot ages with a dominant population between c. 111 and 96 Ma. Rim domains of monazite inclusions in cordierite surrounding garnet and in coarse‐grained poikiloblasts of cordierite yield a weighted mean age of c. 102 Ma, interpreted to constrain the age of cordierite growth. TIMS Sm–Nd ages for garnet are similar at 102–99 Ma. Mineral equilibria modelling of the residual protolith composition after Carboniferous melt loss and removal of inert M1 garnet constrains M2 conditions to ~830–870 °C and ~6–7.5 kbar. The modelling results suggest that there was growth and resorption of garnet during the M2 event, which would facilitate overprinting of M1 compositions during the M2 prograde metamorphism. Measured garnet compositions and Sm–Nd diffusion modelling of garnet in the migmatitic gneisses suggest resetting of major elements and the Sm–Nd system during the Cretaceous M1 overprint. The c. 102–99 Ma garnet Sm–Nd ‘closure’ ages correspond to cooling below 700 °C during the rapid exhumation of the Fosdick migmatite–granite complex.  相似文献   

16.
钟宏  徐士进 《矿物学报》1998,18(4):452-463
丹巴地区位于松潘—甘孜造山带中部。区域动热变质作用主要发生于印支晚期—喜马拉雅早期,与深层滑脱-逆冲作用有关。根据特征矿物组合.丹巴地区变质岩可划分出六个变质带:绢云母—绿泥石带、黑云母带、石榴子石带、十字石带、蓝晶石带和夕线石带。石榴子石生长环带代表每段时间矿物晶体边部的平衡,可用于推测石榴子石生长时的P-t轨迹。利用石榴子石—黑云母温度计和石榴子石—斜长石—Al2SiO5-石英压力计得到石榴子石的参考温度、压力,根据环带定量计算得到的变质作用p-t轨迹为顺时外形式,与其所处的构造背景为大陆碰撞造山带是一致的。  相似文献   

17.
通过对聂拉木高喜马拉雅结晶岩系石榴子石带-十字石带-蓝晶石带-夕线石带倒转变质的研究,认为除夕线石带以外的其它变质带主要由固相变质反应形成。夕线石的出现并非蓝晶石或十字石带递增变质所致。"倒转变质"不应包括所谓的夕线石带。实际上,夕线石化与深熔作用之后的溶液(或熔体)活动更为密切。时间顺序上应是递增变质作用及分带→深熔作用→夕线石化,夕线石的出现不是深熔作用的开始,而是深熔作用的结束。夕线石的形成主要与变形作用过程中黑云母和/或钾长石的分解及碱(土)金属组分的迁移有关,关键在于溶液(或熔体)组分沿裂隙迁移过程中发生的组分逐步沉淀,最早沉凝的Al、Si组分形成夕线石和石英,之后陆续有其它的组分的结晶;细夕线石粗粒化即进一步转化形成柱状夕线石的同时形成蠕英结构和斜长石生长边。夕线石化可能与深熔花岗(片麻)岩的上升过程有关。  相似文献   

18.
The Motuo area is located in the east of the Eastern Himalayan Syntaxis. There outcrops a sequence of high-grade metamorphic rocks, such as metapelites. Petrology and mineralogy data suggest that these rocks have experienced three stages of metamorphism. The prograde metamorphic mineral assemblages(M1) are mineral inclusions(biotite + plagioclase + quartz ± sillimanite ± Fe-Ti oxides) preserved in garnet porphyroblasts, and the peak metamorphic assemblages(M2) are represented by garnet with the lowest XSps values and the lowest XFe# ratios and the matrix minerals(plagioclase + quartz ± Kfeldspar + biotite + muscovite + kyanite ± sillimanite), whereas the retrograde assemblages(M3) are composed of biotite + plagioclase + quartz symplectites rimming the garnet porphyroblasts. Thermobarometric computation shows that the metamorphic conditions are 562–714°C at 7.3–7.4 kbar for the M1 stage, 661–800°C at 9.4–11.6 kbar for the M2 stage, and 579–713°C at 5.5–6.6 kbar for the M3 stage. These rocks are deciphered to have undergone metamorphism characterized by clockwise P-T paths involving nearly isothermal decompression(ITD) segments, which is inferred to be related to the collision of the India and Eurasia plates.  相似文献   

19.
ABSTRACT The Darjeeling-Sikkim region provides a classic example of inverted Himalayan metamorphism. The different parageneses of pelitic rocks containing chlorite, biotite, garnet, staurolite, kyanite, sillimanite, plagioclase and K-feldspar are documented by a variety of textures resulting from continuous and discontinuous reactions in the different zones. Microprobe data of coexisting minerals show that XMg varies in the order: garnet < staurolite < biotite < chlorite. White mica is a solid solution between muscovite and phengite. Garnet is mostly almandine-rich and shows normal growth zoning in the lower part of the Main Central Thrust (MCT) zone, and reverse zoning in the upper part of the zone. Chemographical relations and inferred reactions for different zones are portrayed in AFM space. In the low-grade zones oriented chlorites and micas and rolled garnets grew syntectonically, and were succeeded by cross-cutting chlorites and micas and garnet rims. In the upper zones sillimanite, kyanite and staurolite crystallized during a static inter-kinematic phase. P-T contitions of metamorphism, estimated through different models of geothermobarometry, are estimated to have been 580°c for the garnet zone to a maximum of 770°c for the sillimanite zone. The preferred values of pressure range from 5.0 kbar to 7.7 kbar. Models to explain the inverted metamorphism include overthrusting of a hot high Himalayan slab along a c. 5 km wide ductile MCT zone and the syn- or post-metamorphic folding of isograds.  相似文献   

20.
赣中变质岩带变质带的重新划分及变质作用P-T条件的确定   总被引:1,自引:0,他引:1  
根据随变质作用增强而出现的特征变质矿物及矿物组合,对赣中变质岩带重新划分出五个变质带,由低到高依次为绢云母一绿泥石带、黑云母带、铁铝榴石带、十字石带、夕线石带。在对各变质带变质矿物进行详细研究的基础上,采用石榴石-黑云母(Gt-Bi)、斜长石-角闪石(Pl-Hb)、石榴石-十字石(Gt-St)、石榴石-角闪石(Gt-Hb)、石榴石-斜长石-夕线石-石英(Gt-Pl-Sil-Q)、石榴石-斜长石-黑云母-白云母(Gt-Pl-Bi-Mu)等多种地质温压计确定了各变质带的形成温度、压力,绢云母-绿泥石带的形成温度为250-350℃,压力为0.25-0.35GPa;黑云母带的形成温度为350-450℃±,压力为0.25-0.40GPa±;铁铝榴石带的形成温度为450-550℃±,压力为0.40~0.60GPa±;十字石带的形成温度为550-600℃±,压力为0.50-0.60GPa±;夕线石带的形成温度为600-650℃±,压力为0.55-0.65GPa±,赣中变质岩带峰期变质作用已达到角闪岩相。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号