共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract— Depending on their velocity, entry angle and mass, micrometeorites suffer different degrees of heating during their deceleration in the Earth's atmosphere, leading, in most cases, to significant textural, mineralogical and chemical modifications. One of these modifications is the formation of a magnetite shell around most micrometeorites, which until now could not be reproduced, neither theoretically nor experimentally. The present study was designed to better understand the entry heating effects on micrometeorites and especially the formation of the magnetite shell. Fragments of the Murchison and Orgueil meteorites were used as analogue material in flash‐heating experiments performed in a high‐temperature furnace; effects of temperature, heating duration, and oxygen fugacity were investigated. These experiments were able to reproduce most of the micrometeorites textures, from the vesicular fine‐grained micrometeorites to the totally melted cosmic spherules. For the first time, the formation of a magnetite shell could be observed on micrometeorite analogues. We suggest that the most plausible mechanism for the formation of this shell is a peripheral partial melting with subsequent magnetite crystallization at the surface of the micrometeorite. Furthermore, with this study, it is possible to estimate the atmospheric entry conditions of micrometeorites, such as the peak temperature and the duration of flash‐heating. 相似文献
2.
Abstract— Depending on their velocity, entry angle and mass, extraterrestrial dust particles suffer certain degrees of heating during entry into Earth's atmosphere, and the mineralogy and chemical composition of these dust particles are significantly changed. In the present study, pulse-heating experiments simulating the atmospheric entry heating of micrometeoroids were carried out in order to understand the mineralogical and chemical changes quantitatively as well as to estimate the peak temperature experienced by the particles during entry heating. Fragments of the CI chondrites Orgueil and Alais as well as pyrrhotites from Orgueil were used as analogue material. The experiments show that the volatile elements S, Zn, Ga, Ge, and Se can be lost from 50 to 100 μm sized CI meteorite fragments at temperatures and heating times applicable to the entry heating of similar sized cosmic dust particles. It is concluded that depletions of these elements relative to CI as observed in micrometeorites are mainly caused by atmospheric entry heating. Besides explaining the element abundances in micrometeorites, the experimentally obtained release patterns can also be used as indicators to estimate the peak heating of dust particles during entry. Using the abundances of Zn and Ge and assuming their original concentrations close to CI, a maximum heating of 1100–1200 °C is obtained for previously analyzed Antarctic micrometeroites. Thermal alteration also strongly influenced the mineralogy of the meteorite fragments. While the unheated samples mainly consisted of phyllosilicates, these phases almost completely transformed into olivine and pyroxene in the fragments heated to ≥800 °C. Therefore, dust particles that still contain hydrous minerals were probably never heated to temperatures ≥800 °C in the atmosphere. During continued heating, the grain size of the newly formed silicates increased and the composition of the olivines equilibrated. Applying these results quantitatively to Antarctic micrometeorites, typical peak temperatures in the range of 1100–1200 °C during atmospheric entry heating are deduced. This temperature range corresponds to the one obtained from the volatile element concentrations measured in these micrometeorites and points to an asteroidal origin of the particles. 相似文献
3.
Basaltic micrometeorites (MMs) derived from HED‐like parent bodies have been found among particles collected from the Antarctic and from Arctic glaciers and are to date the only achondritic particles reported among cosmic dust. The majority of Antarctic basaltic particles are completely melted cosmic spherules with only one unmelted particle recognized from the region. This paper investigates the entry heating of basaltic MMs in order to predict the relative abundances of unmelted to melted basaltic particles and to evaluate how mineralogical differences in precursor materials influence the final products of atmospheric entry collected on the Earth's surface. Thermodynamic modeling is used to simulate the melting behavior of particles with compositions corresponding to eucrites, diogenites, and ordinary chondrites in order to evaluate degree of partial melting and to make a comparison between the behavior of chondritic particles that dominate the terrestrial dust flux and basaltic micrometeroids. The results of 120,000 simulations were compiled to predict relative abundances and indicate that the phase relations of precursor materials are crucial in determining the relative abundances of particle types. Diogenite and ordinary chondrite materials exhibit similar behavior, although diogenite precursors are more likely to form cosmic spherules under similar entry parameters. Eucrite particles, however, are much more likely to melt due to their lower liquidus temperatures and small temperature interval of partial melting. Eucrite MMs, therefore, usually form completely molten cosmic spherules except at particle diameters <100 μm. The low abundance of unmelted basaltic MMs compared with spherules, if statistically valid, is also shown to be inconsistent with a low velocity population (12 km s ?1) and is more compatible with higher velocities which may suggest a near‐Earth asteroid source dominates the current dust production of basaltic MMs. 相似文献
4.
The early stages of atmospheric entry are investigated in four large (250–950 μm) unmelted micrometeorites (three fine‐grained and one composite), derived from the Transantarctic Mountain micrometeorite collection. These particles have abundant, interconnected, secondary pore spaces which form branching channels and show evidence of enhanced heating along their channel walls. Additionally, a micrometeorite with a double‐walled igneous rim is described, suggesting that some particles undergo volume expansion during entry. This study provides new textural data which links together entry heating processes known to operate inside micrometeoroids, thereby generating a more comprehensive model of their petrographic evolution. Initially, flash heated micrometeorites develop a melt layer on their exterior; this igneous rim migrates inwards. Meanwhile, the particle core is heated by the decomposition of low‐temperature phases and by volatile gas release. Where the igneous rim acts as a seal, gas pressures rise, resulting in the formation of interconnected voids and higher particle porosities. Eventually, the igneous rim is breached and gas exchange with the atmosphere occurs. This mechanism replaces inefficient conductive rim‐to‐core thermal gradients with more efficient particle‐wide heating, driven by convective gas flow. Interconnected voids also increase the likelihood of particle fragmentation during entry and, may therefore explain the rarity of large fine‐grained micrometeorites among collections. 相似文献
5.
The atmospheric entry heating of micrometeorites (MMs) can significantly alter their pre‐existing mineralogy, texture, and organic material. The degree of heating depends predominantly on the gravity and atmospheric density of the planet on which they fall. For particles falling on Earth, the alteration can be significant, leading to the destruction of much of the pre‐entry organics; however, the weaker gravity and thinner atmosphere of Mars enhance the survival of MMs and increase the fraction of particles that preserve organic material. This paper investigates the entry heating of MMs on the Earth and Mars in order to examine the MM population on each planet and give insights into the survival of extraterrestrial organic material. The results show that particles reaching the surface of Mars experience a lower peak temperature compared to Earth and, therefore, experience less evaporative mass loss. Of the particles which reach the surface, 68.2% remain unmelted on Mars compared to only 22.8% on Earth. Due to evaporative mass loss, unmelted particles that reach the surface of Earth are restricted to sizes <70 μm whereas particles >475 μm survive unmelted on Mars. Approximately 10% of particles experience temperatures below ~800 K, that is, the sublimation temperature of refractory organics found in MMs. On Earth, this fraction is significantly lower with less than 1% expected to remain below this temperature. Lower peak temperatures coupled with the larger sizes of particles surviving without significant heating on Mars suggest a much higher fraction of organic material surviving to the Martian surface. 相似文献
6.
Abstract— We report the discovery of four large (>50 μm) cosmic spherules (CSs) and a single scoriaceous micrometeorite (SMM) that contain evidence for the separation of immiscible Fe-Ni-S liquids during atmospheric entry heating. The particles contain segregated Fe-rich regions dominated by either Ni-S-bearing Fe-oxides or iron sulphides and have textural relations that suggest these separated from the silicate portions of the particles as metallic liquids. The oxides, which may be hydrous, are thought to result from alteration of metal and sulphide. The compositions of the silicate portions of the CSs are equivalent to spherules without Fe-rich regions, implying that metallic liquids are exsolved during the heating of most spherules, but completely separate. The single SMM has a very different composition from other scoriaceous particles, and the occurrence of an exsolved metallic liquid probably indicates extreme reduction during entry heating. The pyrolysis of carbonaceous materials is the most likely explanation for reduction and suggests that the precursor material of this particle was unusually C-rich. This SMM might be, therefore, an appropriate candidate for a large melted anhydrous or smectite interplanetary dust particle (IDP). The exsolution of immiscible Fe-Ni-S liquids during entry heating will result in systematic changes in the compositions of the remaining silicate melt. 相似文献
7.
Abstract— Previous studies of unmelted micrometeorites (>50 μm) recovered from Antarctic ice have concluded that chondrules, which are a major component of chondritic meteorites, are extremely rare among micrometeorites. We report the discovery of eight micrometeorites containing chondritic igneous objects, which strongly suggests that at least a portion of coarse‐grained crystalline micrometeorites represent chondrule fragments. Six of the particles are identified as composite micrometeorites that contain chondritic igneous objects and fine‐grained matrix. These particles suggest that at least some coarse‐grained micrometeorites (cgMMs) may be derived from the same parent bodies as fine‐grained micrometeorites. The new evidence indicates that, contrary to previous suggestions, the parent bodies of micrometeorites broadly resemble the parent asteroids of chondrulebearing carbonaceous chondrites. 相似文献
8.
Abstract— Due to their small size, the mineralogical and chemical properties of micrometeorites (MMs) are not representative of their parent bodies on the centimeter to meter scales that are used to define parent body groups through the petrological study of meteorites. Identifying which groups of MM are derived from the same type of parent body is problematic and requires particles to be rigorously grouped on the basis of mineralogical, textural, and chemical properties that reflect the fundamental genetic differences between meteorite parent bodies, albeit with minimal bias towards preconceived genetic models. Specifically, the interpretation of MMs requires a rigorous and meaningful classification scheme. At present the classification of MMs is, however, at best ambiguous. A unified petrological‐chemical classification scheme is proposed in the current study and is based on observations of several thousand MMs collected from Antarctic ice. 相似文献
9.
Abstract— Over 100 000 large interplanetary dust particles in the 50–500 μm size range have been recovered in clean conditions from ~600 tons of Antarctic melt ice water as both unmelted and partially melted/dehydrated micrometeorites and cosmic spherules. Flux measurements in both the Greenland and Antarctica ice sheets indicate that the micrometeorites deliver to the Earth's surface ~2000× more extraterrestrial material than brought by meteorites. Mineralogical and chemical studies of Antarctic micrometeorites indicate that they are only related to the relatively rare CM and CR carbonaceous chondrite groups, being mostly chondritic carbonaceous objects composed of highly unequilibrated assemblages of anhydrous and hydrous minerals. However, there are also marked differences between these two families of solar system objects, including higher C/O ratios and a very marked depletion of chondrules in micrometeorite matter; hence, they are “chondrites-without-chondrules.” Thus, the parent meteoroids of micrometeorites represent a dominant and new population of solar system objects, probably formed in the outer solar system and delivered to the inner solar system by the most appropriate vehicles, comets. One of the major purposes of this paper is to discuss applications of micrometeorite studies that have been previously presented to exobiologists but deal with the synthesis of prebiotic molecules on the early Earth, and more recently, with the early history of the solar system. 相似文献
10.
Abstract— We report the discovery of presolar silicate, oxide (hibonite), and (possibly) SiC grains in four Antarctic micrometeorites (AMMs). The oxygen isotopic compositions of the eighteen presolar silicate (and one oxide) grains found are similar those observed previously in primitive meteorites and interplanetary dust particles, and indicate origins in oxygen‐rich red giant or asymptotic giant branch stars, or in supernovae. Four grains with anomalous C isotopic compositions were also detected. 12C/ 13C as well as Si ratios are similar to those of mainstream SiC grains; the N isotopic composition of one grain is also consistent with a mainstream SiC classification. Presolar silicate grains were found in three of the seven AMMs studied, and are heterogeneously distributed within these micrometeorites. Fourteen of the 18 presolar silicate grains and 3 of the 4 C‐anomalous grains were found within one AMM, T98G8. Presolar silicate‐bearing micrometeorites contain crystalline silicates that give sharp X‐ray diffractions and do not contain magnesiowüstite, which forms mainly through the decomposition of phyllosilicates and carbonates. The occurrence of this mineral in AMMs without presolar silicates suggests that secondary parent body processes probably determine the presence or absence of presolar silicates in Antarctic micrometeorites. 相似文献
11.
We study the thermal fields over Olympus Mons separating seasons (northern spring and summer against southern spring and summer) and local time observations (day side versus night side). Temperature vertical profiles retrieved from Planetary Fourier Spectrometer on board Mars Express (PFS-MEX) data have been used. In many orbits (running north to south along a meridian) passing over the top of the volcano there is evidence of a hot air on top of the volcano, of two enhancement of the air temperature both north and south of it and in between a collar of air that is colder than nearby at low altitudes, and warmer than nearby at high altitudes. Mapping together many orbits passing over or near the volcano we find that the hot air has the tendency to form an hot ring around it. This hot structure occurs mostly between LT = 10.00 and 15.00 and during the northern summer. Distance of the hot structure from the top of the volcano is about 600 km (10° of latitude). The hot atmospheric region is 300-420 km (5-7°) wide. Hot ring temperature contrasts of about 40 K occur at 2 km above the surface and decrease to 20 K at 5 km and to 10 K at 10 km. The atmospheric circulation over an area of 40° × 40° (latitudes and longitudes) is affected by the topography and the presence of Olympus Mons (−133°W, 18°N). We discuss also the thermal stability of the atmosphere over the selected area using the potential temperatures. The temperature field over the top of the volcano shows unstable atmosphere within 10 km from the surface. Finally, we interpret the hot temperatures around volcano as an adiabatic compression of down-welling branch coming from over the top of volcano.Different air temperature profiles are observed in the same seasons during the night, or in different seasons. In northern spring-summer during the night the isothermal contours do not show the presence of the volcano until we reach close to the surface very much, where a thermal inversion is observed. The surface temperature shows higher values (by 10 K) in correspondence of the scarp (an abrupt altimetry variation of roughly 5 km) on south (6°N) and north (30°N) sides of volcano. During the southern spring-summer, on the contrary the isothermal curves run parallel to the surface even on top the volcano, just like the GCM have predicted. 相似文献
12.
Cosmic spherules are unique igneous objects that form by melting due to gas drag heating during atmospheric entry heating. Vesicles are an important component of many cosmic spherules since they suggest their precursors had finite volatile contents. Vesicle abundances in spherules decrease through the series porphyritic, glassy, barred, to cryptocrystalline spherules. Anomalous hollow spherules, with large off‐center vesicles occur in both porphyritic and glassy spheres. Numerical simulation of the dynamic behavior of vesicles during atmospheric flight is presented that indicates vesicles rapidly migrate due to deceleration and separate from nonporphyritic particles. Modest rotation rates of tens of radians s ?1 are, however, sufficient to impede loss of vesicles and may explain the presence of small solitary vesicles in barred, cryptocrystalline and glassy spherules. Rapid rotation at spin rates of several thousand radians s ?1 are required to concentrate vesicles at the rotational axis and leads to rapid growth by coalescence and either separation or retention depending on the orientation of the rotational axis. Complex rapid rotations that concentrate vesicles in the core of particles are proposed as a mechanism for the formation of hollow spherules. High vesicle contents in porphyritic spherules suggest volatile‐rich precursors; however, calculation of volatile retention indicates these have lost >99.9% of volatiles to degassing prior to melting. The formation of hollow spherules, by rapid spin, necessarily implies preatmospheric rotations of several thousand radians s ?1. These particles are suggested to represent immature dust, recently released from parent bodies, in which rotations have not been slowed by magnetic damping. 相似文献
13.
Abstract— The elemental compositions of 200 interplanetary dust particles (IDPs) collected in the stratosphere have been determined by energy dispersive X-ray (EDX) analysis. The results reasonably define the normal compositional range of chondritic interplanetary dust particles averaging 10 micrometers in size, and constitute a database for comparison with individual IDPs, meteorites, and spacecraft data from comets and asteroids. The average elemental composition of all IDPs analyzed is most similar to that of CI chondrites, but the data show that there are small yet discernable differences between mean IDP composition and the CI norm. Individual particles were classified into broad morphological groups, and the two major groups show unambiguous compositional differences. The “porous” group is a close match to bulk CI abundances, but the “smooth” group has systematic Ca and Mg depletions, and contains stoichiometric “excess” oxygen consistent with the presence of hydrous phases. Similar depletions of Ca and Mg in CI and CM matrix have been attributed to leaching, and by analogy we suggest that particles in the smooth group have also been processed by aqueous alteration. The occurrence of carbonates, magnetite framboids, and layer silicates provides additional evidence that at least a significant number of the smooth-class IDPs have been substantially processed by aqueous activity. The presence or absence of aqueous modification in members of a particle sub-class is an important clue to the origin. Although it cannot be proven, we hypothesize that extensive aqueous activity only occurs in asteroids and that, accordingly, the smooth class of IDPs has an asteroidal origin. If both comets and asteroids are major sources of interplanetary dust, then by default the porous particles are inferred to be dominated by cometary material. 相似文献
14.
Abstract— Small particles 200 μm in diameter from the hydrous carbonaceous chondrites Orgueil CI, Murchison CM2, and Tagish Lake were experimentally heated for short durations at subsolidus temperatures under controlled ambient pressures in order to examine the bulk mineralogical changes of hydrous micrometeorites during atmospheric entry. The three primitive meteorites consist mainly of various phyllosilicates and carbonates that are subject to decomposition at low temperatures, and thus the brief heating up to 1000 °C drastically changed the mineralogy. Changes included shrinkage of interlayer spacing of saponite due to loss of molecular water at 400–600 °C, serpentine and saponite decomposition to amorphous phases at 600 and 700 °C, respectively, decomposition of Mg‐Fe carbonate at 600 °C, recrystallization of secondary olivine and Fe oxide or metal at 700–800 °C, and recrystallization of secondary low‐Ca pyroxene at 800 °C. The ambient atmospheric pressures controlled species of secondary Fe phase: taenite at pressures lower than 10 ?2 torr, magnesiowüstite from 10 ?3 to 10 ?1 torr, and magnetite from 10 ?2 to 1 torr. The abundance of secondary low‐Ca pyroxene increases in the order of Murchison, Orgueil, and Tagish Lake, and the order corresponds to saponite abundance in samples prior to heating. Mineralogy of the three unmelted micrometeorites F96CI024, kw740052, and kw740054 were investigated in detail in order to estimate heating conditions. The results showed that they might have come from different parental objects, carbonaterich Tagish Lake type, carbonate‐poor Tagish Lake or CI type, and CM type, respectively, and experienced different peak temperatures, 600, 700, and 800?900 °C, respectively, at 60–80 km altitude upon atmospheric entry. 相似文献
15.
Abstract– On the basis of morphological and petrographic characteristics, eight “giant” unmelted micrometeorites in the 300–1100 μm size range were selected from the Transantarctic Mountain micrometeorite collection, Victoria Land, Antarctica. Mineralogical and geochemical data obtained by means of scanning electron microscopy, electron probe microanalyses, and synchrotron X‐ray diffraction allow their classification as chondritic micrometeorites. The large size of the micrometeorites increases considerably the amount of mineralogical and geochemical information compared to micrometeorites in smaller size fractions, therefore allowing a better definition of their parent material. A large variety of material is observed: five micrometeorites are related to unequilibrated and equilibrated ordinary chondrite, one to CV chondrite, one to CM chondrite, and one to CI chondrite parent materials. Besides reporting the first occurrence of a CV‐like micrometeorite, our study shows that the abundance of chondritic material supports observations from recent studies on cosmic spherules that a large part of the micrometeorite flux in this size range is of asteroidal origin. 相似文献
16.
Retrievals performed on Cassini Composite Infrared Spectrometer data obtained during the distant Jupiter flyby in 2000/2001 have been used to generate global temperature maps of the planet in the troposphere and stratosphere, but to higher latitudes than were shown previously by Flasar et al. [Flasar, F.M., 39 colleagues, 2004a. Nature 427, 132-135; Flasar, F.M., 44 colleagues, 2004b. Space Sci. Rev. 115, 169-297]. Similar retrievals were performed on Voyager 1 IRIS data to provide the first detailed IRIS map of the stratosphere, and high latitudes in the troposphere. Thermal winds were calculated for each data set and show strong vertical shears in the zonal winds at low latitudes, and meridional temperature gradients indicate the presence of circumpolar jets, as well. The temperatures retrieved from the two spacecraft were also compared with yearly ground-based data obtained over the intervening two decades. Tropospheric temperatures reveal gradual changes at low latitudes, with little obvious seasonal or short-term variation [Orton et al., 1994. Science 265, 625-631]. Stratospheric temperatures show much more complicated behavior over short timescales, consistent with quasi-quadrennial oscillations at low latitudes, as suggested in prior analyses of shorter intervals of ground-based data [Orton et al., 1991. Science 252, 537-542; Friedson, A.J., 1999. Icarus 137, 34-55]. A scaling analysis indicates that meridional motions, mechanically forced by wave or eddy convergence, play an important role in modulating the temperatures and winds in the upper troposphere and stratosphere on seasonal and shorter timescales. At latitudes away from the equator, the mechanical forcing can be derived simply from a temporal record of temperature and its vertical derivative. Ground-based observations with improved vertical resolution and/or long-term monitoring from spacecraft are required for this purpose, though the Voyager and Cassini data given indications that the magnitude of the forcing is very small. 相似文献
17.
Abstract— In order to explore the nature and history of micrometeorites, we have measured the thermoluminescence (TL) properties of four micrometeorites, three cosmic spherules, and one irregular scoriaceous particle, that we found in a survey of 17 micrometeorites. These micrometeorites have TL sensitivities ranging from 0.017 ± 0.002 to 0.087 ± 0.009 (on a scale normalized to 4 mg of the H3.9 chondrite Dhajala). The four micrometeorites have very similar TL peak temperatures and TL peak widths, and these distinguish them from CI, most CM, CV, CO, and ordinary chondrites. However, the TL properties of these micrometeorites closely resemble those of the unusual CM chondrite MacAlpine Hills (MAC) 87300 and terrestrial forsterites. Heating experiments on submillimeter chips of a CM chondrite and a H5 chondrite suggest that these TL properties are have not been significantly affected by atmospheric passage. Thus we suggest that there is no simple linkage between these micrometeorites and the established meteorite classes, and that forsterite is an important component of these micrometeorites, as it is in many primitive solar system materials. 相似文献
18.
Abstract— Micrometeorites (MMs) currently represent the largest steady‐state mass flux of extraterrestrial matter to Earth and may have delivered a significant fraction of volatile elements and organics to the Earth's surface. Nitrogen and noble gases contents and isotopic ratios have been measured in a suite of 17 micrometeorites recovered in Antarctica (sampled in blue ice at Cap Prudhomme) and Greenland (separated from cryoconite) that have experienced variable thermal metamorphism during atmospheric entry. MMs were pyrolized using a CO 2 laser and the released gases were analyzed for nitrogen and noble gas abundances and isotopic ratios by static mass spectrometry after specific purification. Noble gases are a mixture of cosmogenic, solar, atmospheric, and possibly chondritic components, with atmospheric being predominant in severely heated MMs. δ 15N values vary between ?240 ± 62‰ and +206 ± 12‰, with most values being within the range of terrestrial and chondritic signatures, given the uncertainties. Crystalline MMs present very high noble gas contents up to two orders of magnitude higher than carbonaceous chondrite concentrations. In contrast, nitrogen contents between 4 ppm and 165 ppm are much lower than those of carbonaceous chondrites, evidencing either initially low N content in MMs and/or degradation of phases hosting nitrogen during atmospheric entry heating and terrestrial weathering. Assuming that the original N content of MMs was comparable to that of carbonaceous chondrites, the contribution of nitrogen delivery by these objects to the terrestrial environment would have been probably marginal from 3.8 Gyr ago to present but could have been significant (?10%) in the Hadean, and even predominant during the latest stages of terrestrial accretion. 相似文献
19.
Abstract— The mineral compositions of 250 micrometeorites have been studied and olivines and low-calcium pyroxenes with crystals larger than 5 μm have been analyzed. While magnesium-rich grains dominate, the Fa content of olivine may reach 50% and the Fs content of pyroxene may reach 26%. The Ca and Mn of the olivine show no consistent trends with increasing Fe, but Cr shows a negative correlation. For low-Ca pyroxene, Al and Cr contents are generally higher than in pyroxenes of equilibrated chondrites but similar to those of highly unequilibrated chondrites. Calcium-bearing pyroxene, feldspar and chromite are rare in the micrometeorites which were selected because of their high Mg, Si, Fe and their low Ca and Al content. All these minerals are found as coarse-grained particles often with adhering iron-rich scoria or as clasts in fine-grained or scoriaceous micrometeorites. Apart from a few particles which could be the debris of ordinary chondrites, most micrometeorites probably come from a common source similar, but not identical to carbonaceous chondrites, as shown by their lower Ni and S content and their different oxygen isotopic composition assuming two measurements performed on olivine grains prove to be typical. 相似文献
20.
The generic concept of the artificial meteorite experiment STONE is to fix rock samples bearing microorganisms on the heat shield of a recoverable space capsule and to study their modifications during atmospheric re-entry. The STONE-5 experiment was performed mainly to answer astrobiological questions. The rock samples mounted on the heat shield were used (i) as a carrier for microorganisms and (ii) as internal control to verify whether physical conditions during atmospheric re-entry were comparable to those experienced by “real” meteorites. Samples of dolerite (an igneous rock), sandstone (a sedimentary rock), and gneiss impactite from Haughton Crater carrying endolithic cyanobacteria were fixed to the heat shield of the unmanned recoverable capsule FOTON-M2. Holes drilled on the back side of each rock sample were loaded with bacterial and fungal spores and with dried vegetative cryptoendoliths. The front of the gneissic sample was also soaked with cryptoendoliths. The mineralogical differences between pre- and post-flight samples are detailed. Despite intense ablation resulting in deeply eroded samples, all rocks in part survived atmospheric re-entry. Temperatures attained during re-entry were high enough to melt dolerite, silica, and the gneiss impactite sample. The formation of fusion crusts in STONE-5 was a real novelty and strengthens the link with real meteorites. The exposed part of the dolerite is covered by a fusion crust consisting of silicate glass formed from the rock sample with an admixture of holder material (silica). Compositionally, the fusion crust varies from silica-rich areas (undissolved silica fibres of the holder material) to areas whose composition is “basaltic”. Likewise, the fusion crust on the exposed gneiss surface was formed from gneiss with an admixture of holder material. The corresponding composition of the fusion crust varies from silica-rich areas to areas with “gneiss” composition (main component potassium-rich feldspar). The sandstone sample was retrieved intact and did not develop a fusion crust. Thermal decomposition of the calcite matrix followed by disintegration and liberation of the silicate grains prevented the formation of a melt. Furthermore, the non-exposed surface of all samples experienced strong thermal alterations. Hot gases released during ablation pervaded the empty space between sample and sample holder leading to intense local heating. The intense heating below the protective sample holder led to surface melting of the dolerite rock and to the formation of calcium-silicate rims on quartz grains in the sandstone sample. 相似文献
|