首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The environment, such as an accretion disk, could modify the signal of the gravitational wave from astrophysical black hole binaries. In this article, we model the matter field around intermediatemass binary black holes by means of an axion-like scalar field and investigate their joint evolution. In detail, we consider equal mass binary black holes surrounded by a shell of axion-like scalar field both in spherically symmetric and non-spherically symmetric cases, and with different strengths of the scalar field. Our result shows that the environmental scalar field could essentially modify the dynamics. Firstly,in the spherically symmetric case, with increase of the scalar field strength, the number of circular orbits for the binary black hole is reduced. This means that the scalar field could significantly accelerate the merger process. Secondly, once the scalar field strength exceeds a certain critical value, the scalar field could collapse into a third black hole with its mass being larger than that of the binary. Consequently,the new black hole that collapses from the environmental scalar field could accrete the binary promptly and the binary collides head-on with each other. In this process, there is almost no quadrupole signal produced, and, consequently, the gravitational wave is greatly suppressed. Thirdly, when the scalar field strength is relatively smaller than the critical value, the black hole orbit could develop eccentricity through accretion of the scalar field. Fourthly, during the initial stage of the inspiral, the gravitational attractive force from the axion-like scalar field could induce a sudden turn in the binary orbits, hence resulting in a transient wiggle in the gravitational waveform. Finally, in the non-spherical case, the scalar field could gravitationally attract the binary moving toward the center of mass for the scalar field and slow down the merger process.  相似文献   

2.
Recently, Innaiah and Reddy (1985) obtained a flat Robertson-Walker-type solution for the Einstein field equations with the trace-free energy-momentum tensor of a conformally invariant scalar field as source. Here we show that the field equations force the scalar field to be independent of time. Furthermore, we obtain open and closed Robertson-Walker-type solutions and observe that, once again, the scalar field has to be independent of time.  相似文献   

3.
Using the third-order WKB approximation, we evaluate the quasinormal frequencies of massive scalar field perturbation around a black hole with quintessence-like matter and a deficit solid angle. The mass u of the scalar field plays an important role in studying the quasinormal frequencies. We find that as the scalar field mass increases when the other parameters are fixed, so do the real parts and the magnitudes of the imaginary parts of the quasinormal frequencies decrease. The imaginary parts are almost linearly related to the real parts.  相似文献   

4.
Exact analytical solutions are obtained for a higher dimensional spherically symmetric inhomogeneous metric in presence of a mass-less scalar field with a flat potential within the framework of Lyra geometry. Assuming a homogeneous scalar field, we have shown that the metric can be reduced to a generalized FRW type.  相似文献   

5.
In this paper, we constructed some cosmological models in five dimensional LRS Bianchi type-V space time based on general theory of relativity. Further, it is shown that source density of the meson field does not survive either in massive scalar field or in mass less scalar field. Some physical and geometrical properties of the models are discussed.  相似文献   

6.
We consider a spatially homogeneous and isotropic flat Robertson-Walker model filled with a scalar (or tachyonic) field minimally coupled to gravity in the framework of higher derivative theory. We discuss the possibility of the emergent universe with normal and phantom scalar fields (or normal and phantom tachynoic fields) in higher derivative theory. We find the exact solution of field equations in normal and phantom scalar fields and observe that the emergent universe is not possible in normal scalar field as the kinetic term is negative. However, the emergent universe exists in phantom scalar field in which the model has no time-like singularity at infinite past. The model evolves into an inflationary stage and finally admits an accelerating phase at late time. The equation of state parameter is found to be less than −1 in early time and tends to −1 in late time of the evolution. The scalar potential increases from zero at infinite past to a flat potential in late time. More precisely, we discuss the particular case for phantom field in detail. We also carry out a similar analysis in case of normal and phantom tachyonic field and observe that only phantom tachyonic field solution represents an emergent universe. We find that the coupling parameter of higher order correction affects the evolution of the emergent universe. The stability of solutions and their physical behaviors are discussed in detail.  相似文献   

7.
Two exact solutions of Einstein's field equations of vacuum are presented and investigated. We will regard the term vacuum fluid as the limiting case of scalar field with an almost constant potential. Considering the four velocity of this fluid we find, that in both solutions there is an anisotropic expansion of the cosmic fluid, but the fluid has vanishing vorticity.We investigate whether shear could prevent the transition into an inflationary era in these models, and the effect of shear on a scalar field is also considered. It is found that shear will speed up the rollover of the scalar field in some Bianchi type-VIII models.Possible initial conditions are discussed in light of the group structures of the models.  相似文献   

8.
This paper is part of a series based on a modified Jordan tensor-scalar theory of gravitation. Given the current importance of research on vacuum phenomena in cosmic evolution, we examine several standard cosmological models with a scalar field and a physical vacuum, including models that have a dominant scalar field with the vacuum energy taken into account in various conformal representations of the Jordan theory, as well as models in which ordinary matter that obeys the conventional equations of state is present. Some noteworthy results are obtained which are, to a certain extent, consistent with currently available observational data.  相似文献   

9.
The scalar field theory on the background of cosmological models with n(n ≥ 1) spaces of constant curvature is considered. We take the integrable case of Ricci flat internal spaces. The coupling between the scalar and the gravitational fields includes the minimal coupling as well as the conformal case. In the ground state of the scalar field we find the conditions for vacuum instability realized for most of the possible solutions to Einstein's equations if the coupling parameter takes appropriate values. For the excited states of the scalar field we show the induction of massive modes and discuss their properties.  相似文献   

10.
Teleparallel gravity is an equivalent formulation of general relativity in which instead of the Ricci scalar R, one uses the torsion scalar T for the Lagrangian density. Recently teleparallel dark energy has been proposed by Geng et al. (in Phys. Lett. B 704, 384, 2011). They have added quintessence scalar field, allowing also a non-minimal coupling with gravity in the Lagrangian of teleparallel gravity and found that such a non-minimally coupled quintessence theory has a richer structure than the same one in the frame work of general relativity. In the present work we are interested in tachyonic teleparallel dark energy in which scalar field is responsible for dark energy in the frame work of torsion gravity. We find that such a non-minimally coupled tachyon gravity can realize the crossing of the phantom divide line for the effective equation of state. Using the numerical calculations we display such a behavior of the model explicitly.  相似文献   

11.
In this work we have proposed a variable relation between densities of cosmic string. Bianchi type II,VIII and IX space time is explored in the context of general relativity. The field equations are solved by assuming that the shear scalar is proportional to expansion scalar. Three different cases are investigated. It is observed that strings contribute significantly in isotropy and acceleration of the universe.  相似文献   

12.
Massive scalar field quasinormal modes of black hole with a deficit solid angle are studied by using the third-order WKB approximation. From the numerical results obtained, we find that scalar field with higher mass u will oscillate more quickly but decay more slowly, while with larger deficit solid angle ε will oscillate and decay more slowly. Moreover, the imaginary parts of quasinormal frequencies are almost linearly related to the real parts with u and ε.  相似文献   

13.
We consider cosmological dynamics of a canonical bulk scalar field, which is coupled non-minimally to 5-dimensional Ricci scalar in a DGP setup. We show that presence of this non-minimally coupled bulk scalar field affects the jump conditions of the original DGP model significantly. Within a superpotential approach, we perform some numerical analysis of the model parameter space and consider bulk-brane energy exchange in this setup. Also we show that the normal, ghost-free branch of the DGP solutions in this case has the potential to realize a self-consistent phantom-like behavior and therefore explains late time acceleration of the universe in a consistent way.  相似文献   

14.
We consider a cosmological model in which a scalar field is non-minimally coupled to scalar torsion and a vector field through two coupling functions in the framework of teleparallel gravity. The explicit forms of the coupling functions and the scalar field potential are explored, under the assumption that the Lagrangian admits the Noether symmetry in the Friedmann–Lemaître–Robertson–Walker (FLRW) space–time. The existence of such symmetry allows to solve the equations of motion and achieve exact solutions of the scale factor, scalar and vector fields. It is found that the vector field contributes significantly in the accelerating expansion of the universe in the early times, while the scalar field plays an essential role in the late times.  相似文献   

15.
In this work, we have considered the spatially homogeneous and anisotropic Bianchi type-II universe filled with two interacting fluids; dark matter and holographic dark energy components. Assuming the proportionality relation between one of the components of shear scalar and expansion scalar which yields time dependent deceleration parameter, an exact solution to Einstein’s field equations in Bianchi type-II line element is obtained. We have investigated geometric and kinematics properties of the model and the behaviour of the holographic dark energy. It is observed that the mean anisotropic parameter is uniform through the whole evolution of the universe and the coincidence parameter increases with increasing time. The solutions are also found to be in good agreement with the results of recent observations. We have applied the statefinder diagnostics method to study the behaviour of different stages of the universe and to differentiate the proposed dark energy model from the ΛCDM model. We have also established a correspondence between the holographic dark energy model and the tachyon scalar field dark energy model. We have reconstructed the potential and the dynamics of the tachyon scalar field, which describes accelerated expansion of the universe.  相似文献   

16.
We examine the warm inflationary universe model in the presence of generalized cosmic Chaplygin gas and standard scalar field. We assume the generalized dissipative coefficient and corresponding weak and strong dissipative regimes. In this framework, we analyze the characteristics of inflationary dynamics under the slow-roll approximations. Under these approximations, we formulate the important inflationary parameters, such as scalar spectral index, scalar and tensor power spectrum, tensor-to-scalar ratio etc. It is interesting to note that our results for these inflationary parameters are well corroborated with the recent observational data like WMAP7, WMAP9 and Planck data.  相似文献   

17.
Homogeneous isotropic cosmological solutions are obtained for a de Sitter type of metric in the presence of a self-gravitating scalar field with cubic nonlinearity. Unlike the usual de Sitter case which is indefinitely expanding it is here interestingly found that in the presence of a nonlinear scalar field the model gives a bounce from a maximum of spatial volume. The possibility of bounce from a maximum, however, disappears when a linear scalar field is considered instead.  相似文献   

18.
Relativistic cosmological field equations are obtained for a Robertson-Walker space time interacting with viscous fluid and massive scalar field. The cosmological solutions to the field equations are obtained and the nature of the scalar field as well as the viscous fluid are studied. It is found that the solutions obtained are realistic only for a closed Universe. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
20.
The dynamics of a slowly rotating charged viscous-fluid Universe coupled with a zero-mass scalar field is investigated; and the rotational perturbations of such models are studied in order to substantiate the possibility that the Universe is endowed with slow rotation, in the course of presentation of several new analytic solutions. The effects of charged field and scalar field on the rotational motion are discussed. Except for perfect dragging, the scalar field as well as the charged field is found to have a damping effect on the rotation of matter. Rotating models which are expanding as well are obtained, in which cases the rotational velocities are found to decay with the time, and these models may be taken as good examples of real astrophysical situations. The periods of physical validity of different models are also obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号