首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The chemical evolution history of a galaxy hides clues about how it formed and has been changing through time. We have studied the chemical evolution history of the Milky Way (MW) and Andromeda (M31) to find which are common features in the chemical evolution of disc galaxies as well as which are galaxy-dependent. We use a semi-analytic multizone chemical evolution model. Such models have succeeded in explaining the mean trends of the observed chemical properties in these two Local Group spiral galaxies with similar mass and morphology. Our results suggest that while the evolution of the MW and M31 shares general similarities, differences in the formation history are required to explain the observations in detail. In particular, we found that the observed higher metallicity in the M31 halo can be explained by either (i) a higher halo star formation efficiency (SFE), or (ii) a larger reservoir of infalling halo gas with a longer halo formation phase. These two different pictures would lead to (i) a higher [O/Fe] at low metallicities, or (ii) younger stellar populations in the M31 halo, respectively. Both pictures result in a more massive stellar halo in M31, which suggests a possible correlation between the halo metallicity and its stellar mass.  相似文献   

2.
The Sculptor dwarf spheroidal galaxy has a giant branch with a significant spread in colour, symptomatic of an intrinsic age–metallicity spread. We present here a detailed study of the Sculptor giant branch and horizontal branch (HB) morphology, combining new near-infrared photometry from the Cambridge Infrared Survey Instrument (CIRSI), with optical data from the European Southern Observatory Wide Field Imager. For a Sculptor-like old and generally metal-poor system, the position of red giant branch (RGB) and asymptotic giant branch (AGB) stars on the colour–magnitude diagram (CMD) is mainly metallicity dependent. The advantage of using optical–near-infrared colours is that the position of the RGB locus is much more sensitive to metallicity than with optical colours alone. In contrast the HB morphology is strongly dependent on both metallicity and age. Therefore a detailed study of both the RGB in optical–near-infrared colours and the HB can help break the age–metallicity degeneracy. Our measured photometric width of the Sculptor giant branch corresponds to a range in metallicity of 0.75 dex. We detect the RGB and AGB bumps in both the near-infrared and the optical luminosity functions, and derive from them a mean metallicity of  [M/H]=−1.3 ± 0.1  . From isochrone fitting we derive a mean metallicity of  [Fe/H]=−1.42  with a dispersion of 0.2 dex. These photometric estimators are for the first time consistent with individual metallicity measurements derived from spectroscopic observations. No spatial gradient is detected in the RGB morphology within a radius of 13 arcmin, twice the core radius. On the other hand, a significant gradient is observed in the HB morphology index, confirming the 'second parameter problem' present in this galaxy. These observations are consistent with an early extended period of star formation continuing in time for a few Gyr.  相似文献   

3.
We have explored the hypothesis that the total mass ratio of the two main galaxies of the Local Group, the Andromeda galaxy (M31) and the Milky Way (MW), can be constrained by measuring the tidal force induced by the surrounding mass distribution, M31 included, on the MW. We argue that the total mass ratio between the two groups can be approximated, at least qualitatively, by finding the tidal radius where the internal binding force of the MW balances the external tidal force acting on it. Since M31 is the massive tidal 'perturber' of the local environment, we have used a wide range of M31 to MW mass-ratio combinations to compute the corresponding tidal radii. Of these, only a few match the distance of the zero-tidal shell, i.e. the shell identified observationally by the outermost dwarf galaxies which do not show any sign of tidal effects. This is the key to constraining the best mass-ratio interval of the two galaxies. Our results favour a solution where the mass ratio ranges from 2 to 3, implying a massive predominance of M31.  相似文献   

4.
We present kinematics and stellar population properties of 17 dwarf early-type galaxies in the luminosity range -14 ≥ M B ≥ -19. Our sample fills the gap between the intensively studied giant elliptical and Local Group dwarf spheroidal galaxies. The dwarf ellipticals of the present sample have constant velocity dispersion profiles within their effective radii and do not show significant rotation, hence are clearly anisotropic. The dwarf lenticulars, instead, rotate faster and are, at least partially, supported by rotation. From optical Lick absorption indices, we derive metallicities and element abundances. Combining our sample with literature data of the Local Group dwarf spheroidals and giant ellipticals, we find a surprisingly tight linear correlation between metallicity and luminosity over a wide range: -8 ≥ M B ≥ -22. The α/Fe ratios of our dwarf ellipticals are significantly lower than the ones of giant elliptical galaxies, which is in agreement with spectroscopy of individual stars in Local Group dwarf spheroidals. Our results suggest the existence of a clear kinematic and stellar population dichotomy between dwarf and giant elliptical galaxies. This result is important for theories of galaxy formation, because it implies that present-day dwarf ellipticals are not the fossiled building blocks of giant ellipticals. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

5.
Published maps of red giant stars in the halo region of M31 exhibit a giant stellar stream to the south of this galaxy, as well as a giant 'shelf' to the northeast of M31's centre. Using these maps, we find that there is a fainter shelf of comparable size on the western side as well. By choosing appropriate structural and orbital parameters for an accreting dwarf satellite within the accurate M31 potential model of Geehan et al., we produce a very similar structure in an N -body simulation. In this scenario, the tidal stream produced at pericentre of the satellite's orbit matches the observed southern stream, while the forward continuation of this tidal stream makes up two orbital loops, broadened into fan-like structures by successive pericentric passages; these loops correspond to the north-eastern and western shelves. The tidal debris from the satellite also reproduces a previously observed 'stream' of counterrotating planetary nebulae and a related stream seen in red giant stars. The debris pattern in our simulation resembles the shell systems detected around many elliptical galaxies, though this is the first identification of a shell system in a spiral galaxy and the first in any galaxy close enough to allow measurements of stellar velocities and relative distances. We discuss the physics of these partial shells, highlighting the role played by spatial and velocity caustics in the observations. We show that kinematic surveys of the tidal debris will provide a sensitive measurement of M31's halo potential, while quantifying the surface density of debris in the shelves will let us reconstruct the original mass and time of disruption of the progenitor satellite.  相似文献   

6.
The red giant branch tip and bump of the Leo II dwarf spheroidal galaxy   总被引:1,自引:0,他引:1  
We present V and I photometry of a  9.4 × 9.4 arcmin2  field centred on the dwarf spheroidal galaxy Leo II. The tip of the red giant branch (TRGB) is identified at   I TRGB= 17.83 ± 0.03  and adopting  〈[M/H]〉=−1.53 ± 0.2  from the comparison of RGB stars with Galactic templates, we obtain a distance modulus  ( m − M )0= 21.84 ± 0.13  , corresponding to a distance   D = 233 ± 15 kpc  . Two significant bumps have been detected in the luminosity function of the RGB. The fainter bump (B1, at   V = 21.76 ± 0.05  ) is the RGB bump of the dominant stellar population while the actual nature of the brightest one (B2, at   V = 21.35 ± 0.05  ) cannot be firmly assessed on the basis of the available data; it may be due to the asymptotic giant branch clump of the main population or it may be a secondary RGB bump. The luminosity of the main RGB bump (B1) suggests that the majority of RGB stars in Leo II belong to a population that is ≳4 Gyr younger than the classical Galactic globular clusters. The stars belonging to the He-burning red clump are shown to be significantly more centrally concentrated than RR Lyrae and blue horizontal branch stars, probing the existence of an age/metallicity radial gradient in this remote dwarf spheroidal.  相似文献   

7.
Since Baade's photographic study of M32 in the mid 1940s, it has been accepted as an established fact that M32 is a compact dwarf satellite of M31. The purpose of this paper is to report on the findings of our investigation into the nature of the existing evidence. We find that the case for M32 being a satellite of M31 rests upon Hubble Space Telescope (HST) based stellar population studies which have resolved red-giant branch (RGB) and red clump stars in M32 as well as other nearby galaxies. Taken in isolation, this recent evidence could be considered to be conclusive in favour of the existing view. However, the conventional scenario does not explain M32's anomalously high central velocity dispersion for a dwarf galaxy (several times that of either NGC 147, NGC 185 or NGC 205) or existing planetary nebula observations (which suggest that M32 is more than twice as distant as M31) and also requires an elaborate physical explanation for M32's inferred compactness. Conversely, we find that the case for M32 being a normal galaxy, of the order of three times as distant as M31, is supported by: (1) a central velocity dispersion typical of intermediate galaxies, (2) the published planetary nebula observations, and (3) known scaling relationships for normal early-type galaxies. However, this novel scenario cannot account for the high apparent luminosities of the RGB stars resolved in the M32 direction by HST observations. We are therefore left with two apparently irreconcilable scenarios, only one of which can be correct, but both of which suffer from potentially fatal evidence to the contrary. This suggests that current understanding of some relevant fields is still very far from adequate.  相似文献   

8.
The smallest dwarf galaxies are the most straight forward objects in which to study star formation processes on a galactic scale. They are typically single cell star forming entities, and as small potentials in orbit around a much larger one they are unlikely to accrete much (if any) extraneous matter during their lifetime (either intergalactic gas, or galaxies) because they will typically lose the competition with the much larger galaxy. We can utilise observations of stars of a range of ages to measure star formation and enrichment histories back to the earliest epochs. The most ancient objects we have ever observed in the Universe are stars found in and around our Galaxy. Their proximity allows us to extract from their properties detailed information about the time in the early Universe into which they were born. A currently fashionable conjecture is that the earliest star formation in the Universe occurred in the smallest dwarf galaxy sized objects. Here I will review some recent observational highlights in the study of dwarf galaxies in the Local Group and the implications for understanding galaxy formation and evolution. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

9.
The spatial distributions of the most recently discovered ultra-faint dwarf satellites around the Milky Way and the Andromeda galaxy are compared to the previously reported discs-of-satellites (DoS) of their host galaxies. In our investigation, we pay special attention to the selection bias introduced due to the limited sky coverage of Sloan Digital Sky Survey (SDSS). We find that the new Milky Way satellite galaxies follow closely the DoS defined by the more luminous dwarfs, thereby further emphasizing the statistical significance of this feature in the Galactic halo. We also note a deficit of satellite galaxies with Galactocentric distances larger than  100 kpc  that are away from the DoS of the Milky Way. In the case of Andromeda, we obtain similar results, naturally complementing our previous finding and strengthening the notion that the DoS are optical manifestations of a phase-space correlation of satellite galaxies.  相似文献   

10.
This paper argues that the Milky Way galaxy is probably the largest member of the Local Group. The evidence comes from estimates of the total mass of the Andromeda galaxy (M31) derived from the three-dimensional positions and radial velocities of its satellite galaxies, as well as the projected positions and radial velocities of its distant globular clusters and planetary nebulae. The available data set comprises 10 satellite galaxies, 17 distant globular clusters and nine halo planetary nebulae with radial velocities. We find that the halo of Andromeda has a mass of together with a scalelength of 90 kpc and a predominantly isotropic velocity distribution. For comparison, our earlier estimate for the Milky Way halo is Although the error bars are admittedly large, this suggests that the total mass of M31 is probably less than that of the Milky Way . We verify the robustness of our results to changes in the modelling assumptions and to errors caused by the small size and incompleteness of the data set.
Our surprising claim can be checked in several ways in the near future. The numbers of satellite galaxies, planetary nebulae and globular clusters with radial velocities can be increased by ground-based spectroscopy, while the proper motions of the companion galaxies and the unresolved cores of the globular clusters can be measured using the astrometric satellites Space Interferometry Mission ( SIM ) and Global Astrometric Interferometer for Astrophysics ( GAIA ). Using 100 globular clusters at projected radii 20 R 50 kpc with both radial velocities and proper motions, it will be possible to estimate the mass within 50 kpc to an accuracy of 20 per cent. Measuring the proper motions of the companion galaxies with SIM and GAIA will reduce the uncertainty in the total mass caused by the small size of the data set to 22 per cent.  相似文献   

11.
We present results for a galaxy formation model that includes a simple treatment for the disruption of dwarf galaxies by gravitational forces and galaxy encounters within galaxy clusters. This is implemented a posteriori in a semi-analytic model by considering the stability of cluster dark matter subhaloes at   z = 0  . We assume that a galaxy whose dark matter substructure has been disrupted will itself disperse, while its stars become part of the population of intracluster stars responsible for the observed intracluster light. Despite the simplicity of this assumption, our results show a substantial improvement over previous models and indicate that the inclusion of galaxy disruption is indeed a necessary ingredient of galaxy formation models. We find that galaxy disruption suppresses the number density of dwarf galaxies by about a factor of 2. This makes the slope of the faint end of the galaxy luminosity function shallower, in agreement with observations. In particular, the abundance of faint, red galaxies is strongly suppressed. As a result, the luminosity function of red galaxies and the distinction between the red and the blue galaxy populations in colour–magnitude relationships are correctly predicted. Finally, we estimate a fraction of intracluster light comparable to that found in clusters of galaxies.  相似文献   

12.
Based on archived images obtained with the Hubble Space Telescope, stellar photometry for 105 irregular galaxies has been conducted. We have shown the red supergiant and giant branches in the obtained Hertzsprung-Russel diagrams. Using the TRGB method, distances to galaxies and metallicity of red giants have been determined. The color index (V ? I) of the supergiant branch at the luminosity level MI = ?7 was chosen as the metallicity index of red supergiants. For the galaxies under study, the diagrams have been built, in which the correlation can be seen between the luminosity of galaxies (MB) and metallicity of red giants and supergiants. The main source of variance of the results in the obtained diagrams is, in our opinion, uncertainty inmeasurements of galaxy luminosities and star-forming outburst. The relation between metallicity of young and old stars shows that main enrichment of galaxies with metals has taken place in the remote past. Deviations of some galaxies in the obtained relation can possibly be explained with the fall of the intergalactic gas on them, although, this inconsiderably affects metallicities of the stellar content.  相似文献   

13.
We have obtained spectroscopic redshifts of colour-selected point sources in four wide area VLT-FLAMES (Very Large Telescope-Fibre Large Array Multi Element Spectrograph) fields around the Fornax cluster giant elliptical galaxy NGC 1399, identifying as cluster members 27 previously unknown faint     compact stellar systems (CSS), and improving redshift accuracy for 23 previously catalogued CSS.
By amalgamating our results with CSS from previous 2dF observations and excluding CSS dynamically associated with prominent (non-dwarf) galaxies surrounding NGC 1399, we have isolated 80 'unbound' systems that are either part of NGC  1399's globular cluster (GC) system or intracluster GCs. For these unbound systems, we find (i) they are mostly located off the main stellar locus in colour–colour space; (ii) their projected distribution about NGC  1399 is anisotropic, following the Fornax cluster galaxy distribution, and there is weak evidence for group rotation about NGC  1399; (iii) their completeness-adjusted radial surface density profile has a slope similar to that of NGC  1399's inner GC system; (iv) their mean heliocentric recessional velocity is between that of NGC  1399's inner GCs and that of the surrounding dwarf galaxies, but their velocity dispersion is significantly lower; (v) bright CSS  ( M V < −11)  are slightly redder than the fainter systems, suggesting they have higher metallicity; (vi) CSS show no significant trend in   g '− i '  colour index with radial distance from NGC  1399.  相似文献   

14.
We have modelled, for the cases of Milky Way and M31, the effects on the galactic discs, of the arrival at high velocity (≥150 km s−1) of giant HI clouds, with masses of up to 108M⊙. Predictions are compared with the detailed structure of the observed rotation curves for these two galaxies. The model explains the rises and falls observed at large distances from the centre of each galaxy, distributed with a degree of regularity in radius, in terms of a specific type of perturbations driven by the infall of the high velocity clouds (HVC's) arriving from the intracluster medium of the Local Group. The underlying rotation curve is explained conventionally via the distribution of the baryonic and dark matter components of the galaxy in question. This scenario, though tested here on the two major Local Group objects, is in principle applicable to galaxies undergoing minor mergers with subgalactic mass gas clouds.  相似文献   

15.
Understanding the origin and evolution of dwarf early-type galaxies remains an important open issue in modern astrophysics. Internal kinematics of a galaxy contains signatures of violent phenomena which may have occurred, e.g. mergers or tidal interactions, while stellar population keeps a fossil record of the star formation history; therefore studying connection between them becomes crucial for understanding galaxy evolution. Here, in the first paper of the series, we present the data on spatially resolved stellar populations and internal kinematics for a large sample of dwarf elliptical (dE) and lenticular (dS0) galaxies in the Virgo cluster. We obtained radial velocities, velocity dispersions, stellar ages and metallicities out to 1–2 half-light radii by reanalysing already published long-slit and integral-field spectroscopic data sets using the nbursts full spectral fitting technique. Surprisingly, bright representatives of the dE/dS0 class (   MB =−18.0  to −16.0 mag) look very similar to intermediate-mass and giant lenticulars and ellipticals: (1) their nuclear regions often harbour young metal-rich stellar populations always associated with the drops in the velocity dispersion profiles; (2) metallicity gradients in the main discs/spheroids vary significantly from nearly flat profiles to −0.9 dex   r −1e  , i.e. somewhat three times steeper than for typical bulges; (3) kinematically decoupled cores were discovered in four galaxies, including two with very little, if any, large-scale rotation. These results suggest similarities in the evolutionary paths of dwarf and giant early-type galaxies and call for reconsidering the role of major mergers in the dE/dS0 evolution.  相似文献   

16.
Observations on the 6-m telescope in the Hα line and in the continuum are reported for 10 dwarf companions of the galaxy M31: And I, And II, And III, And V, And IX, And X, Cass dSph, Peg DSph, NGC147, NGC221, and one irregular dwarf galaxy in the background, And IV. All the observed companions of M31 have current star formation rates (SFR) on the order of or less than 10−6 M /yr. On a “star formation rate-neutral hydrogen mass” diagram for galaxies in the local volume, the dwarf spheroidal companions of Andromeda lie in the region of extremely low values for these parameters. __________ Translated from Astrofizika, Vol. 49, No. 3, pp. 337–350 (August 2006).  相似文献   

17.
Soft gamma repeaters outside the Local Group   总被引:1,自引:0,他引:1  
We propose that the best sites to search for soft gamma repeaters (SGRs) outside the Local Group are galaxies with active massive-star formation. Different possibilities to observe SGR activity from these sites are discussed. In particular, we have searched for giant flares from the nearby galaxies (∼2–4 Mpc away) M82, M83, NGC 253 and 4945 in the Burst and Transient Source Experiment (BATSE) data. No candidate giant SGR flares were found. The absence of such detections implies that the rate of giant flares with energy release in the initial spike above  0.5 × 1044 erg  is less than 1/30 yr−1 in our Galaxy. However, hyperflares similar to that of 2004 December 27 can be observed from larger distances. Nevertheless, we do not see any significant excess of short GRBs from the Virgo galaxy cluster or from the galaxies Arp 299 and NGC 3256 (both with extremely high star formation rates). This implies that the Galactic rate of hyperflares with energy release  ∼1046 erg  is less than ∼10−3 yr−1. With this constraint the fraction of possible extragalactic SGR hyperflares among BATSE's short GRBs should not exceed a few per cent. We present the list of short GRBs coincident with the galaxies mentioned above, and discuss the possibility that some of them are SGR giant flares. We propose that the best target for the observations of extragalactic SGR flares with Swift is the Virgo cluster.  相似文献   

18.
A large number of early-type galaxies are now known to possess blue and red subpopulations of globular clusters. We have compiled a data base of 28 such galaxies exhibiting bimodal globular cluster colour distributions. After converting to a common V – I colour system, we investigate correlations between the mean colour of the blue and red subpopulations with galaxy velocity dispersion. We support previous claims that the mean colours of the blue globular clusters are unrelated to their host galaxy. They must have formed rather independently of the galaxy potential they now inhabit. The mean blue colour is similar to that for halo globular clusters in our Galaxy and M31. The red globular clusters, on the other hand, reveal a strong correlation with galaxy velocity dispersion. Furthermore, in well-studied galaxies the red subpopulation has similar, and possibly identical, colours to the galaxy halo stars. Our results indicate an intimate link between the red globular clusters and the host galaxy; they share a common formation history. A natural explanation for these trends would be the formation of the red globular clusters during galaxy collapse.  相似文献   

19.
We present wide-field     multiband ( BVI ) CCD photometry (down to     of the very low surface brightness dwarf spheroidal galaxy Sextans. In the derived colour–magnitude diagrams we find evidence suggesting the presence of multiple stellar populations in this dwarf spheroidal. In particular, we discover (i) a blue horizontal branch tail that appears to lie on a brighter sequence with respect to the prominent red horizontal branch and the RR Lyrae stars, very similar to what was found by Majewski et al. for the Sculptor dwarf spheroidal, (ii) hints of a bimodal distribution in colour of the red giant branch stars, (iii) a double red giant branch bump. All of these features suggest that (at least) two components are present in the old stellar population of this galaxy: the main one with     and a minor component around     . The similarity to the Sculptor case may indicate that multiple star formation episodes are also common in the most nearby dwarf spheroidals that ceased their star formation activity at very early epochs.  相似文献   

20.
The existence of blue straggler stars (BSSs) in dwarf spheroidal galaxies (dSphs) is still an open question. In fact, many BSS candidates have been observed in the Local Group dSphs, but it is unclear whether they are real BSSs or young stars. Shedding light on the nature of these BSS candidates is crucial in order to understand the star formation history of dSphs. In this paper, we consider BSS candidates in Sculptor and Fornax. In Fornax, there are strong hints that the BSS population is contaminated by young stars, whereas in Sculptor there is no clear evidence of recent star formation. We derive the radial and luminosity distribution of BSS candidates from wide field imaging data extending beyond the nominal tidal radius of these galaxies. The observations are compared with the radial distribution of BSSs expected from dynamical simulations. In Sculptor, the radial distribution of BSS candidates is consistent with that of red horizontal branch (RHB) stars and is in agreement with theoretical expectations for BSSs generated via mass transfer in binaries. On the contrary, in Fornax, the radial distribution of BSS candidates is more concentrated than that of all the considered stellar populations. This result supports the hypothesis that most of BSS candidates in Fornax are young stars, and this is consistent with previous studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号