首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
陈宪  钟中  江静  孙源 《地球物理学报》2019,62(2):489-498
本文利用"模式手术"方法研究了西北太平洋热带气旋(TC)对东亚-西北太平洋区域大尺度环流的影响.结果表明,夏季频繁的西北太平洋TC活动导致东亚夏季风增强,季风槽加深;西太平洋副热带高压东退,位置偏北;东亚副热带高空急流强度增强,北太平洋(东亚大陆)上急流轴偏北(偏南);热带地区(副热带地区)的对流层中低层出现异常上升气流(下沉气流),并且从低纬向高纬呈现异常上升气流和异常下沉气流交替分布特征.在中国东南沿海,TC降水导致夏季降水量明显增加;而在长江中下游和华北地区,TC活动引起的异常下沉气流使夏季降水量显著减少.因此,夏季西北太平洋TC活动对东亚-西北太平洋区域气候有显著影响.  相似文献   

2.
水文非线性系统与分布式时变增益模型   总被引:5,自引:0,他引:5  
论述了以Volterra泛函级数表达的流域降雨-径流非线性系统理论与概念性模拟方法. 依据流域数值高程模型、遥感信息和单元水文过程, 提出了水文非线性系统理论的时变增益模型(TVGM)和推广应用到流域时空变化模拟的分布式时变增益模型(DTVGM). 研究表明, 除了常用的非线性系统分析方法之外, 从复杂水文关系研究中另辟蹊径, 提出一种简单关系的非线性系统分析是完全有可能的. 时变增益水文模型的提出及其与一般性水文非线性系统的联系就是一个例证. 水文非线性系统方法与分布式流域水文模拟结合的DTVGM模型, 能够发挥水文系统方法与分布式水文模拟方法相结合的优点, 探索环境变化下的流域水文模拟问题. 将DTVGM分别应用到河西走廊干旱地区的黑河流域和华北地区潮白河流域实例研究, 模拟了水文时空变化以及陆面覆被变化与水文影响分析, 取得了较好的效果, 说明了其特色和应用价值.  相似文献   

3.
邓鹏  李致家  谢帆 《湖泊科学》2009,21(3):441-444
TOPMODEL是一种以地形为基础的半分布式流域水文模型.对珠江流域布柳河流域的DEM信息进行处理,提取流域的水系、子流域边界、地形指数及水流路径距离的分布,将TOPMODEL应用于该流域中.另外将新安江模型也应用于该流域进行比较.此外,分析了两种模型结构差异所带来的模拟功能差异.两种模型模拟结果精度差异不大,而TOPMODEL实现了空间产流面积分布的可视化.  相似文献   

4.
京北地热田包括小汤山和沙河2个次级地热田,呈三角形展布,东南部边界为黄庄-高丽营断裂,西南部边界为南口-孙河断裂,北部边界为阿苏卫-小汤山断裂。热储层为蓟县系雾迷山组、铁岭组和寒武系—奥陶系碳酸盐岩岩溶裂隙含水层,热储盖层为青白口系页岩、石炭系—二叠系砂页岩和侏罗系火山岩隔水层。该地热田地温场的平面特征是在小汤山镇和汤11井区出现2个高温区;垂向特征是随埋深加大,地温升高,但热储层内垂向增温率较低,热储盖层垂向增温率较高。该区雨水、地下冷水和热水的氢氧同位素组成基本上都落在克雷格降水线上,表明区内热水来源于大气降水。在地下水化学三线图解中,该区热水位于城区热水的下方,说明京北热水比城区热水更靠近冷水补给区。热水的3H值表现出北高南低的特点,14C年龄也由北往南逐渐增大,说明热水自北向南流动。由此认为,由北部山区渗入地下的大气降水,经小汤山以北的十三陵—桃峪口岩溶水分布区,跨过阿苏卫-小汤山断裂后发生深循环并被地热加温,流入京北地区后在该地区赋存,形成热田。根据上述特征,建立了京北地热田地热系统的成因模式并定义为京北中低温对流型地热系统  相似文献   

5.
利用CRU(Climatic Research Unit)的全球格点月降水及月平均气温资料, 通过计算地表湿润指数分析了1951~2002年全球干湿变化趋势. 重点对比研究了北美大陆、南美大陆、欧亚大陆、非洲大陆及澳洲大陆干湿变化的特征及差异, 并在此基础上对各大陆乃至全球的干湿变化与影响气候变化的大尺度背景的相关关系进行了分析. 结果表明, 在增暖背景下, 20世纪下半叶全球干湿变化趋势具有明显的区域差异, 非洲大陆、欧亚大陆、澳洲大陆和南美大陆近52年主要以干旱化趋势为主, 尤以非洲大陆和欧亚大陆最为剧烈. 北美大陆在1976年以后表现为变湿趋势, 南美大陆存在30年左右的干湿振荡周期, 但最近仍然处于干化的时段, 澳洲大陆的变化与之类似. 研究还表明, 增暖已经改变了全球环境干湿变化的分布格局, 南美大陆和澳洲大陆尽管降水为增加趋势, 但仍然表现为干旱化趋势, 其中温度升高是其表现为干旱化特征不可忽视的原因. 全球环境的干湿变化与大尺度背景密切相关: 非洲大陆、欧亚大陆的干旱化趋势、北美大陆的湿化趋势与北太平洋年代际振荡(PDO)显著相关; 而南美大陆、澳洲大陆干湿的年代际振荡与南方涛动指数(SOI)的年代际变化一致.  相似文献   

6.
南四湖流域是一个复杂的大流域,是东线南水北调的重要调节湖泊之一,也是干旱和洪水频繁流域.本文首先采 用分布式的新安江模型,对有实测流量资料的支流流域进行了模型参数率定,洪量预报达到了一定的精度,建立了南四湖 流域的洪水预报模型.采用一维、二维水力学模型并与水文学模型耦合进行上级湖的流量演进以及二级坝水利枢纽的 调度.  相似文献   

7.
研究了构建时域谱单元质量特性模型的数学机制,针对时域切比雪夫谱单元和勒让德谱单元建立了一种直接导出谱单元一致质量矩阵和集中质量矩阵的统一数学方法,对比分析两种谱单元质量特性模型的特征,并从物理角度探讨了谱单元质量特性模型的合理性.研究表明,数值积分点与谱单元节点选取是否一致是决定时域谱单元形成一致质量模型或集中质量模型...  相似文献   

8.
以农林系统的非点源污染模拟为目标,通过研究建立变化密度及多种类混杂的森林生长模型,修正了SWAT模型采用平均森林植被密度和单一植物生长模式估算生物累积量的问题,并建立了与之相适应的森林优势组份丰度遥感反演模型、叶面积指数和消光系数遥感反演模型以获取森林生长模型的相关参数.同时,根据间作套种下的辐射能利用Keating方程,引入间作套种指数变量,修正SWAT原有的单一生物量日积累模型,探讨了作物复种指数、间作套种指数遥感反演方法和以此为基础的作物间作套种生长模型.以亚热带季风湿润区红壤背景下的鄱阳湖流域子流域梅江流域为试验区,以野外实测数据为基础,探讨修正SWAT模型的有效性.结果表明:修正后的SWAT模型与原始SWAT模型相比,在模拟流量和营养盐负荷方面,得到了较好的改善.在模拟流量方面,有效性提高了7.8%,流量峰值的模拟也得到了改善,能更好地反映地表蓄流方面的实际情况;在模拟营养盐负荷方面,有效性提高了6.4%(总磷)和6.1%(总氮).  相似文献   

9.
10.
通过对挪威卑尔根全球大气-海洋-海冰耦合模式300a控制积分结果进行交叉子波分析,揭示了东亚夏季风(EASM)与同期Nio3区(90°W~150°W,5°S~5°N)海洋表面温度异常的相关关系在长期变化中是不稳定的,呈现出明显的阶段性特征.气候要素场在二者联系的紧密(HCP)和微弱(LCP)时期差别显著,在HCP时期,西北太平洋对流层低层出现一对耦合的异常气旋和反气旋性环流系统;东南亚地区对流层低层表现为强东风异常,风速的年际变率加大;热带西太平洋对流层温度和位势高度场的年际变率普遍加强.此外,中国夏季降水与同期Nio3区海洋表面温度异常的相关关系在上述两种时期也存在较大差别.  相似文献   

11.
Hydrological models at a monthly time‐scale are important tools for hydrological analysis, such as in impact assessment of climate change and regional water resources planning. Traditionally, monthly models adopt a conceptual, lumped‐parameter approach and cannot account for spatial variations of basin characteristics and climatic inputs. A large requirement for data often severely limits the utility of physically based, distributed‐parameter models. Based on the variable‐source‐area concept, we considered basin topography and rainfall to be two major factors whose spatial variations play a dominant role in runoff generation and developed a monthly model that is able to account for their influences in the spatial and temporal dynamics of water balance. As a hybrid of the Xinanjiang model and TOPMODEL, the new model is constructed by innovatively making use of the highly acclaimed simulation techniques in the two existing models. A major contribution of this model development study is to adopt the technique of implicit representation of soil moisture characteristics in the Xinanjiang model and use the TOPMODEL concept to integrate terrain variations into runoff simulation. Specifically, the TOPMODEL topographic index ln(a/tanβ) is converted into an index of relative difficulty in runoff generation (IRDG) and then the cumulative frequency distribution of IRDG is used to substitute the parabolic curve, which represents the spatial variation of soil storage capacity in the Xinanjiang model. Digital elevation model data play a key role in the modelling procedures on a geographical information system platform, including basin segmentation, estimation of rainfall for each sub‐basin and computation of terrain characteristics. Other monthly data for model calibration and validation are rainfall, pan evaporation and runoff. The new model has only three parameters to be estimated, i.e. watershed‐average field capacity WM, pan coefficient η and runoff generation coefficient α. Sensitivity analysis demonstrates that runoff is least sensitive to WM and, therefore, it can be determined by a prior estimation based on the climate and soil properties of the study basin. The other two parameters can be determined using optimization methods. Model testing was carried out in a number of nested sub‐basins of two watersheds (Yuanjiang River and Dongjiang River) in the humid region in central and southern China. Simulation results show that the model is capable of describing spatial and temporal variations of water balance components, including soil moisture content, evapotranspiration and runoff, over the watershed. With a minimal requirement for input data and parameterization, this terrain‐based distributed model is a valuable contribution to the ever‐advancing technology of hydrological modelling. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

12.
Hydrological science is a branch of the earth sci-ences.To study the complexities of hydrological pro-cesses and the associated environmental problems,a systematic approach is desired.For instance,Dooge published Linear Theory of Hydrological System[1]in1973.Singh(1988)published Hydrological Systems[2],with its Chinese version[3]being translated by the Yel-low River Conservancy Commission in2000.Ge(1999)carried out systematic studies on the hydro-logical linear system theory,and produced …  相似文献   

13.
This paper provides the results of hydrological modelling in a mesoscale glaciated alpine catchment of the Himalayan region. In the context of global climate change, the hydrological regime of an alpine mountain is likely to be affected, which might produce serious implications for downstream water availability. The main objective of this study was to understand the hydrological system dynamics of a glaciated catchment, the Dudh Kosi River basin, in Nepal, using the J2000 hydrological model and thereby understand how the rise in air temperature will affect the hydrological processes. The model is able to reproduce the overall hydrological dynamics quite well with an efficiency result of Nash–Sutcliffe (0.85), logarithm Nash–Sutcliffe (0.93) and coefficient of determination (0.85) for the study period. The average contribution from glacier areas to total streamflow is estimated to be 17%, and snowmelt (other than from glacier areas) accounts for another 17%. This indicates the significance of the snow and glacier runoff in the Himalayan region. The hypothetical rise in temperature scenarios at a rate of +2 and +4 °C indicated that the snowmelt process might be largely affected. An increase in snowmelt volume is noted during the premonsoon period, whereas the contribution during the monsoon season is significantly decreased. This occurs mainly because the rise in temperature will shift the snowline up to areas of higher altitude and thereby reduce the snow storage capacity of the basin. This indicates that the region is particularly vulnerable to global climate change and the associated risk of decreasing water availability to downstream areas. Under the assumed warming scenarios, it is likely that in the future, the river might shift from a ‘melt‐dominated river’ to a ‘rain‐dominated river’. The J2000 model should be considered a promising tool to better understand the hydrological dynamics in alpine mountain catchments of the Himalayan region. This understanding will be quite useful for further analysis of ‘what‐if scenarios’ in the context of global climate and land‐use changes and ultimately for sustainable Integrated Water Resources Management in the Himalayan region. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
Abstract

Grid-based distributed models have become popular for describing spatial hydrological processes. However, the influence of non-homogeneity within a grid on streamflow simulation was not adequately addressed in the literature. In this study, we investigated how the statistical characteristics of soil moisture storage within a grid impacts on streamflow simulations. The spatial variation of the topographic index, TI, within a grid was used to determine parameter B of the statistical curve of soil moisture storage in the Xinanjiang model. For comparison of influences of the non-homogeneity within a grid on streamflow simulation, two parameterization schemes of soil moisture storage capacity were developed: a grid-parameterization scheme for a distributed model and a catchment-averaged scheme for a semi-distributed model. The practicability and usefulness of the grid-parameterization method were evaluated through model comparisons. The two models were applied in Jiangwan experimental catchment Zhejiang Province, China. Streamflow discharge data at the catchment outlet from 1971 to 1986 at different temporal resolutions, e.g. 15 min and daily time step, were used for model calibration and validation. Statistical results for different grid scales demonstrated that the mean and variation of TI and B decline significantly as the grid scale increases. The simulated streamflow discharges of the two models were similar and the semi-distributed model outperformed the distributed model slightly when the streamflow at the outlet of the catchment was used as the only basis for comparison. In addition, a relatively larger bias in the predicted discharges between these two models was observed along with an abrupt increase of soil moisture saturation ratio. A further analysis of the simulated soil moisture content distribution revealed that the distributed model can provide a reasonable representation of the variable source area concept, which was justified to some extent by the field experiment data.

Editor D. Koutsoyiannis

Citation Liu, J.T., Chen, X., Wu, J.C., Zhang, X.N., Feng, D.Z. and Xu, C.-Y., 2012. Grid parameterization of a conceptual, distributed hydrological model through integration of a sub-grid topographic index: necessity and practicability. Hydrological Sciences Journal, 57 (2), 282–297.  相似文献   

15.
16.
Abstract

An integrated model, combining a surface energy balance system, an LAI-based interception model and a distributed monthly water balance model, was developed to predict hydrological impacts of land-use/land-cover change (LUCC) in the East River basin, China, with the aid of GIS/RS. The integrated model is a distributed model that not only accounts for spatial variations in basin terrain, rainfall and soil moisture, but also considers spatial and temporal variation of vegetation cover and evapotranspiration (ET), in particular, thus providing a powerful tool for investigating the hydrological impact of LUCC. The model was constructed using spatial data on topography, soil types and vegetation characteristics together with time series of precipitation from 170 stations in the basin. The model was calibrated and validated based on river discharge data from three stations in the basin for 21 years. The calibration and validation results suggested that the model is suitable for application in the basin. The results show that ET has a positive relationship with LAI (leaf area index), while runoff has a negative relationship with LAI in the same climatic zone that can be described by the surface energy balance and water balance equation. It was found that deforestation would cause an increase in annual runoff and a decrease in annual ET in southern China. Monthly runoff for different land-cover types was found to be inversely related to ET. Also, for most of the scenarios, and particularly for grassland and cropland, the most significant changes occurred in the rainy season, indicating that deforestation would cause a significant increase in monthly runoff in that season in the East River basin. These results are important for water resources management and environmental change monitoring.
Editor Z.W. Kundzewicz  相似文献   

17.
To facilitate precise and cost-effective watershed management, a simple yet spatially and temporally distributed hydrological model (DHM-WM) was developed. The DHM-WM is based on the Mishra-Singh version of the curve number method, with several modifications: The spatial distribution of soil moisture was considered in moisture updating; the travel time of surface runoff was calculated on a grid cell basis for routing; a simple tile flow module was included as an option. The DHM-WM was tested on a tile-drained agricultural watershed in Indiana, USA. The model with the tile flow module performed well in the study area, providing a balanced water budget and reasonable flow partitioning. The daily coefficient of determination and Nash-Sutcliffe coefficient were 0.58 and 0.56, for the calibration period, and 0.63 and 0.62 for the validation period. The DHM-WM also provides detailed information about the source areas of flow components, the travel time and pathways of surface runoff.
EDITOR A. Castellarin; ASSOCIATE EDITOR F.-J. Chang  相似文献   

18.
Abstract

The actual evapotranspiration and runoff trends of five major basins in China from 1956 to 2000 are investigated by combining the Budyko hypothesis and a stochastic soil moisture model. Based on the equations of Choudhury and Porporato, the actual evapotranspiration trends and the runoff trends are attributed to changes in precipitation, potential evapotranspiration, rainfall depth and water storage capacity which depends on the soil water holding capacity and the root depth. It was found that the rainfall depth increased significantly in China during the past 50 years, especially in southern basins. Contributions from changes in the water storage capacity were significant in basins where land surface characteristics have changed substantially due to human activities. It was also observed that the actual evapotranspiration trends are more sensitive to precipitation trends in water-limited basins, but more sensitive to potential evapotranspiration trends in energy-limited basins.
Editor D. Koutsoyiannis; Associate editor A. Porporato  相似文献   

19.
将区域气候模式RegCM2与中国科学院大气物理研究所的9层全球格点大气环流模式IAP-AGCM单向嵌套,对东亚现代气候进行数值模拟研究,同时检验和分析该嵌套模式的性能.已完成的10年积分结果表明,单向嵌套RegCM2由于具有较高分辨率和较完善的物理过程,因此对地面气温和降水的空间分布形势和季节变化趋势都有较好的模拟能力,且较与之嵌套的IAP-AGCM的模拟效果有较大改善,如在中国区域,它模拟的年均地面气温与实况的空间相关系数由全球环流模式的0.92提高到0.94,模拟的年均降水由0.5提高到0.7. 这与嵌套RegCM2能模拟出IAP-AGCM所不能分辨的中尺度信号有很大关系.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号