首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用参与第三次古气候模式评估比较计划(Paleoclimate Modelling Intercomparison Project Phase III,PMIP3)过去千年气候模拟试验以及参与第五次耦合模式评估比较计划(Paleoclimate Model Intercomparison Project Phase 5,CMIP5)全强迫历史情景试验的9个地球系统模式模拟试验结果,对过去千年3个特征时段(中世纪气候异常期、小冰期和现代暖期)北极涛动(Arctic Oscillation, AO)的变率及成因进行了分析。通过与NCEP再分析资料的对比发现,模式能够较好地模拟出AO的空间模态及年际变化周期,且大部分模式能够模拟出过去50年AO的增强趋势。过去千年3个特征时段中,不同模式对中世纪气候异常期AO位相的模拟并不一致,但大部分模式显示小冰期AO基本呈现负位相,而现代暖期则表现为显著的正位相,与重建结果一致。基于多模式集合平均的机制分析表明,中世纪气候异常期北极地区海平面气压变化不显著,小冰期北极地区海平面气压显著偏正,现代暖期海平面气压显著偏负,这与现代暖期北极温度偏高而小冰期北极温度偏低有关。过去千年中,小冰期和现代暖期的AO变率分别受自然外强迫和人为外强迫的影响。  相似文献   

2.
利用国际古气候模拟对比计划第四阶段的多模式结果,分析了末次间冰期亚洲中部干旱区的干湿变化及机制。多模式集合平均结果表明,末次间冰期亚洲中部干旱区年降水减少0.7%,其中中亚地区的年降水减少2.8%,新疆地区年降水增加1.8%。水汽收支方程表明,末次间冰期中亚地区在雨季(冬春季)的降水变化主要与垂直动力项有关,新疆地区在雨季(夏季)的降水变化主要与垂直动力与热力项有关。此外,基于Penman-Montieth方法计算的亚洲中部干旱区的干旱指数在末次间冰期减小约10.2%,表明末次间冰期亚洲中部干旱区气候明显变干且存在旱区扩张的现象,这主要受到潜在蒸散变化的调控。潜在蒸散的增加进一步受到有效能量增加与地面风速增大的调控。本研究从模拟的角度揭示了末次间冰期亚洲中部干旱区干湿变化的可能特征及机制,在一定程度上有助于理解旱区气候在增暖情景下对轨道参数的响应特征。  相似文献   

3.
研究过去暖期西北太平洋热带气旋的变化有助于理解未来气候变暖情景下热带气旋的可能变化.本研究基于PMIP4多模式输出结果,分析了末次间冰期西北太平洋热带气旋大尺度生成因子的变化及相关机制.结果表明,末次间冰期西北太平洋风暴季潜在强度降低,湿熵亏损升高,绝对涡度减弱,中部垂直风切变增强,西南部减弱.进一步,基于生成潜势指数,指出末次间冰期西北太平洋生成潜势降低,这表明环境条件不利于热带气旋生成.  相似文献   

4.
The datasets of two Ocean Model Intercomparison Project(OMIP) simulation experiments from the LASG/IAP Climate Ocean Model, version 3(LICOM3), forced by two different sets of atmospheric surface data, are described in this paper. The experiment forced by CORE-II(Co-ordinated Ocean–Ice Reference Experiments, Phase II) data(1948–2009) is called OMIP1, and that forced by JRA55-do(surface dataset for driving ocean–sea-ice models based on Japanese 55-year atmospheric reanalysis) data(1958–2018) is ca...  相似文献   

5.
This paper describes the datasets from the Scenario Model Intercomparison Project(ScenarioMIP) simulation experiments run with the Chinese Academy of Sciences Flexible Global Ocean–Atmosphere–Land System Model,GridPoint version 3(CAS FGOALS-g3). FGOALS-g3 is driven by eight shared socioeconomic pathways(SSPs) with different sets of future emission, concentration, and land-use scenarios. All Tier 1 and 2 experiments were carried out and were initialized using historical runs. A branch run method ...  相似文献   

6.
Results from multiple model simulations are used to understand the tropical sea surface temperature (SST) response to the reduced greenhouse gas concentrations and large continental ice sheets of the last glacial maximum (LGM). We present LGM simulations from the Paleoclimate Modelling Intercomparison Project, Phase 2 (PMIP2) and compare these simulations to proxy data collated and harmonized within the Multiproxy Approach for the Reconstruction of the Glacial Ocean Surface Project (MARGO). Five atmosphere–ocean coupled climate models (AOGCMs) and one coupled model of intermediate complexity have PMIP2 ocean results available for LGM. The models give a range of tropical (defined for this paper as 15°S–15°N) SST cooling of 1.0–2.4°C, comparable to the MARGO estimate of annual cooling of 1.7 ± 1°C. The models simulate greater SST cooling in the tropical Atlantic than tropical Pacific, but interbasin and intrabasin variations of cooling are much smaller than those found in the MARGO reconstruction. The simulated tropical coolings are relatively insensitive to season, a feature also present in the MARGO transferred-based estimates calculated from planktonic foraminiferal assemblages for the Indian and Pacific Oceans. These assemblages indicate seasonality in cooling in the Atlantic basin, with greater cooling in northern summer than northern winter, not captured by the model simulations. Biases in the simulations of the tropical upwelling and thermocline found in the preindustrial control simulations remain for the LGM simulations and are partly responsible for the more homogeneous spatial and temporal LGM tropical cooling simulated by the models. The PMIP2 LGM simulations give estimates for the climate sensitivity parameter of 0.67°–0.83°C per Wm−2, which translates to equilibrium climate sensitivity for doubling of atmospheric CO2 of 2.6–3.1°C.  相似文献   

7.
8.
9.
The impact of orbital parameters on the climate of China in the Holocene is simulated from 11kaBP to 0kaBP with an interval of 1ka using National Center for Atmospheric Research (NCAR) Community Atmosphere Model version 2 (CAM2). The geographic distributions of summer precipitation around both 9kaBP and 4kaBP were realistically captured by CAM2, compared to the proxy data collected from 80 stations. Among all orbital parameters, the precession plays a major role in computing solar radiation, which dominates the variations of summer precipitation over China during the Holocene. The summers around 9kaBP were the wettest in China. Later on, the precipitation gradually reduced to the minimum around 0kaBP by about 10%. This tremendous change occurred from the Northeast China and the eastern Inner Mongolia extending southwestwards to the Qinghai-Tibet Plateau, especially over the Qinghai-Tibet Plateau.  相似文献   

10.
The second version of the Chinese Academy of Sciences Earth System Model(CAS-ESM2.0)is participating in the Flux-Anomaly-Forced Model Intercomparison Project(FAFMIP)experiments in phase 6 of the Coupled Model Intercomparison Project(CMIP6).The purpose of FAFMIP is to understand and reduce the uncertainty of ocean climate changes in response to increased CO2 forcing in atmosphere-ocean general circulation models(AOGCMs),including the simulations of ocean heat content(OHC)change,ocean circulation change,and sea level rise due to thermal expansion.FAFMIP experiments(including faf-heat,faf-stress,faf-water,faf-all,faf-passiveheat,faf-heat-NA50pct and faf-heat-NA0pct)have been conducted.All of the experiments were integrated over a 70-year period and the corresponding data have been uploaded to the Earth System Grid Federation data server for CMIP6 users to download.This paper describes the experimental design and model datasets and evaluates the preliminary results of CAS-ESM2.0 simulations of ocean climate changes in the FAFMIP experiments.The simulations of the changes in global ocean temperature,Atlantic Meridional Overturning Circulation(AMOC),OHC,and dynamic sea level(DSL),are all reasonably reproduced.  相似文献   

11.
The datasets for the tier-1 Scenario Model Intercomparison Project(ScenarioMIP)experiments from the Chinese Academy of Sciences(CAS)Flexible Global Ocean-Atmosphere-Land System model,finite-volume version 3(CAS FGOALS-f3-L)are described in this study.ScenarioMIP is one of the core MIP experiments in phase 6 of the Coupled Model Intercomparison Project(CMIP6).Considering future CO2,CH4,N2O and other gases’concentrations,as well as land use,the design of ScenarioMIP involves eight pathways,including two tiers(tier-1 and tier-2)of priority.Tier-1 includes four combined Shared Socioeconomic Pathways(SSPs)with radiative forcing,i.e.,SSP1-2.6,SSP2-4.5,SSP3-7.0 and SSP5-8.5,in which the globally averaged radiative forcing at the top of the atmosphere around the year 2100 is approximately 2.6,4.5,7.0 and 8.5 W m?2,respectively.This study provides an introduction to the ScenarioMIP datasets of this model,such as their storage location,sizes,variables,etc.Preliminary analysis indicates that surface air temperatures will increase by about 1.89℃,3.07℃,4.06℃ and 5.17℃ by around 2100 under these four scenarios,respectively.Meanwhile,some other key climate variables,such as sea-ice extension,precipitation,heat content,and sea level rise,also show significant long-term trends associated with the radiative forcing increases.These datasets will help us understand how the climate will change under different anthropogenic and radiative forcings.  相似文献   

12.
The increasing trend of the Southern Annular Mode (SAM) in recent decades has influenced climate change in the Southem Hemisphere (SH).How the SAM will respond increased greenhouse gas concentrations in the future remains uncertain.Understanding the variability of the SAM in the past under a colder climate such as during the Last Glacial Maximum (LGM) might provide some understanding of the response of the SAM under a future warmer climate.We analyzed the changes in the SAM during the LGM in comparison to pre-industrial (PI) simulations using five coupled ocean-atmosphere models (CCSM,FGOALS,IPSL,MIROC,HadCM) from the second phase of the Paleoclimate Modelling Intercomparison Project (PMIP2).In CCSM,MIROC,IPSL,and FGOALS,the variability of the simulated SAM appears to be reduced in the LGM compared to the PI simulations,with a decrease in the standard deviation of the SAM index.Overall,four out of the five models suggest a weaker SAM amplitude in the LGM consistent with a weaker SH polar vortex and westerly winds found in some proxy records and model analyses.The weakening of the SAM in the LGM was associated with an increase in the vertical propagation of Rossby waves in southern high latitudes.  相似文献   

13.
BCC-ESM1 is the first version of the Beijing Climate Center’s Earth System Model,and is participating in phase 6 of the Coupled Model Intercomparison Project(CMIP6).The Aerosol Chemistry Model Intercomparison Project(AerChemMIP)is the only CMIP6-endorsed MIP in which BCC-ESM1 is involved.All AerChemMIP experiments in priority 1 and seven experiments in priorities 2 and 3 have been conducted.The DECK(Diagnostic,Evaluation and Characterization of Klima)and CMIP historical simulations have also been run as the entry card of CMIP6.The AerChemMIP outputs from BCC-ESM1 have been widely used in recent atmospheric chemistry studies.To facilitate the use of the BCC-ESM1 datasets,this study describes the experiment settings and summarizes the model outputs in detail.Preliminary evaluations of BCC-ESM1 are also presented,revealing that:the climate sensitivities of BCC-ESM1 are well within the likely ranges suggested by IPCC AR5;the spatial structures of annual mean surface air temperature and precipitation can be reasonably captured,despite some common precipitation biases as in CMIP5 and CMIP6 models;a spurious cooling bias from the 1960s to 1990s is evident in BCC-ESM1,as in most other ESMs;and the mean states of surface sulfate concentrations can also be reasonably reproduced,as well as their temporal evolution at regional scales.These datasets have been archived on the Earth System Grid Federation(ESGF)node for atmospheric chemistry studies.  相似文献   

14.
The three-member historical simulations by the Chinese Academy of Sciences Flexible Global Ocean–Atmosphere–Land System model, version f3-L(CAS FGOALS-f3-L), which is contributing to phase 6 of the Coupled Model Intercomparison Project(CMIP6), are described in this study. The details of the CAS FGOALS-f3-L model, experiment settings and output datasets are briefly introduced. The datasets include monthly and daily outputs from the atmospheric, oceanic, land and sea-ice component models of CAS FG...  相似文献   

15.
As a member of the Chinese modeling groups,the coupled ocean-ice component of the Chinese Academy of Sciences’Earth System Model,version 2.0(CAS-ESM2.0),is taking part in the Ocean Model Intercomparison Project Phase 1(OMIP1)experiment of phase 6 of the Coupled Model Intercomparison Project(CMIP6).The simulation was conducted,and monthly outputs have been published on the ESGF(Earth System Grid Federation)data server.In this paper,the experimental dataset is introduced,and the preliminary performances of the ocean model in simulating the global ocean temperature,salinity,sea surface temperature,sea surface salinity,sea surface height,sea ice,and Atlantic Meridional Overturning Circulation(AMOC)are evaluated.The results show that the model is at quasi-equilibrium during the integration of 372 years,and performances of the model are reasonable compared with observations.This dataset is ready to be downloaded and used by the community in related research,e.g.,multi-ocean-sea-ice model performance evaluation and interannual variation in oceans driven by prescribed atmospheric forcing.  相似文献   

16.
The authors explore the response of the Northern African (NAF) monsoon to orbital forcing in the Last Interglacial (LIG) compared with its response to greenhouses gas (GHG) forcing under the SSP5-8.5 scenario simulated in CMIP6. When the summer surface air temperature increases by 1 °C over the Northern Hemisphere, the NAF monsoon precipitation and its variability during the LIG increase by approximately 51% and 22%, respectively, which is much greater than under SSP5-8.5 (2.8% and 4.3%, respectively). GHG forcing enhances the NAF monsoon mainly by increasing the atmospheric moisture, while the LIG's orbital forcing intensifies the NAF monsoon by changing the monsoon circulation. During the LIG, models and data reconstructions indicate a salient hemispheric thermal contrast between the North and South Atlantic, strengthening the mean-state NAF monsoon precipitation. The interhemispheric temperature contrast enhances atmosphere–ocean interaction and the covariability of the northward sea surface temperature gradient and Saharan low, strengthening the NAF monsoon variability.摘要与人为强迫引起的全球变暖相比, 末次间冰期是轨道强迫引起的过去80万年来最暖的一个间冰期, 但鲜有人研究末次间冰期中北非季风的响应. 因此, 本文基于CMIP6多模式模拟结果对比研究了末次间冰期和SSP5–8.5情景下北非季风的响应, 发现末次间冰期下北非季风平均降水及其降水变率均远大于SSP5–8.5情景下的结果. 轨道强迫导致的北大西洋暖于南大西洋增加了北非季风环流和平均降水, 同时, 南北大西洋海温梯度变化通过增强热带北大西洋的海气相互作用增大了海温梯度和撒哈拉低压的变率, 从而增强了北非季风降水变率.  相似文献   

17.
对CMIP6全球气候模式在中国地区极端降水的模拟能力进行了综合评估.基于CN05.1观测数据集和32个CMIP6全球气候模式的降水数据,采用8个常用极端降水指数对极端降水进行了定量描述.研究结果表明,在极端降水的气候平均态方面,CMIP6多模式集合对1961—2005年中国地区区域平均的8个极端降水指数模拟的平均相对误...  相似文献   

18.
先前的观测研究表明,南太平洋四极子海温模态(SPQ)可以有效地作为ENSO的前兆信号.本文利用20个CMIP6模式及其对应的20个先前的CMIP5模式的工业化前气候模拟试验数据,评估和比较了CMIP6以及CMIP5模式对SPQ与ENSO的关系的模拟能力.结果表明,大多数CMIP5和CMIP6模式可以合理地模拟SPQ的基...  相似文献   

19.
作者使用国际耦合模式比较计划第六阶段(CMIP6)的历史模拟试验数据,评估了42个全球气候模式对1995-2014年新疆温度和降水气候态的模拟能力.结果表明,CMIP6模式能够合理模拟新疆年和季节的温度和降水气候态的空间分布.相较于观测,多模式中位数的年均,春季,夏季,秋季和冬季区域平均温度偏差分别为0.1℃,-1.6...  相似文献   

20.
In this study, we analyzed numerical experiments undertaken by 10 climate models participating in PMIP3(Paleoclimate Modelling Intercomparison Project Phase 3) to examine the changes in interannual temperature variability and coefficient of variation(CV) of interannual precipitation in the warm period of the Medieval Climate Anomaly(MCA) and the cold period of the Little Ice Age(LIA). With respect to the past millennium period, the MCA temperature variability decreases by 2.0% on average over the globe, and most of the decreases occur in low latitudes. In the LIA, temperature variability increases by a global average of 0.6%, which occurs primarily in the high latitudes of Eurasia and the western Pacific. For the CV of interannual precipitation, regional-scale changes are more significant than changes at the global scale, with a pattern of increased(decreased) CV in the midlatitudes of Eurasia and the northwestern Pacific in the MCA(LIA). The CV change ranges from-7.0% to 4.3%(from -6.3% to 5.4%), with a global average of -0.5%(-0.07%) in the MCA(LIA).Also, the variability changes are considerably larger in December–January–February with respect to both temperature and precipitation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号