共查询到19条相似文献,搜索用时 67 毫秒
1.
利用Landsat TM/ETM+/8 OLI和HJ1A遥感影像资料作为数据源,通过目视解译方法,提取念青唐古拉山脉西段雪线高度变化值,同时对研究区周边气温与降水变化趋势进行分析,研究其与冰川变化的关系。结果表明:2004~2013年北坡13条冰川和南坡15条冰川的雪线高度都呈升高的趋势;从整体上来考察,北坡雪线高度升高值为14 m/a,南坡升高值为4.9 m/a,北坡升高速度比南坡快;自1964年以来,研究区气温升高趋势显著,降水增加不明显,气候变暖是冰川退缩的主要原因;北坡冰川比南坡冰川经历更大的物质负平衡,主要是由于气温的升高率北坡比南坡快所致。 相似文献
2.
积雪是影响气候变化的重要因子,准确、及时的获取积雪覆盖范围,进行动态变化监测意义重大。利用MODIS数据进行土库曼斯坦积雪监测,提取积雪信息的研究较少。利用MODIS L1B 500 m分辨率数据,通过几何校正、去云预处理,应用归一化差分积雪指数(NDSI)算法和综合阈值判别法,获取了土库曼斯坦2011年11月~2012年4月山区积雪覆盖范围和面积等数据信息,揭示了土库曼斯坦山区积雪发生的时空特征。土库曼斯坦南部的科佩特山区是该国降雪的核心地区,积雪面积均在1月达到最大值,随后积雪面积随温度的升高而减少。山区积雪面积、月均气温、月降雨量之间存在着显著的相关性,其相关系数分别为0.742 9和0.568 4。结果表明,在监测时段积雪面积随气温的降低、降雨量的减少而增加。 相似文献
3.
青藏高原东南部海拔高,地形复杂,云量大,准确掌握该地区的积雪分布特征对于积雪灾害防治非常重要。论文以2013—2019年冬季积雪积累期云量符合要求的35景高分一号(GF-1)影像为基础,将全色影像和多光谱影像融合为2 m分辨率影像,通过目视解译获取了研究区积雪的空间分布特征,结合改进后的30 m分辨率SRTM DEM,探讨了地形对积雪分布的影响。结果表明:积雪像元在研究区范围内占比为33.1%。积雪的垂直分布特征明显:积雪在高程带4000~5000 m(高海拔)处分布较集中,积雪面积占比为18.1%;在高程带0~2000 m、2000~3000 m和6000~7000 m处积雪面积占比均不到0.1%。积雪在北坡、东北坡的分布比例较高,均为15%以上;在南坡、西坡、西南坡、东南坡分布比例较低,均为10%左右。将基于GF-1影像获取的积雪分布分别与同日获取的根据MODIS V6积雪产品计算的积雪比例(MODIS FSC)和积雪分布的对比表明,64.4%的MODIS FSC像元绝对误差不超过10%,MODIS积雪分布产品对含雪像元的漏分率和误分率平均为33.8%和32.7%,说明MODIS积雪产品在研究区的精度还具有较高的不确定性,其对低覆盖积雪反演的精度较差。这表明利用MODIS积雪产品研究青藏高原东南部积雪的时空变化特征时还需要对其积雪反演算法进行改进,同时亟需加强地面观测和基于多源遥感数据的积雪研究。研究结果可为青藏高原东南部雪冰灾害防治提供支撑。 相似文献
4.
介绍了EOS/MODHS数据特点。通过对雪的光谱特征分析,提出利用归一化积雪被指数NDSI结合归一化植被指数进行积雪信息提取的方法。并以2004年2月7日云南省大面积降雪过程为例,分析和讨论了该次过程的范围和面积。结果表明:MODIS数据在云南省积雪监测方面有很好的应用前景。 相似文献
5.
内蒙古、新疆、西藏、青海、甘肃和四川的草原区这6大牧区是中国重要的畜牧业生产基地,也是雪灾频发的区域,及时、准确地获取6大牧区雪情时空特征对于防灾减灾,指导畜牧业生产有着重要的现实意义。光学遥感与微波遥感各具优缺点,综合运用MODIS和AMSR-E数据构建草原积雪遥感监测模型,以日为监测单元,以旬为多日合成时段,对中国6大牧区在2008年10月上旬至2009年3月下旬间的草原积雪覆盖范围进行监测,并对监测结果进行检验,以此说明MODIS与AMSR-E数据在雪灾监测方面协同监测的可行性,为其他雪盖遥感监测研究提供参考。 相似文献
6.
雪盖信息在生态研究、水资源评价管理以及灾害防治中有重要的作用,MODIS利用冰雪指数(NDSI)和阈值提供全球每日积雪产品,微波遥感传感器AMSR-E提供南北半球不受云影响的雪水当量数据。通过融合同一天不同时间过境的MODIS积雪产品MOD10A1和MYD10A1为MOYD,融合MOYD和AMSR-ESWE积雪当量产品产生MODAM,以祁连山区气象站观测雪深数据为"真值",检验了2010-2011年积雪季MODIS积雪产品和AMSR-E识别积雪的精度,结果表明:MOYD产品和MODAM使云量减少了15%和100%,积雪精度和总体精度分别达到了24%、59%和88%、80%,通过融合多时相和多传感器数据大大提高了积雪监测精度,此外对祁连山积雪时间分布和不确定进行了分析。 相似文献
7.
利用EOS/MODIS可见光、近红外及短红外多通道资料以及新疆地区积雪深度气象台站实测资料等,在考虑积雪性质包括积雪粒子相态、积雪年龄等的差异以及积雪区的下垫面条件包括地表粗糙度、土地覆盖类型等的不同的情况下进行积雪分类,在此基础上,建立EOS/MODIS积雪深度反演模型,实现深度在30 cm以内的积雪深度反演的主要原理、思路及方法,并对模型的反演结果进行了验证。结果表明,利用该模型对30 cm以内的积雪进行深度反演计算,其精度能达到80%以上。 相似文献
8.
着眼于我国草原防灾减灾以及国家开展重特大雪灾应急响应工作的极迫切现实需求,基于NASA MODIS数据,以天为监测(响应)时间单元,以旬为监测集成时段,对2008年春节大雪灾期间我国草原积雪状况实现了系统的遥感监测,获取了2007年10月至2008年3月期间中国北方9省区草原积雪发生范围及其面积等数据信息,揭示了监测期间我国草原积雪发生的时空特征。青藏高原与内蒙古为我国持续降雪的核心区域,其他地区降雪情况随时间出现一定的波动;除东北地区外,积雪面积均在1月下旬达到最大值;各省区草原积雪面积占草原总面积的比例随时间的变化总体持续增加。 相似文献
9.
通过分析沙尘暴的波谱响应特征及EOS-Terra/MODIS传感器通道的特点,阐述了利用EOS-Terra/MODIS进行沙尘暴监测的机理,提出了利用MODIS进行沙尘暴监测的热红外双通道差值法、三通道彩色合成直方图均衡增强法及基于双通道域值的叠加分析法,并进行了示范比较研究。研究指出基于MODIS采用双通道法进行沙尘暴遥感监测有其局限性,不能快速、有效地提取沙尘暴信息。三通道彩色合成直方图均衡增强法直观判读效果较好,但缺少定量化分析。基于双通道域值的叠加分析法是一种集定量、定性分析于一体的监测方法,有利于对沙尘暴信息的准确提取,为利用MODIS数据进行沙尘暴监测提供了有效手段。 相似文献
10.
利用Terra卫星和Aqua卫星提供的2002年9月1日~2017年5月31日每日积雪覆盖产品MOD10C1和MYD10C1,提取蒙古高原积雪日数、积雪面积、积雪初日及积雪终日信息,得到蒙古高原积雪特征分布和变化趋势,同时,结合蒙古高原108个地面气象观测站的气温资料,分析研究区积雪变化特征和气温的关系。结果表明:(1)蒙古高原平均积雪日数在60~90 d之间,积雪初日主要分布在315~335 d之间,积雪终日大多集中在31~61 d之间,蒙古高原东部地区积雪初日有明显的提前趋势,西南地区积雪终日有明显的提前趋势。(2)积雪面积在积雪季内呈 “单峰型”,1月份为积雪面积最大月,年均积雪面积呈微弱的下降趋势。(3)最大积雪覆盖面积与温度具有明显的相关性,稳定积雪覆盖区的临界温度大概介于-11~-8 ℃之间。(4)温度是影响积雪特征变化的重要因素。 相似文献
11.
A major proportion of discharge in the Aksu River is contributed from snow-and glacier-melt water.It is therefore essential to understand the cryospheric dynamics in this area for water resource management.The MODIS MOD10A2 remotesensing database from March 2000 to December 2012 was selected to analyze snow cover changes.Snow cover varied significantly on a temporal and spatial scale for the basin.The difference of the maximum and minimum Snow Cover Fraction(SCF)in winter exceeded 70%.On average for annual cycle,the characteristic of SCF is that it reached the highest value of 53.2%in January and lowest value of 14.7%in July and the distributions of SCF along with elevation is an obvious difference between the range of 3,000 m below and 3,000 m above.The fluctuation of annual average snow cover is strong which shows that the spring snow cover was on the trend of increasing because of decreasing temperatures for the period of 2000-2012.However,temperature in April increased significantly which lead to more snowmelt and a decrease of snow cover.Thus,more attention is needed for flooding in this region due to strong melting of snow. 相似文献
12.
Because of similar reflective characteristics of snow and cloud, the weather status seriously affects snow monitoring using optical
remote sensing data. Cloud amount analysis during 2010 to 2011 snow seasons shows that cloud cover is the major limitation for
snow cover monitoring using MOD10A1 and MYD10A1. By use of MODIS daily snow cover products and AMSR-E snow water
equivalent products (SWE), several cloud elimination methods were integrated to produce a new daily cloud free snow cover
product, and information of snow depth from 85 climate stations in Tibetan Plateau area (TP) were used to validate the accuracy of
the new composite snow cover product. The results indicate that snow classification accuracy of the new daily snow cover product
reaches 91.7% when snow depth is over 3 cm. This suggests that the new daily snow cover mapping algorithm is suitable for
monitoring snow cover dynamic changes in TP. 相似文献
13.
Because of similar reflective characteristics of snow and cloud, the weather status seriously affects snow monitoring using optical remote sensing data. Cloud amount analysis during 2010 to 2011 snow seasons shows that cloud cover is the major limitation for snow cover monitoring using MOD10A1 and MYD10A1. By use of MODIS daily snow cover products and AMSR-E snow wa- ter equivalent products (SWE), several cloud elimination methods were integrated to produce a new daily cloud flee snow cover product, and information of snow depth from 85 climate stations in Tibetan Plateau area (TP) were used to validate the accuracy of the new composite snow cover product. The results indicate that snow classification accuracy of the new daily snow cover product reaches 91.7% when snow depth is over 3 cm. This suggests that the new daily snow cover mapping algorithm is suitable for monitoring snow cover dynamic changes in TP. 相似文献
14.
Using the snow cover fraction (SNC) output from eight WCRP CMIP3 climate models under SRES A2, A1B, and B1 scenarios,
the future trend of SNC over East Asia is analyzed. Results show that SNC is likely to decrease in East Asia, with the fastest
decrease in spring, then winter and autumn, and the slowest in summer. In spring and winter the SNC decreases faster in
the Qinghai-Xizang Plateau than in northern East Asia, while in autumn there is little difference between them. Among the
various scenarios, SRES A2 has the largest decrease trend, then A1B, and B1 has the smallest trend. The decrease in SNC is
mainly caused by the changes in surface air temperature and snowfall, which contribute differently to the SNC trends in different
regions and seasons. 相似文献
15.
基于2011-2015年MOD10A2积雪产品和气象数据,通过几何校正、去云预处理,应用归一化差分积雪指数算法等获取中国境内天山山区积雪覆盖面积数据,分析了积雪面积的时空变化特征及与气温降水的关系。结果表明:(1)年内积雪面积呈单峰变化,9月开始积累,次年1月达峰值,3月气温回暖消融加速,至7月最小。春秋季波动较大但没有明显的增减趋势,夏季积雪面积最小,冬季最大且呈减小趋势。(2)2001-2015年积雪覆盖面积整体上呈减少趋势,积雪覆盖率最大值的波动比最小值的波动更加剧烈。(3)积雪覆盖率随着海拔升高而增大,海拔<1 500 m区域积雪覆盖率低于10%,海拔>4 500 m以上区域平均可达70%,为常年稳定积雪区。积雪覆盖率在西北坡最高,南坡最低。(4)年均气温升高是积雪覆盖面积减小的主因,年积雪覆盖面积变化与年降水量变化保持一致的下降趋势。 相似文献
16.
We analyzed the spatial local accuracy of land cover (LC) datasets for the Qiangtang Plateau, High Asia, incorporating 923 field sampling points and seven LC compilations including the International Geosphere Biosphere Programme Data and Information System (IGBPDIS), Global Land cover mapping at 30 m resolution (GlobeLand30), MODIS Land Cover Type product (MCD12Q1), Climate Change Initiative Land Cover (CCI-LC), Global Land Cover 2000 (GLC2000), University of Maryland (UMD), and GlobCover 2009 (Glob-Cover). We initially compared resultant similarities and differences in both area and spatial patterns and analyzed inherent relationships with data sources. We then applied a geographically weighted regression (GWR) approach to predict local accuracy variation. The results of this study reveal that distinct differences, even inverse time series trends, in LC data between CCI-LC and MCD12Q1 were present between 2001 and 2015, with the exception of category areal discordance between the seven datasets. We also show a series of evident discrepancies amongst the LC datasets sampled here in terms of spatial patterns, that is, high spatial congruence is mainly seen in the homogeneous southeastern region of the study area while a low degree of spatial congruence is widely distributed across heterogeneous northwestern and northeastern regions. The overall combined spatial accuracy of the seven LC datasets considered here is less than 70%, and the GlobeLand30 and CCI-LC datasets exhibit higher local accuracy than their counterparts, yielding maximum overall accuracy (OA) values of 77.39% and 61.43%, respectively. Finally, 5.63% of this area is characterized by both high assessment and accuracy (HH) values, mainly located in central and eastern regions of the Qiangtang Plateau, while most low accuracy regions are found in northern, northeastern, and western regions. 相似文献
17.
以海拔依赖型变暖为理论基础,研究山地积雪对气候变暖的响应机制,是当前气候变化研究的热点问题。基于2000—2019年MODIS积雪物候数据,对秦岭南北积雪日数时空变化进行分析,探讨了秋冬两季厄尔尼诺指数(NINO)、青藏高原气压对积雪异常的影响。结果表明:(1) 2013年后秦岭南北气候由“变暖停滞”转为“增温回升”,积雪日数随之呈现转折下降,积雪日数≥10 d栅格占比由前期的35.1%下降为8.6%。(2)在垂直地带规律上,秦岭山地以1950~2000 m为临界点,大巴山区以1600~1650 m为临界点,低海拔地区积雪日数随海拔增加速率要低于高海拔地区。2100~3150 m海拔带是积雪日数的垂直变化的关键带;(3)在影响因素上,NINO C区、NINO Z区秋冬海温和青藏高原冬季高压,是秦岭山地、汉江谷地和大巴山区积雪异常的有效指示信号。当赤道太平洋中部秋冬海温偏低,且青藏高原冬季高压偏低时,上述3个子区积雪日数异常偏多。(4)在环流机制方面,相对于积雪日数偏少年,秦岭南北积雪日数偏多年1—2月0℃等温线位置偏南,低温环境为增加冰雪物质积累、延缓冰雪消融提供了气温条件;1月区域存... 相似文献
18.
MODIS snow products MOD10A1\MYD10A1 provided us a unique chance to investigate snow cover as well as its spatial-temporal variability in response to global changes from regional and global perspectives. By means of MODIS snow products MOD10A1\MYD10A1 derived from an extensive area of the Amur River Basin, mainly located in the Northeast part of China, some part in far east area of the former USSR and a minor part in Republic of Mongolia, the reproduced snow datasets after removal of cloud effects covering the whole watershed of the Amur River Basin were generated by using 6 different cloud-effect-removing algorithms. The accuracy of the reproduced snow products was evaluated with the time series of snow depth data observed from 2002 to 2010 within the Chinese part of the basin, and the results suggested that the accuracies for the reproduced monthly mean snow depth datasets derived from 6 different cloud-effect-removing algorithms varied from 82% to 96%, the snow classification accuracies (the harmonic mean of Recall and Precision) was higher than 80%, close to the accuracy of the original snow product under clear sky conditions when snow cover was stably accumulated. By using the reproduced snow product dataset with the best validated cloud-effect-removing algorithm newly proposed, spatial-temporal variability of snow coverage fraction (SCF), the date when snow cover started to accumulate (SCS) as well as the date when being melted off (SCM) in the Amur River Basin from 2002 to 2016 were investigated. The results indicated that the SCF characterized the significant spatial heterogeneity tended to be higher towards East and North but lower toward West and South over the Amur River Basin. The inter-annual variations of SCF showed an insignificant increase in general with slight fluctuations in majority part of the basin. Both SCS and SCM tended to be slightly linear varied and the inter-annual differences were obvious. In addition, a clear decreasing trend in snow cover is observed in the region. Trend analysis (at 10% significance level) showed that 71% of areas between 2,000 and 2,380 m a.s.l. experienced a reduction in duration and coverage of annual snow cover. Moreover, a severe snow cover reduction during recent years with sharp fluctuations was investigated. Overall spatial-temporal variability of Both SCS and SCM tended to coincide with that of SCF over the basin in general. 相似文献
19.
利用中亚北部额尔齐斯河流域2000-2008年的中分辨率成像光谱仪(Moderate ResolutionImaging Spectrometer,MOD IS)数据,分析了额尔齐斯河中亚段不同区域的归一化植被指数(Nor-malized D ifference Vegetation Index,NDVI)随季节变化的规律,并合成全年最大NDVI值代表当年植被最好时期的NDVI值,应用混合像元分解模型,计算研究区内的植被覆盖度并根据植被覆盖度的高低将研究区内的植被覆盖程度分为六个等级:无覆盖、极低覆盖度、低覆盖度、中覆盖度、中高覆盖度和高覆盖度。通过研究区内植被覆盖度的变化情况在一定程度上揭示研究区内植被变化情况。2000-2003年,研究区的植被覆盖水平有降低趋势,2003-2007年呈增加趋势,2007覆盖水平与2002年相近,2008年覆盖水平降低明显,为9 a来最低,是由研究区当年降水量减少引起;植被覆盖水平高的区域主要分布在研究区东北部的山区和西北部的平原区,植被覆盖水平较低的区域集中在流域中西部的干旱草原;高覆盖区域的植被覆盖年际变化幅度较中低覆盖区域的小。 相似文献
|