首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The datasets for the tier-1 Scenario Model Intercomparison Project(ScenarioMIP)experiments from the Chinese Academy of Sciences(CAS)Flexible Global Ocean-Atmosphere-Land System model,finite-volume version 3(CAS FGOALS-f3-L)are described in this study.ScenarioMIP is one of the core MIP experiments in phase 6 of the Coupled Model Intercomparison Project(CMIP6).Considering future CO2,CH4,N2O and other gases’concentrations,as well as land use,the design of ScenarioMIP involves eight pathways,including two tiers(tier-1 and tier-2)of priority.Tier-1 includes four combined Shared Socioeconomic Pathways(SSPs)with radiative forcing,i.e.,SSP1-2.6,SSP2-4.5,SSP3-7.0 and SSP5-8.5,in which the globally averaged radiative forcing at the top of the atmosphere around the year 2100 is approximately 2.6,4.5,7.0 and 8.5 W m?2,respectively.This study provides an introduction to the ScenarioMIP datasets of this model,such as their storage location,sizes,variables,etc.Preliminary analysis indicates that surface air temperatures will increase by about 1.89℃,3.07℃,4.06℃ and 5.17℃ by around 2100 under these four scenarios,respectively.Meanwhile,some other key climate variables,such as sea-ice extension,precipitation,heat content,and sea level rise,also show significant long-term trends associated with the radiative forcing increases.These datasets will help us understand how the climate will change under different anthropogenic and radiative forcings.  相似文献   

2.
The outputs of the Chinese Academy of Sciences(CAS) Flexible Global Ocean–Atmosphere–Land System(FGOALS-f3-L) model for the baseline experiment of the Atmospheric Model Intercomparison Project simulation in the Diagnostic,Evaluation and Characterization of Klima common experiments of phase 6 of the Coupled Model Intercomparison Project(CMIP6) are described in this paper. The CAS FGOALS-f3-L model, experiment settings, and outputs are all given. In total,there are three ensemble experiments over the period 1979–2014, which are performed with different initial states. The model outputs contain a total of 37 variables and include the required three-hourly mean, six-hourly transient, daily and monthly mean datasets. The baseline performances of the model are validated at different time scales. The preliminary evaluation suggests that the CAS FGOALS-f3-L model can capture the basic patterns of atmospheric circulation and precipitation well, including the propagation of the Madden–Julian Oscillation, activities of tropical cyclones, and the characterization of extreme precipitation. These datasets contribute to the benchmark of current model behaviors for the desired continuity of CMIP.  相似文献   

3.
Large-ensemble simulations of the atmosphere-only time-slice experiments for the Polar Amplification Model Intercomparison Project (PAMIP) were carried out by the model group of the Chinese Academy of Sciences (CAS) Flexible Global Ocean-Atmosphere-Land System (FGOALS-f3-L). Eight groups of experiments forced by different combinations of the sea surface temperature (SST) and sea ice concentration (SIC) for pre-industrial, present-day, and future conditions were performed and published. The time-lag method was used to generate the 100 ensemble members, with each member integrating from 1 April 2000 to 30 June 2001 and the first two months as the spin-up period. The basic model responses of the surface air temperature (SAT) and precipitation were documented. The results indicate that Arctic amplification is mainly caused by Arctic SIC forcing changes. The SAT responses to the Arctic SIC decrease alone show an obvious increase over high latitudes, which is similar to the results from the combined forcing of SST and SIC. However, the change in global precipitation is dominated by the changes in the global SST rather than SIC, partly because tropical precipitation is mainly driven by local SST changes. The uncertainty of the model responses was also investigated through the analysis of the large-ensemble members. The relative roles of SST and SIC, together with their combined influence on Arctic amplification, are also discussed. All of these model datasets will contribute to PAMIP multi-model analysis and improve the understanding of polar amplification.  相似文献   

4.
5.
This study documents simulated oceanic circulations and sea ice by the coupled climate system model FGOALS-f3-L developed at the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics,Institute of Atmospheric Physics, Chinese Academy of Sciences, under historical forcing from phase 6 of the Coupled Model Intercomparison Project(CMIP6). FGOALS-f3-L reproduces the fundamental features of global oceanic circulations, such as sea surface temperature(SST), ...  相似文献   

6.
Following the High-Resolution Model Intercomparison Project(HighResMIP) Tier 2 protocol under the Coupled Model Intercomparison Project Phase 6(CMIP6), three numerical experiments are conducted with the Chinese Academy of Sciences Flexible Global Ocean-Atmosphere-Land System Model, version f3-H(CAS FGOALS-f3-H), and a 101-year(1950–2050) global high-resolution simulation dataset is presented in this study. The basic configuration of the FGOALSf3-H model and numerical experiments design are brief...  相似文献   

7.
8.
This paper describes the datasets from the Scenario Model Intercomparison Project(ScenarioMIP) simulation experiments run with the Chinese Academy of Sciences Flexible Global Ocean–Atmosphere–Land System Model,GridPoint version 3(CAS FGOALS-g3). FGOALS-g3 is driven by eight shared socioeconomic pathways(SSPs) with different sets of future emission, concentration, and land-use scenarios. All Tier 1 and 2 experiments were carried out and were initialized using historical runs. A branch run method ...  相似文献   

9.
中国科学院全球海洋-大气-陆地耦合模式(FGOALS-f3-L)参加了耦合模式比较计划的第六阶段(CMIP6)试验,但是其对关键气候敏感地区青藏高原的地表温度的再现能力还不清楚.这项研究用再分析资料CFSR评估了FGOALS-f3-L模式对青藏高原地表温度的再现能力.结果表明,FGOALS-f3-L可以合理模拟整个高原上年平均地表温度的空间分布,但低估了整个高原上年平均地表温度.模拟的地表温度在整个高原上冬春季表现为冷偏差,夏秋季表现为暖偏差.基于地表能量平衡方程的进一步定量分析表明,地表反照率反馈(SAF)项极大地贡献了高原西部年平均,冬春季平均地表温度的冷偏差,而对高原东部是暖偏差贡献.与SAF项相比,地表感热项对地表温度偏差的贡献几乎相反,这大大抵消了SAF项引起的偏差.云辐射强迫项对高原东部的年平均和季节平均弱冷偏差有很大贡献.与高估的水蒸气含量有关的长波辐射项造成了夏秋季整个高原上大部分的暖偏差.该研究表明,提高FGOALS-f3-L中的陆面和云过程对降低高原上地表温度偏差至关重要.  相似文献   

10.
11.
The datasets of two Ocean Model Intercomparison Project(OMIP) simulation experiments from the LASG/IAP Climate Ocean Model, version 3(LICOM3), forced by two different sets of atmospheric surface data, are described in this paper. The experiment forced by CORE-II(Co-ordinated Ocean–Ice Reference Experiments, Phase II) data(1948–2009) is called OMIP1, and that forced by JRA55-do(surface dataset for driving ocean–sea-ice models based on Japanese 55-year atmospheric reanalysis) data(1958–2018) is ca...  相似文献   

12.
基于新耦合气溶胶气候模式FGOALS-f3-L模拟分析了2002-2011年青藏高原地区气溶胶时空分布特征.结果表明:青藏高原地区,沙尘,硫酸盐,碳质气溶胶(包括黑碳,有机碳和混合碳)地表质量浓度分别占比为53.6%,32.2%,14.2%;在拉萨站点,模拟的气溶胶地表质量浓度被低估,尤其是黑碳和有机碳气溶胶;模拟的气...  相似文献   

13.
The Flux-Anomaly-Forced Model Intercomparison Project(FAFMIP) is an endorsed Model Intercomparison Project in phase 6 of the Coupled Model Intercomparison Project(CMIP6). The goal of FAFMIP is to investigate the spread in the atmosphere–ocean general circulation model projections of ocean climate change forced by increased CO2, including the uncertainties in the simulations of ocean heat uptake, global mean sea level rise due to ocean thermal expansion and dynamic sea level change due...  相似文献   

14.
15.
The second version of the Chinese Academy of Sciences Earth System Model(CAS-ESM2.0)is participating in the Flux-Anomaly-Forced Model Intercomparison Project(FAFMIP)experiments in phase 6 of the Coupled Model Intercomparison Project(CMIP6).The purpose of FAFMIP is to understand and reduce the uncertainty of ocean climate changes in response to increased CO2 forcing in atmosphere-ocean general circulation models(AOGCMs),including the simulations of ocean heat content(OHC)change,ocean circulation change,and sea level rise due to thermal expansion.FAFMIP experiments(including faf-heat,faf-stress,faf-water,faf-all,faf-passiveheat,faf-heat-NA50pct and faf-heat-NA0pct)have been conducted.All of the experiments were integrated over a 70-year period and the corresponding data have been uploaded to the Earth System Grid Federation data server for CMIP6 users to download.This paper describes the experimental design and model datasets and evaluates the preliminary results of CAS-ESM2.0 simulations of ocean climate changes in the FAFMIP experiments.The simulations of the changes in global ocean temperature,Atlantic Meridional Overturning Circulation(AMOC),OHC,and dynamic sea level(DSL),are all reasonably reproduced.  相似文献   

16.
CMIP5模式对中国年平均气温模拟及其与CMIP3模式的比较   总被引:5,自引:0,他引:5  
利用CRUT3v和CN05两套观测资料,评估25个CMIP5模式对1906-2005年中国年平均气温变化的模拟能力,并与CMIP3模式对比。结果表明:1906-2005年中国平均温升速率为0.84℃/100a,CMIP5多模式集合平均模拟的增温率为0.77℃/100a。模式对20世纪后期温升模拟好于前期,仅有两个模式能模拟中国20世纪40年代异常增暖。模式对气温气候态空间分布模拟较好,但在中国西部地区存在最大模拟冷偏差和不确定性。1961-1999年,中国北方增暖大于南方。多模式集合平均可以较好地模拟气温变化线性趋势的空间分布,但对南北气温变化趋势的差异模拟过小。总体说来,在中国平均气温变化趋势、气温气候态空间分布和气温变化趋势空间分布三方面,CMIP5模式都较CMIP3模式有所提高。  相似文献   

17.
BCC-ESM1 is the first version of the Beijing Climate Center’s Earth System Model,and is participating in phase 6 of the Coupled Model Intercomparison Project(CMIP6).The Aerosol Chemistry Model Intercomparison Project(AerChemMIP)is the only CMIP6-endorsed MIP in which BCC-ESM1 is involved.All AerChemMIP experiments in priority 1 and seven experiments in priorities 2 and 3 have been conducted.The DECK(Diagnostic,Evaluation and Characterization of Klima)and CMIP historical simulations have also been run as the entry card of CMIP6.The AerChemMIP outputs from BCC-ESM1 have been widely used in recent atmospheric chemistry studies.To facilitate the use of the BCC-ESM1 datasets,this study describes the experiment settings and summarizes the model outputs in detail.Preliminary evaluations of BCC-ESM1 are also presented,revealing that:the climate sensitivities of BCC-ESM1 are well within the likely ranges suggested by IPCC AR5;the spatial structures of annual mean surface air temperature and precipitation can be reasonably captured,despite some common precipitation biases as in CMIP5 and CMIP6 models;a spurious cooling bias from the 1960s to 1990s is evident in BCC-ESM1,as in most other ESMs;and the mean states of surface sulfate concentrations can also be reasonably reproduced,as well as their temporal evolution at regional scales.These datasets have been archived on the Earth System Grid Federation(ESGF)node for atmospheric chemistry studies.  相似文献   

18.
As a member of the Chinese modeling groups,the coupled ocean-ice component of the Chinese Academy of Sciences’Earth System Model,version 2.0(CAS-ESM2.0),is taking part in the Ocean Model Intercomparison Project Phase 1(OMIP1)experiment of phase 6 of the Coupled Model Intercomparison Project(CMIP6).The simulation was conducted,and monthly outputs have been published on the ESGF(Earth System Grid Federation)data server.In this paper,the experimental dataset is introduced,and the preliminary performances of the ocean model in simulating the global ocean temperature,salinity,sea surface temperature,sea surface salinity,sea surface height,sea ice,and Atlantic Meridional Overturning Circulation(AMOC)are evaluated.The results show that the model is at quasi-equilibrium during the integration of 372 years,and performances of the model are reasonable compared with observations.This dataset is ready to be downloaded and used by the community in related research,e.g.,multi-ocean-sea-ice model performance evaluation and interannual variation in oceans driven by prescribed atmospheric forcing.  相似文献   

19.
基于6个CMIP6模式的日降水量数据,采用降尺度方法将其统一分辨率到0.25°×0.25°,选取5个极端降水指数从降水气候态、极端性、季节性三个角度对新疆区域1961—2014年历史期降水模拟效果评估。结果表明,降尺度CMIP6模式能较好再现新疆区域降水的空间分布特征,最大年均降水量误差小于30 mm,夏季降水模拟效果最佳相关系数均高于0.8。模式在春秋季对降水的模拟效果差异较小,标准差比值均在1.00 ~ 1.25之间,ACCESS-CM2模拟效果最佳。模式集合均值能模拟出观测降水增多趋势,但低估了降水的年际变率,模拟结果提示新疆80年代的降水转折可能与人类活动有关。在降水极端性和季节性方面,降尺度数据对新疆的极端降水和季节性降水均有较好的模拟性能,降尺度数据对季节性降水的模拟能力(与观测均值误差小于0.001)比原始分辨率的数据(与观测误差大于0.005)效果更好。  相似文献   

20.
This study evaluates the seasonal cycle of the activity of convectively coupled equatorial waves(CCEWs),including mixed Rossby-gravity(MRG) and tropical depression-type(TD-type) waves,based on the twentieth century experiments of 18 global climate models(GCMs) from the Coupled Model Intercomparison Project phase 3(CMIP3).The ensemble result of the 18 GCMs shows that the observed seasonal cycle of MRG and TD-type wave activity cannot be well reproduced.The seasonal transition of wave activity from the southern hemisphere to the northern hemisphere is delayed from April in the observations to May in the simulations,indicating that the simulated active season of tropical waves in the northern hemisphere is delayed and shortened.This delayed seasonal transition of tropical wave activity is associated with a delayed seasonal transition of simulated mean precipitation.The mean precipitation in April and May shows a double-ITCZ problem,and the horizontal resolution is important to the delayed seasonal transition of wave activity.Because of the coincident seasonal cycle of MRG and TD-type wave activity and tropical cyclone(TC) geneses,the delayed seasonal transition of wave activity may imply a similar problem of TC genesis in the GCMs,namely,a delayed and shortened TC season in the northern hemisphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号