共查询到16条相似文献,搜索用时 62 毫秒
1.
2.
针对高分辨率遥感影像背景复杂,道路提取容易受阴影、建筑物和铁路等背景信息干扰的问题,提出一种带有轻量级双注意力和特征补偿机制的DAFCResUnet模型。该模型在ResUnet的基础上,通过增加轻量级的双注意力和特征补偿模块实现模型在性能和时空复杂度上的平衡。其中,双注意力模块可以增强模型的特征提取能力,特征补偿模块可以融合网络中来自深浅层的道路特征。在DeepGlobe和GF-2道路数据集上的实验结果表明,DAFCResUnet模型的IoU和F1-score可以达到0.6713、0.8033和0.7402、0.8507,模型的整体精度优于U-Net、ResUnet和VNet模型。与U-Net和ResUnet模型相比,DAFCResUnet模型仅增加了少量的计算量和参数量,但IoU和F1-score均有较大幅度的提高;与VNet模型相比,DAFCResUnet模型在计算量和参数量远低于VNet的情况下取得了更高的精度,模型在精度和时空复杂度两方面均有优势。相比其他对比模型,DAFCResUnet模型具有更强的特征提取和抗干扰能力,能更好解决道路上的干扰物、与道路特征相似地物、树荫或阴影... 相似文献
3.
城市交通是经济社会发展的重要推动因素和枢纽,因此道路信息的提取与更新显得尤为重要。利用遥感图像来提取道路信息已经成为近年来道路提取的主要方法,但高分辨率遥感影像的快速发展与应用,在提供丰富信息的同时使道路提取变得更加困难。针对目前基于高分辨率遥感影像提取道路存在的问题,提出一种基于数学形态学和Hough变换的道路自动化提取方法。基于Hough变换确定道路的走向,在此基础上选定线性结构元素,利用数学形态学进行道路提取。分别选择IKONOS影像和Quickbird影像验证本文提出的模型。实验结果表明,本文提出的模型能有效地提取弯曲型道路与直线型道路,取得了较好的结果。 相似文献
4.
高分辨率遥感影像中,道路光谱信息丰富,且空间几何结构更清晰。但是,基于高分遥感影像的道路提取面临道路尺寸变化大、容易受树木、建筑物及阴影遮挡等因素影响,导致提取结果不完整。此外,高分遥感影像中同物异谱和异物同谱现象较为严重,从而影响道路提取结果连续性及细小道路信息完整性,而且难以区分道路和非道路不透水层。因此,本文提出基于双注意力残差网络的道路提取模型DARNet,利用深度编码网络,获取细粒度高阶语义信息,增强网络对细小道路的提取能力,通过嵌入串联式通道-空间双重注意力模块,获取道路特征图逐通道的全局语义信息,实现道路特征的高效表达及多尺度道路信息的深层融合,增强阴影和遮挡环境下网络模型的鲁棒性,改善道路提取细节缺失现象,实现复杂环境下高效、准确的道路自动化提取。本文在3个实验数据集对DARNet和DLinkNet、DeepLabV3+等5个对比模型进行对比试验和定量评估,结果表明,本文DARNet模型的F1分别为77.92%、67.88%和80.37%,高于对比模型。此外,定性比较表明,本文提出模型可以有效克服由于物体阴影、遮挡和高分影像光谱变化导致道路提取不准确与不完整问题,改善细... 相似文献
5.
结合Gabor小波和形态学的高分辨率图像树冠提取方法 总被引:2,自引:0,他引:2
树冠信息的遥感提取能有效辅助森林参数反演、林分长势监测、树种识别等森林调查活动。随着遥感信息自动化提取的需求不断加强,本文基于高空间分辨率遥感数据,以滁州市皇甫山林场为研究区域,设计了一种结合Gabor小波和形态学的树冠提取方法。该方法首先采用Gabor小波提取出纹理特征,其次结合K-means聚类分析方法,对PCA降维后的纹理特征向量提取出阔叶林区,最后基于形态学理论降低影像噪声,并利用前景后景标记的分水岭方法进行单木树冠提取。经过与人工解译的树冠信息结果对比发现,在郁闭度较高的阔叶林区,该自动化方法提取树冠精度较高,分割准确率Ad为79.59%,F测度达到了79.00%能有效提供精确的单木树冠信息,为林业经济调查技术的发展具有一定的实践意义。 相似文献
6.
高分辨率遥感影像阴影与立体像对提取建筑物高度比较研究 总被引:1,自引:0,他引:1
建筑物高度信息的快速准确获取对于城市规划管理、生态环境评价具有重要意义。本文以南京市主城区为研究区,选择2011年Geoeye-1卫星高分辨率遥感影像立体像对数据,结合Google Earth数据及实地建筑物高度测量,分别利用单幅遥感影像和立体像对计算建筑物高度,并以实测建筑物高度数据验证不同方法的提取精度,进而比较这2类方法的优缺点。结果表明:利用立体像对提取建筑物高度的方法更加精确,提取结果误差在2.8 m以内,能够快速地获取大范围建筑物高度,具有实用价值;单幅遥感影像阴影提取建筑物高度适用于建筑物高大、毗邻建筑物间隙大、周围无遮挡的情况,而立体像对提取建筑物高度不受建筑四周环境影响,在建筑物密集分布、高度均一的情况下,其普适性更强。 相似文献
7.
针对目前基于深度学习与高分辨率遥感影像的建筑物提取研究现状,本文提出了一种综合ResNet中的ResBlock残差模块和Attention注意力机制的改进型Unet网络(Res_AttentionUnet),并将其应用于高分辨率遥感影像建筑物提取,有效地提高了建筑物的提取精度。具体优化方法为:在传统的Unet语义分割网络卷积层中加入针对初高级特征加强提取的ResBlock残差模块,并在网络阶跃连接部分加入Attention注意力机制模块。其中,ResBlock残差模块使卷积后的特征图获取更多的底层信息,增强卷积结构的鲁棒性,从而防止欠拟合;Attention注意力机制可增强对建筑物区域像素的特征学习,使特征提取更完善,从而提高建筑物提取的准确率。本研究采用武汉大学季顺平团队提供的开放数据集(WHU Building Dataset)作为实验数据,并从中选取3个具有不同建筑物特征和代表性的实验区域,然后分别对不同实验区域进行预处理(包括滑动裁剪和图像增强等),最后分别使用Unet、ResUnet、AttentionUnet和Res_AttentionUnet 4种不同的网络模型对3个不同实验区进行建筑物提取实验,并对实验结果进行交叉对比分析。实验结果表明,与其他3种网络相比,本文所提出的Res_AttentionUnet在基于高分辨率遥感影像的建筑物提取中具有更高的精度,平均提取精度达到95.81%,相较于原始Unet网络提升17.94%,同时相较于仅加入残差模块的Unet网络(ResUnet)提升2.19%,能够显著地提升高分辨率遥感影像中建筑物提取的效果。 相似文献
8.
面向对象的高空间分辨率遥感影像道路信息的提取 总被引:8,自引:0,他引:8
遥感影像的道路信息提取是构建及更新地理空间数据库的一个重要组成部分。针对高空间分辨率遥感影像丰富的地物细节信息和突出的结构、纹理信息的特点,采用一种面向对象技术,实现了高空间分辨率影像道路信息提取。首先,利用面向对象的影像分割技术得到道路均值对象,然后挖掘高空间分辨率遥感影像中描述道路的光谱特征、几何特征及纹理特征,构建道路对象的知识库,实现了城郊重要道路信息的提取。与最大似然法相比,提取结果充分利用道路形状和纹理信息,能克服光谱特征的噪声现象,提取道路准确率高,为高空间分辨率遥感影像道路信息提取提供了一种新的途径。 相似文献
9.
卫星TM影像阴影消除方法的探讨 总被引:1,自引:0,他引:1
地形决定了地面电磁波反射的强弱,反射的强弱又决定了被动遥感影像的质量。卫星影像的阴影与地形密切相关,山势越陡峭,影像阴影越多。云南省菜阳河保护区山高坡陡,TM卫星影像的阴影也相对增加,占10%以上。这给判读带来了很大的不便。本文利用阴阳坡归一化探讨了地形阴影消除的方法,并在菜阳河保护区及其它保护区影像阴影消除中取得了很好的效果。 相似文献
10.
城市绿地信息在城市研究中的重要作用。但由于各种因素的影响,城市绿地信息提取的精度受到很大的限制,其中,城市中建筑物的阴影是城市绿地信息提取的一个重要限制因素。本研究选取呼和浩特市城区的QuickBird影像,在获取最佳波段组合的基础上,利用多种方法对遥感影像的阴影信息进行提取和消除,以期获得最佳的阴影消除方法,高效地提取城市绿地信息。首先,通过比值运算、波段重组,增强处理影像阴影信息,用最佳指数法分析QuickBird影像阴影提取的最佳波段组合;然后,根据阴影在近红外波段的最小亮度值与最大亮度值的范围建立掩膜,成功提取影像的阴影信息;最后,将色彩空间变换分别与同态滤波和Gamma矫正结合以消除影像阴影,并与其他方法进行对比。研究结果表明,QuickBird影像阴影提取的最佳波段组合为3/4、4、2波段组合,最佳亮度值范围为70-165;色彩空间变换与Gamma矫正相结合的方法可更好地消除阴影,并能较好地保留影像的彩色信息,是消除阴影的最佳方案。 相似文献
11.
基于高分辨率遥感影像的建筑物提取具有重要的理论与实际应用价值,深度学习因其优异的深层特征提取能力,已经成为高分影像提取建筑物的主流方法之一。本文在改进深度学习网络结构的基础上,结合最小外接矩形与Hausdorff距离概念,对建筑物提取方法进行改进。本文主要改进内容为:① 基于Unet网络结构,利用金字塔池化模块 (Pyramid Pooling Module, PPM )的多尺度场景解析特点,残差模块(Residual Block, RB)的特征提取能力以及卷积块注意力模块(Convolutional Block Attention Module, CBAM)对空间信息和通道信息的平衡能力。将金字塔池化、残差结构以及卷积块注意力模块引入到Unet模型中,建立PRCUnet模型。PRCUnet模型更关注语义信息和细节信息,弥补Unet对小目标检测的欠缺;② 基于最小外接矩形与Hausdorff距离,改进建筑物轮廓优化算法,提高模型的泛化能力。实验表明,本文的建筑物提取方法在测试集上准确率、IoU、召回率均达到0.85以上,精度显著优于Unet模型,提取出的建筑物精度更高,对小尺度及不规则的建筑物有较好的提取效果,优化后的建筑物轮廓更接近真实的建筑物边界。 相似文献
12.
不透水面是衡量城市生态环境状况的重要指标。城市土地利用的复杂性和不透水表面材料的多样性,导致直接从高分辨率遥感影像中提取不透水表面具有挑战性。针对城市尺度高分辨率遥感影像的不透水面提取要求,本文提出基于深度学习的城市不透水面提取模型。首先,利用深度卷积神经网络对影像特征进行提取;然后,根据其邻域关系构建概率图学习模型,进一步引入高阶语义信息对特征进行优化,实现不透水面的精确提取。本文选取武汉市为实验区,以高分二号卫星遥感影像作为数据源,完成了不透水面专题信息提取,其中自动提取准确率在建成区为89.02%、在城乡结合部为95.55%。与随机森林(RF)和支持向量机(SVM)等经典方法对比,结果表明深度学习不透水面提取方法有较高的提取精度和细节准确性,建成区的总体精度相比于RF和SVM算法分别提升2.18%和1.68%。最后,对武汉市各主要行政区不透水面信息进行统计和分析,结果表明其中江汉区和武昌区2个核心主城区不透水面占比超过60%,并对武汉市现状和发展规划特点进行了讨论。本文研究成果可为海绵城市和生态城市的建设提供基础技术支撑和数据参考。 相似文献
13.
建筑物的自动提取对城市发展与规划、防灾预警等意义重大.当前的建筑物提取研究取得了很好的成果,但现有研究多把建筑提取当成语义分割问题来处理,不能区分不同的建筑个体,且在提取精度方面仍然存在提升的空间.近年来,基于多任务学习的深度学习方法已在计算机视觉领域得到广泛应用,但其在高分辨率遥感影像自动解译任务上的应用还有待进一步... 相似文献
14.
为解决高分辨率遥感影像变化检测中存在底层特征缺乏语义信息、像元级的检测结果存在“椒盐”现象以及监督分类中样本标注自动化程度较低,本文提出一种基于超像元词包特征和主动学习的变化检测方法。首先采用熵率分割算法获取叠加影像的超像元对象;其次提取两期影像像元点对间的邻近相关影像特征(相关度、斜率和截距)和顾及邻域的纹理变化强度特征(均值、方差、同质性和相异性),经线性组合作为像元点对的底层特征;然后基于像元点对底层特征利用BOW模型构建超像元词包特征,并采用一种改进标注策略的主动学习方法从无标记样本池中优选信息量较大的样本,且自动标注样本类别;最后训练分类器模型完成变化检测。通过选用2组不同地区的GF-2影像和Worldview-Ⅱ影像作为数据源进行实验,实验结果中2组数据集的F1分数分别为0.8714、0.8554,正确率分别为0.9148、0.9022,漏检率分别为0.1681、0.1868,误检率分别为0.0852、0.0978。结果表明,该法能有效识别变化区域、提高变化检测精度。此外,传统主动学习方法与改进标注策略的主动学习方法的学习曲线对比显示,改进的标注策略可在较低精度损失下,有效提高样本标注自动化程度。 相似文献
15.
相对辐射校正是遥感变化检测中重要的预处理过程,伪不变地物(Pseudo-Invariant Features,PIF)是多时相影像中相对不变的地物,是相对辐射校正中的重要依据.针对高分遥感图像变化检测中相对辐射校正的要求,本文提出了一个自动提取和优化选择PIF的流程和方法:首先计算两期图像的亮度、光谱特征和空间特征的变... 相似文献
16.
在高分辨率遥感影像中提取建筑物轮廓是地区基础建设信息统计的一项重要任务。适应性较强的深度学习方法已在建筑物提取研究中取得较大进展,受网络模型对影像特征表达的局限性,存在局部建筑轮廓边缘模糊的问题。本研究提出一种基于注意力的U型特征金字塔网络(AFP-Net)可以聚焦高分遥感影像中不同形态的建筑物结构,实现建筑物轮廓的高效提取。AFP-Net模型通过基于网格的注意力阀门Attention Gates模块抑制输入影像中的无关区域,凸出影像中建筑物的显性特征;通过特征金字塔注意力Feature Pyramid Attention模块增加高维特征图的感受野,减少采样中的细节损失。基于WHU建筑物数据集训练优化AFP-Net模型,测试结果表明AFP-Net模型能够较清晰地识别出建筑物轮廓,在预测性能上有更好的目视效果,在测试结果的总体精度和交并比上较U-Net模型分别提高0.67%和1.34%。结果表明,AFP-Net模型实现了高分遥感影像中建筑物提取的结果精度及预测性能的有效提升。 相似文献