首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Power spectral density which describes frequency content is considered one of the most significant properties to be taken into account when generating ground motions through the use of stochastic processes. Using a smoothed and normalized Fourier amplitude spectrum, frequency content for components of motion along a set of principal axes is estimated. Fourier amplitude spectra obtained by this moving-window technique are presented which show the time dependency of frequency content for motions produced by the San Fernando earthquake of 9 February 1971. A mathematical model to simulate ground motion processes is proposed for which both the intensity and frequency content are non-stationary. Using this mathematical model with parameter characteristics along principal axes similar to those of the motions recorded during the San Fernando earthquake, three-dimensional ground motions are synthetically generated. The properties of the simulated motions show general characteristics similar to the characteristics observed in real accelerograms. The suggested model is considered adequate for engineering purposes.  相似文献   

2.
An orthogonal set of principal axes is defined for earthquake ground motions along which the component variances have maximum, minimum and intermediate values and the covariances equal zero. Corresponding axes are defined which yield maximum values for the covariances. The orthogonal transformations involved are identical in form to those used in the transformation of stress. Examination of real accelerograms reveals that the major principal axis points in the general direction of the epicentre and the minor principal axis is nearly vertical. It is concluded that artificially generated components of ground motion need not be correlated statistically provided they are directed along a set of principal axes.  相似文献   

3.
<正>Ground motion records are often used to develop ground motion prediction equations(GMPEs) for a randomly oriented horizontal component,and to assess the principal directions of ground motions based on the Arias intensity tensor or the orientation of the major response axis.The former is needed for seismic hazard assessment,whereas the latter can be important for assessing structural responses under multi-directional excitations.However,a comprehensive investigation of the pseudo-spectral acceleration(PSA) and of GMPEs conditioned on different axes is currently lacking.This study investigates the principal directions of strong ground motions and their relation to the orientation of the major response axis, statistics of the PSA along the principal directions on the horizontal plane,and correlation of the PSA along the principal directions on the horizontal plane.For these,three sets of strong ground motion records,including intraplate California earthquakes,inslab Mexican earthquakes,and interface Mexican earthquakes,are used.The results indicate that one of the principal directions could be considered as quasi-vertical.By focusing on seismic excitations on the horizontal plane,the statistics of the angles between the major response axis and the major principal axis are obtained;GMPEs along the principal axes are provided and compared with those obtained for a randomly oriented horizontal component;and statistical analysis of residuals associated with GMPEs along the principal directions is carried out.  相似文献   

4.
In this paper, we investigate the characteristics of three-component ground motions recorded during the $M_\text{w}\,5.2$ Val-des-Bois (Québec) earthquake, which occurred on the 23 June 2010. The earthquake is the largest recorded event in eastern Canada within the last decade. The records analyzed were provided by a strong motion monitoring network, comprising accelerometers located at sites with different soil conditions. The two orthogonal horizontal components and one vertical component at each recording station are uncorrelated to determine their principal directions, and the results obtained are used to characterize intensity ratios between the three uncorrelated components. A new hodograph representation is proposed to highlight the correlation between accelerations and displacement trajectories along various time increments at each recording station. The principal components are discussed in light of seismographic data, local site conditions, and trajectories. Time–frequency analyses of the uncorrelated records are also conducted to compare the distribution of spectral amplitudes and frequency content along the three principal components during the shaking. The results of this work shed more light on the characteristics of three-component ground motions from an important Eastern North America earthquake, and could be used to calibrate simulated multicomponent ground motions in this region.  相似文献   

5.
A method for generating an ensemble of orthogonal horizontal ground motion components with correlated parameters for specified earthquake and site characteristics is presented. The method employs a parameterized stochastic model that is based on a time‐modulated filtered white‐noise process with the filter having time‐varying characteristics. Whereas the input white‐noise excitation describes the stochastic nature of the ground motion, the forms of the modulating function and the filter and their parameters characterize the evolutionary intensity and nonstationary frequency content of the ground motion. The stochastic model is fitted to a database of recorded horizontal ground motion component pairs that are rotated into their principal axes, a set of orthogonal axes along which the components are statistically uncorrelated. Model parameters are identified for each ground motion component in the database. Using these data, predictive equations are developed for the model parameters in terms of earthquake and site characteristics and correlation coefficients between parameters of the two components are estimated. Given a design scenario specified in terms of earthquake and site characteristics, the results of this study allow one to generate realizations of correlated model parameters and use them along with simulated white‐noise processes to generate synthetic pairs of horizontal ground motion components along the principal axes. The proposed simulation method does not require any seed recorded ground motion and is ideal for use in performance‐based earthquake engineering. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
The seismic ground rotations are important with respect to spatial structural models, which are sensitive to the wave propagation. The rotational ground motion can lead to significant increasing of structural response, instability and unusual damages of buildings. Currently, the seismic analyses often take into account the rocking and torsion motions separately using artificial accelerograms. We present an exact analytical method, proposed by Nazarov [15] for computing of three rotational accelerograms simultaneously from given translational records. The method is based on spectral representation in the form of Fourier amplitude spectra of seismic waves, corresponding to the given three-component translational accelerogram. The composition, directions and properties of seismic waves are previously determined in the form of a generalized wave model of ground motion. It is supposed that seismic ground motion can be composed by superposition of P, SV, SH- and surface waves. As an example, the dynamic response analysis of 25-story building is presented. Here recorded (low-frequency) and artificial (high-frequency) accelerograms were used; each of them includes three translational and three rotational components. In this structural analysis, we have clarified primarily conditions under which rotational ground motion should be taken into account. Next, we have calculated three rotational components of seismic ground motion. Then they were taken as additional seismic loads components for further seismic analysis of the building. Note, soil–structure interaction (SSI) is not considered in this study. For computing, we use the special software for structural analyses and accelerogram processing (FEA Software STARK ES and Odyssey software, Eurosoft Co., Russia). It was developed and is used in engineering practice in the Central Research Institute of Building Constructions (TsNIISK, Moscow, Russia).  相似文献   

7.
In the present study the combined influence of seismic orientation and a number of parameters characterizing the structural system of Reinforced Concrete (R/C) buildings on the level of expected damages are examined. For the purposes of the above investigation eight medium‐rise buildings are designed on the basis of the current seismic codes. The structural characteristics examined are the ratio of the base shear received by the structural walls, the ratio of horizontal stiffness in two orthogonal directions and the structural eccentricity. Then, the buildings are analyzed by nonlinear time response analysis using 100 bidirectional earthquake ground motions. The two horizontal accelerograms of each ground motion are applied along horizontal orthogonal axes, forming 72 different angles with the structural axes. The structural damage is expressed in terms of the Park and Ang damage index. The results of the analyses revealed that the damage level of the buildings is strongly affected by the incident angle of the ground motion. The extent at which the orientation of the seismic records influences the damage response depends on the structural system and the distance of the record to the fault rupture. As a consequence, the common practice of applying the earthquake records along the structural axes can lead to significant underestimation of structural damage. Also, it was shown that the structural eccentricity can significantly differentiate the seismic damage level, as well as the impact of the earthquake orientation on the structural damage. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
双向地震动作用的拟等延性系数谱   总被引:1,自引:0,他引:1  
首先建立了以强度折减系数表述的恢复力特性满足二维屈服面模型的理想弹塑性单质点系统(它在2个相互垂直的主轴方向上分别具有水平平动自由度)在双向地震动作用下的归一化运动方程。然后引入单向地震动作用下等延性系数的强度折减系数谱,给出了双向地震动作用的拟等延性系数谱(定义为系统分别承受双向和单向地震动作用,在同一主轴方向上的最大位移反应之比)最后通过硬土场地10组双向地震动记录拟等延性系数谱的统计平均结果,分析了结构周期、位移延性系数和阻尼等因素对谱值及结构双向地震反应的影响。结果表明,双向地震动作用与单向地震动作用相比主要增加结构较长周期方向的最大位移反应。若在基于位移的抗震设计中降低结构较短周期方向的设计位移延性系数,可在一定程度上降低双向地震动的不利影响。因定义的谱为比值形式,阻尼对其影响不大。  相似文献   

9.
One of the severe problems in the semi-empirical method for the prediction of strong ground motions is that there is no objective criterion for choosing empirical Green's functions. It is undesirable that synthesized strong ground motions are affected by the source process of an earthquake whose record is adopted as an empirical Green's function. Through the analysis of strong motion accelerograms of two aftershocks of the 1983 Japan Sea earthquakes, it is found that characteristics of the accelerograms are dependent on the moment rate function derived from teleseismic observations. A procedure is presented for removing the effect of the source process from observed strong motion accelerograms. The thus obtained empirical Green's function expresses approximately the impulse response of the medium between the earthquake source and the observation site.  相似文献   

10.
The existence of the principal directions of the ground motion based on Arias intensity is well-known. These principal directions do not necessarily coincide with the orientations of recording sensors or with the orientations along which the ground motion parameters such as the peak ground acceleration and the pseudo-spectral acceleration (PSA) are maximum. This is evidenced by the fact that the maximum PSA at different natural vibration periods for horizontal excitations do not correspond to the same orientation. A recent analysis carried out for California earthquake records suggests that an orientation-dependent ground motion measurement for horizontal excitations can be developed. The main objective of this study is to investigate and provide seismic ground motion measurements in the horizontal plane, including bidirectional horizontal ground motions, for Mexican interplate and inslab earthquake records. Extensive statistical analyses of PSA are conducted for the assessment, The analysis results suggest that similar to the case of California records, the average behavior of the ratio of the PSA to the maximum resulting PSA can be approximated by a quarter of an ellipse in one quadrant; and that the ratio can be considered to be independent of the value of the maximum resulting PSA, earthquake magnitude, earthquake distance and the focal depth. Sets of response ratios and attenuation relationships that can be used to represent a bidirectional horizontal ground motion measurement for Mexican interplate and inslab earthquakes were also developed.  相似文献   

11.
With the aid of perturbation analysis of vibration frequencies and mode shapes it is shown that any lower vibration mode of a torsionally coupled building may be approximated as a linear combination of three vibration modes of the corresponding torsionally uncoupled system (a system with coincident centres of mass and resistance but all other properties are identical to the actual system): one translational mode along each of the two principal axes of resistance and one mode in torsional vibration. This result provides the motivation for a simpler—relative to the standard—procedure for analysing the response of torsionally coupled multistorey buildings to earthquake ground motion. To illustrate the application and accuracy of this procedure two numerical examples are presented.  相似文献   

12.
Stochastic ground motion simulation techniques are becoming increasingly popular because of enhanced computation power enabling direct simulation of complex response quantities. Priestley process assumption is the most general approach for stochastic modeling of earthquake ground motion. However, a framework for multicomponent ground motion simulation using the general Priestley process assumption is not available. Multicomponent motions are useful especially when the correlation structure between them significantly influences the response. The present study proposes a framework for frequency‐dependent principal component analysis (PCA), which facilitates Priestley process–based simulation of multicomponent ground motions. The study focuses only on the frequency‐dependent PCA part, and the results show high dependency of the principal components/directions on the frequency bands of the signals. The present work also advocates that the frequency‐dependent PCA should be preferred to the conventional PCA as the former can address the issues related to the frequency‐independent uniform modulation associated with the latter.  相似文献   

13.
Estimating ground motions using recorded accelerograms   总被引:1,自引:0,他引:1  
A procedure for estimating ground motions using recorded accelerograms is described. The premise of the study is the assumption that future ground motions will be similar to those observed for similar site and tectonic situations in the past. Direct techniques for scaling existing accelerograms have been developed, based on relative estimates of local magnitude,M L . Design events are described deterministically in terms of fault dimension, tectonic setting (stress drop), fault distance, and site conditions. A combination of empirical and theoretical arguments is used to develop relationships betweenM L and other earthquake magnitude scales. In order to minimize scaling errors due to lack of understanding of the physics of strong ground motion, the procedure employs as few intermediate scaling laws as possible. The procedure conserves a meaningful measure of the uncertainty inherent when predicting ground motions from simple parameterizations of earthquake sources and site conditions.  相似文献   

14.
基于小波变换的拟合规范反应谱多维地震动模拟   总被引:1,自引:0,他引:1  
本文提出一种基于小波变换的拟合规范反应谱的多维地震动模拟算法。首先将规范反应谱推广到三维相关设计反应谱,然后将已有的三维地震动加速度时间历程曲线分解为一系列不同频段上的地震动分量,调整每一个地震动分量的幅值使其在相应的频率范围内拟合设计反应谱,最后经过调整后的地震动分量进行重构得到更新的地震动时间历程曲线。将该时间历程曲线的反应谱与目标反应谱进行比较,重复该过程直到误差位于特定的范围内。该方法可以保留原始地震动的局部时-频特性,为多维地震动的模拟提供了一种新的方法。  相似文献   

15.
The paper examines the effect on the structural response of the inevitable correlation which exists between the six earthquake components acting along a set of structural axes. The rotational components are expressed in terms of the spatial derivatives of the translational components. For the calculation of response, modal analysis is employed so that ground response spectra can also be used as seismic input. A methodology is developed to obtain the maximum mean square response which can occur in a structure, irrespective of its orientation with respect to the impinging seismic waves. The application of this methodology for the calculation of design response is advocated, especially for asymmetric structures. For the assumed model of seismic wave motion, the numerical results show a significant contribution to the response from the rotational components. This contribution is, however, expected to be reduced by structural foundation averaging and interaction effects. Further studies with more complete models of seismic wave motions, and their interaction with structural foundations, are thus warranted for a realistic evaluation and characterization of the rotational inputs for design purposes.  相似文献   

16.
The modified stochastic finite fault modelling technique based on dynamic corner frequency has been used to simulate the strong ground motions of M w 4.8 earthquake in the Kachchh region of Gujarat, India. The accelerograms have been simulated for 14 strong motion accelerographs sites (11 sites in Kachchh and three sites in Saurashtra) where the earthquake has been recorded. The region-specific source, attenuation and generic site parameters, which are derived from recordings of small to moderate earthquakes, have been used for the simulations. The main characteristics of the simulated accelerograms, comprised of peak ground acceleration (pga), duration, Fourier and response spectra, predominant period, are in general in good agreement with those of observed ones at most of the sites. The rate of decay of simulated pga values with distance is found to be similar with that of observed values. The successful modelling of the empirical accelerograms indicates that the method can be used to prepare wide range of scenarios based on simulation which provide the information useful for evaluating and mitigating the seismic hazard in the region.  相似文献   

17.
A parameterized stochastic model of near‐fault ground motion in two orthogonal horizontal directions is developed. The major characteristics of recorded near‐fault ground motions are represented. These include near‐fault effects of directivity and fling step; temporal and spectral non‐stationarity; intensity, duration, and frequency content characteristics; directionality of components; and the natural variability of ground motions. Not all near‐fault ground motions contain a forward directivity pulse, even when the conditions for such a pulse are favorable. The proposed model accounts for both pulse‐like and non‐pulse‐like cases. The model is fitted to recorded near‐fault ground motions by matching important characteristics, thus generating an ‘observed’ set of model parameters for different earthquake source and site characteristics. A method to generate and post‐process synthetic motions for specified model parameters is also presented. Synthetic ground motion time series are generated using fitted parameter values. They are compared with corresponding recorded motions to validate the proposed model and simulation procedure. The use of synthetic motions in addition to or in place of recorded motions is desirable in performance‐based earthquake engineering applications, particularly when recorded motions are scarce or when they are unavailable for a specified design scenario. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
A previously developed response‐spectrum‐based procedure for computing the envelope that bounds the time‐varying realizations of Mohr's circle at any prescribed location within a two‐dimensional structure is extended for use with three‐dimensional structures subjected to as many as three translational components of ground acceleration. The proposed envelope, which is completely defined by quantities that are routinely used and calculated in conventional response spectrum analyses, is developed for the general case in which the principal directions of the earthquake, along which the ground accelerations are uncorrelated, are unknown. The accuracy of the proposed envelope is evaluated by comparing it to the results of an ensemble of time‐history analyses performed on a concrete arch dam using simulated accelerograms. It is found that the proposed envelope has a level of accuracy that is suitable for structural design and analysis. The largest observed difference between the simulated and predicted mean envelopes is less than 5%. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

19.
A numerical approach to the earthquake ground motion analysis is proposed for regions where no accelerograms are available. Using Haskell matrix techniques, the response spectra of a layered substratum for SV waves were calculated and then multiplied by the spectra corresponding to Brune's type pulses. The ground acceleration spectra were obtained for different angles of pulse incidence at the substratum base. The spectrum shape depends upon the substratum response and the pulse shape, while its level was related to the maximum ground acceleration corresponding to the expected maximum intensity. Transformation of the ground spectra into the time domain produced numerical accelerograms for horizontal and vertical components and for different angles of pulse incidence. Finally, a standard statistical procedure was applied to obtain the design response spectra used in engineering applications.  相似文献   

20.
Powell's method for minimizing a function of several variables without calculating derivatives is applied to recorded earthquake motion on the ground surface to identify ground characteristics that have irregular profiles. The identifications are made by designating the shear wave velocity depth and width of the irregularity of surface ground as unknown parameters and are based on the least square fit between the amplitude of the transfer function determined from accelerograms recorded at two observation sites and the corresponding transfer function calculated from the response analysis of a ground model. The discrete wave number method is used to analyze the response of ground with a non-uniform profile for the incidence of SH waves. The effect of the initial assumed values on the convergence is studied by evaluating the square error between the theoretical transfer function and that calculated from the parameters identified. The dispersive trend found for the accelerograms is explained by the calculated response of a ground model with a non-uniform profile.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号