首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The sea-ice concentration in the Northern Hemisphere, 500 hPa height, sea-level pressure and 1000-500 hPa thickness of monthly mean data are examined for the period 1953-1989, with emphasis on the winter season.Relationships between large-scale patterns of atmospheric variability and sea-ice variability are investigated, making use of the correlation method. The analysis is conducted for the Atlantic sectors. In agreement with earlier studies based upon monthly mean data on sea-ice concentration, the strongest sea-ice pattern is composed of a dipole with opposing centers of action in the Davis Straits / Labrador Sea region and the Greenland and Barents Seas. Its temporal variability is strongly coupled to the atmospheric North Atlantic Oscillation (NAO). The relationship between the two patterns is strongest with the atmosphere leading the ocean. The polarity of the NAO is associated with Greenland blocking episodes, during which the influence of the atmosphere is strong enough to temporarily halt the c  相似文献   

2.
Synoptic-scale atmospheric circulation patterns drive wind forcing of dynamic and thermodynamic processes in Arctic sea ice. Synoptic typing and compositing are common techniques used to identify a limited number of prevailing weather classifications that govern a region's climate. This work investigates atmospheric circulation patterns (surface to 250?hPa) for the southern Beaufort Sea and corresponding surface wind regimes within each synoptic type. Significant changes (p?<?0.05) in relative frequencies of a number of synoptic types were attributed to declining summer sea ice. Corresponding upper-level circulation anomalies show increasingly meridional atmospheric circulation. Synoptic Types 9 and 11 were identified as key October-November-December circulation features that represent deepening of the Aleutian low with concomitant strengthening of pressure gradients over the southern Beaufort Sea. Classification of coastal-based wind observations shows a shift towards increased easterly wind forcing. A case study of surface wind data from the CCGS Amundsen (2009–2011) provided a direct example of the surface wind regime within the marginal ice zone within each synoptic type during a period of reduced Arctic sea-ice cover.  相似文献   

3.
A thermodynamic-dynamic sea-ice model based on a granular material rheology developed by Tremblay and Mysak is used to study the interannual variability of the Arctic sea-ice cover during the 41-year period 1958–98. Monthly wind stress forcing derived from the National Centers for Environmental Prediction (NCEP) Reanalysis data is used to produce the year-to-year variations in the sea-ice circulation and thickness. We focus on analyzing the variability of the sea-ice volume in the Arctic Basin and the subsequent changes in sea-ice export into the Greenland Sea via Fram Strait. The relative contributions of the Fram Strait sea-ice thickness and velocity anomalies to the sea-ice export anomalies are first investigated, and the former is shown to be particularly important during several large export events. The sea-ice export anomalies for these events are next linked to prior sea-ice volume anomalies in the Arctic Basin. The origin and evolution of the sea-ice volume anomalies are then related to the sea-ice circulation and atmospheric forcing patterns in the Arctic. Large sea-ice export anomalies are generally preceded by large volume anomalies formed along the East Siberian coast due to anomalous winds which occur when the Arctic High is centered closer than usual to this coastal area. When the center of this High relocates over the Beaufort Sea and the Icelandic Low extends far into the Arctic Basin, the ice volume anomalies are transported to the Fram Strait region via the Transpolar Drift Stream. Finally, the link between the sea-ice export and the North Atlantic Oscillation (NAO) index is briefly discussed. The overall results from this study show that the Arctic Basin and its ice volume anomalies must be considered in order to fully understand the export through Fram Strait. Received: 27 January 1999 / Accepted: 8 July 1999  相似文献   

4.
The ongoing loss of Arctic sea-ice cover has implications for the wider climate system. The detection and importance of the atmospheric impacts of sea-ice loss depends, in part, on the relative magnitudes of the sea-ice forced change compared to natural atmospheric internal variability (AIV). This study analyses large ensembles of two independent atmospheric general circulation models in order to separate the forced response to historical Arctic sea-ice loss (1979–2009) from AIV, and to quantify signal-to-noise ratios. We also present results from a simulation with the sea-ice forcing roughly doubled in magnitude. In proximity to regions of sea-ice loss, we identify statistically significant near-surface atmospheric warming and precipitation increases, in autumn and winter in both models. In winter, both models exhibit a significant lowering of sea level pressure and geopotential height over the Arctic. All of these responses are broadly similar, but strengthened and/or more geographically extensive, when the sea-ice forcing is doubled in magnitude. Signal-to-noise ratios differ considerably between variables and locations. The temperature and precipitation responses are significantly easier to detect (higher signal-to-noise ratio) than the sea level pressure or geopotential height responses. Equally, the local response (i.e., in the vicinity of sea-ice loss) is easier to detect than the mid-latitude or upper-level responses. Based on our estimates of signal-to-noise, we conjecture that the local near-surface temperature and precipitation responses to past Arctic sea-ice loss exceed AIV and are detectable in observed records, but that the potential atmospheric circulation, upper-level and remote responses may be partially or wholly masked by AIV.  相似文献   

5.
The seasonal mean variability of the atmospheric circulation is affected by processes with time scales from less than seasonal to interannual or longer. Using monthly mean data from an ensemble of Atmospheric General Circulation Model (AGCM) realisations, the interannual variability of the seasonal mean is separated into intraseasonal, and slowly varying components. For the first time, using a recently developed method, the slowly varying component in multiple AGCM ensembles is further separated into internal and externally forced components. This is done for Southern Hemisphere 500?hPa geopotential height from five AGCMs in the CLIVAR International Climate of the Twentieth Century project for the summer and winter seasons. In both seasons, the intraseasonal and slow modes of variability are qualitatively well reproduced by the models when compared with reanalysis data, with a relative metric finding little overall difference between the models. The Southern Annular Mode (SAM) is by far the dominant mode of slowly varying internal atmospheric variability. Two slow-external modes of variability are related to El Ni?o-Southern Oscillation (ENSO) variability, and a third is the atmospheric response to trends in external forcing. An ENSO-SAM relationship is found in the model slow modes of variability, similar to that found by earlier studies using reanalysis data. There is a greater spread in the representation of model slow-external modes in winter than summer, particularly in the atmospheric response to external forcing trends. This may be attributable to weaker external forcing constraints on SH atmospheric circulation in winter.  相似文献   

6.
Freshwater (FW) leaves the Arctic Ocean through sea-ice export and the outflow of low-salinity upper ocean water. Whereas the variability of the sea-ice export is known to be mainly caused by changes in the local wind and the thickness of the exported sea ice, the mechanisms that regulate the variability of the liquid FW export are still under investigation. To better understand these mechanisms, we present an analysis of the variability of the liquid FW export from the Arctic Ocean for the period 1950–2007, using a simulation from an energy and mass conserving global ocean–sea ice model, coupled to an Energy Moisture Balance Model of the atmosphere, and forced with daily winds from the NCEP reanalysis. Our results show that the simulated liquid FW exports through the Canadian Arctic Archipelago (CAA) and the Fram Strait lag changes in the large-scale atmospheric circulation over the Arctic by 1 and 6 years, respectively. The variability of the liquid FW exports is caused by changes in the cyclonicity of the atmospheric forcing, which cause a FW redistribution in the Arctic through changes in Ekman transport in the Beaufort Gyre. This in turn causes changes in the sea surface height (SSH) and salinity upstream of the CAA and Fram Strait, which affect the velocity and salinity of the outflow. The SSH changes induced by the large-scale atmospheric circulation are found to explain a large part of the variance of the liquid FW export, while the local wind plays a much smaller role. We also show that during periods of increased liquid FW export from the Arctic, the strength of the simulated Atlantic meridional overturning circulation is reduced and the ocean heat transport into the Arctic is increased. These results are particularly relevant in the context of global warming, as climate simulations predict an increase in the liquid FW export from the Arctic during the twenty-first century.  相似文献   

7.
 The origin and space-time evolution of Beaufort-Chukchi Sea ice anomalies are studied using data and a recently developed dynamic-thermodynamic sea-ice model. First, the relative importance of anomalies of river runoff, atmospheric temperature and wind in creating anomalous sea-ice conditions in the Beaufort-Chukchi Sea is investigated. The results indicate that wind anomalies are the dominant factor responsible for creating interannual variability in the Beaufort-Chukchi Sea ice cover. Temperature anomalies appear to play a major role for longer time scale fluctuations, whereas the effects of runoff anomalies are small. The sea-ice model is then used to track the position of a positive sea-ice anomaly as it is transported by the Beaufort Gyre toward the Transpolar Drift Stream and then exported out of the Arctic Basin into the Greenland Sea via Fram Strait. The model integration shows that sea-ice anomalies originating in the western Beaufort Sea can survive a few seasonal cycles as they propogate through the Arctic Basin and can account for a notable amount of anomalous ice export into the Greenland Sea. These anomalies, however, represent a small contribution to the fresh water budget in this area when compared with sea-ice fluctuations generated by interannually varying local winds. Received: 1 May 1997/Accepted: 22 October 1997  相似文献   

8.
Recently, there is increasing evidence on the interaction of atmospheric high-frequency (HF) variability with climatic low-frequency (LF) variability. In this study, we examine this relationship of HF variability with large scale circulation using idealized experiments with an aqua-planet Atmospheric GCM (with zonally uniform SST), run in different zonal momentum forcing scenarios. The effect of large scale circulation changes to the HF variability is demonstrated here. The HF atmospheric variability is enhanced over the westerly forced region, through easterly vertical shear. Our study also manifests that apart from the vertical wind shear, strong low-level convergence and horizontal zonal wind shear are also important for enhancing the HF variance. This is clearly seen in the eastern part of the forcing, where the HF activity shows relatively maximum increase, in spite of similar vertical shear over the forced regions. The possible implications for multi-scale interaction (e.g. MJO–ENSO interaction) are also discussed.  相似文献   

9.
北太平洋海气界面湍流热通量的年际变化   总被引:3,自引:1,他引:3  
郑建秋  任保华  李根 《大气科学》2009,33(5):1111-1121
本文采用美国伍兹霍尔海洋研究所客观分析海气通量项目提供的1958~2006年月平均的湍流热通量及相关气象场数据, 利用EOF分析、小扰动方法、线性回归、相关分析等方法研究了北太平洋海气界面湍流热通量年际变化的时空特征、 影响因子及其与大气环流的关系。结果表明, 北太平洋湍流热通量的年际变化在冬季最为显著。我国东部海域及其向中东太平洋的延伸部分为冬季潜热通量和感热通量年际变化的关键区。冬季潜热通量的年际变化在副热带太平洋和菲律宾海域主要受风速变化影响, 在北太平洋的高纬和低纬海域尤其是赤道中太平洋主要受比湿差变化影响, 而冬季感热通量的年际变化在整个北太平洋都主要受海气温差变化影响。受大尺度环流影响, 异常低压中心的东 (西) 侧海气比湿差和海气温度差偏小 (偏大), 所以异常低压中心的东 (西) 侧潜热输送和感热输送偏弱 (偏强)。  相似文献   

10.
Atmospheric forcing of Fram Strait sea ice export: a closer look   总被引:2,自引:0,他引:2  
Fram Strait is the primary region of sea ice export from the Arctic and therefore plays an important role in regulating the amount of sea ice and freshwater within the Arctic. We investigate the variability of Fram Strait sea ice motion and the role of atmospheric circulation forcing using daily data during the period 1979–2006. The most prominent atmospheric driver of anomalous sea ice motion across Fram Strait is an east–west dipole pattern of Sea Level Pressure (SLP) anomalies with centers of action located over the Barents Sea and Greenland. This pattern, also observed in synoptic studies, is associated with anomalous meridional winds across Fram Strait and is thus physically consistent with forcing changes in sea ice motion. The association between the SLP dipole pattern and Fram Strait ice motion is maximized at 0-lag, persists year-round, and is strongest on time scales of 10–60 days. The SLP dipole pattern is the second empirical orthogonal function (EOF) of daily SLP anomalies in both winter and summer. When the analysis is repeated with monthly data, only the Barents center of the SLP dipole remains significantly correlated with Fram Strait sea ice motion. However, after removing the leading EOF of monthly SLP variability (e.g., the North Atlantic Oscillation), the full east–west dipole pattern is recovered. No significant SLP forcing of Fram Strait ice motion is found in summer using monthly data, even when the leading EOF is removed. Our results highlight the importance of high frequency atmospheric variability in forcing Fram Strait sea ice motion.  相似文献   

11.
This study analyzes the variability of northern Eurasian snow cover(SC) in autumn and the impacts of atmospheric circulation changes. The region of large SC variability displays a southward shift from September to November, following the seasonal progression of the transition zones of surface air temperature(SAT). The dominant pattern of SC variability in September and October features a zonal distribution, and that in November displays an obvious west–east contrast. Surface air cooling and snowfall increase are two factors for larger SC. The relative contribution of SAT and snowfall changes to SC, however, varies with the region and depends upon the season. The downward longwave radiation and atmospheric heat advection play important roles in SAT changes. Anomalous convergence of water vapor flux contributes to enhanced snowfall.The changes in downward longwave radiation are associated with those in atmospheric water content and column thickness.Changes in snowfall and the transport of atmospheric moisture determine the atmospheric moisture content in September and October, and the snowfall appears to be a main factor for atmospheric moisture change in November. These results indicate that atmospheric circulation changes play an important role in snow variability over northern Eurasia in autumn. Overall, the coupling between autumn Eurasian snow and atmospheric circulation may not be driven by external forcing.  相似文献   

12.
Several studies have analysed the atmospheric response to sea-ice changes in the Arctic region, but only few have considered the Antarctic. Here, the atmospheric response to sea-ice variability in the Southern Hemisphere is investigated with the atmospheric general circulation model ECHAM5. The model is forced by the present and a projected future seasonal cycle of Antarctic sea ice. In September, the mean atmospheric response exhibits distinct similarities to the structure of the negative phase of the Southern Annular Mode, the leading mode of Southern Hemisphere variability. In the reduced Antarctic sea-ice integration, there is an equatorward shift of the Southern Hemisphere mid-latitude jet and the storm tracks. In contrast to a recent previous study, our findings indicate that a substantial impact of Southern Hemispheric future sea-ice reduction on the mid-latitude circulation cannot be ruled out.  相似文献   

13.
Centennial climate variability during the Holocene has been simulated in two 10,000 year experiments using the intermediate-complexity ECBilt model. ECBilt contains a dynamic atmosphere, a global 3-D ocean model and a thermodynamic sea-ice model. One experiment uses orbital forcing and solar irradiance forcing, which is based on the Stuiver et al. residual 14C record spliced into the Lean et al. reconstruction. The other experiment uses orbital forcing alone. A glacier model is coupled off-line to the climate model. A time scale analysis shows that the response in atmospheric parameters to the irradiance forcing can be characterised as the direct response of a system with a large thermal inertia. This is evident in parameters like surface air temperature, monsoon precipitation and glacier length, which show a stronger response for longer time scales. The oceanic response, on the other hand, is strongly modified by internal feedback processes. The solar irradiance forcing excites a (damped) mode of the thermohaline circulation (THC) in the North Atlantic Ocean, similar to the loop-oscillator modes associated with random-noise freshwater forcing. This results in a significant peak (at time scales 200–250 year) in the THC spectrum which is absent in the reference run. The THC response diminishes the sea surface temperature response at high latitudes, while it gives rise to a signal in the sea surface salinity. A comparison of the model results with observations shows a number of encouraging similarities.  相似文献   

14.
极冰气候效应的数值试验   总被引:1,自引:0,他引:1  
杨梅玉  刘屹岷  李骥 《气象学报》1998,56(4):476-484
利用一个大气环流模式(AGCM)和一个全球耦合海气模式(COAGCM),模拟了北极海冰边界范围的变化对月平均气候的影响。结果表明,极冰边缘的异常完全可以改变中高纬度某些地区的局地气候。受冷源的影响,北半球中高纬度冷高压加强,低纬度暖高压减弱。同时利用一个全球三维大气环流模式,作了海冰反照率参数化的数值试验,用两种不同的海冰反照率参数化方案,检验对地表面温度、海平面气压、极地表面对太阳辐射吸收的影响。模拟试验表明了冰雪圈反照率的反馈作用,对气候变化的影响十分重要。  相似文献   

15.
16.
Sea surface temperature (SST) variations include negative feedbacks from the atmosphere, whereas SST anomalies are specified in stand-alone atmospheric general circulation simulations. Is the SST forced response the same as the coupled response? In this study, the importance of air–sea coupling in the Indian and Pacific Oceans for tropical atmospheric variability is investigated through numerical experiments with a coupled atmosphere-ocean general circulation model. The local and remote impacts of the Indian and Pacific Ocean coupling are obtained by comparing a coupled simulation with an experiment in which the SST forcing from the coupled simulation is specified in either the Indian or the Pacific Ocean. It is found that the Indian Ocean coupling is critical for atmospheric variability over the Pacific Ocean. Without the Indian Ocean coupling, the rainfall and SST variations are completely different throughout most of the Pacific Ocean basin. Without the Pacific Ocean coupling, part of the rainfall and SST variations in the Indian Ocean are reproduced in the forced run. In regions of large mean rainfall where the atmospheric negative feedback is strong, such as the North Indian Ocean and the western North Pacific in boreal summer, the atmospheric variability is significantly enhanced when air–sea coupling is replaced by specified SST forcing. This enhancement is due to the lack of the negative feedback in the forced SST simulation. In these regions, erroneous atmospheric anomalies could be induced by specified SST anomalies derived from the coupled model. The ENSO variability is reduced by about 20% when the Indian Ocean air–sea coupling is replaced by specified SST forcing. This change is attributed to the interfering roles of the Indian Ocean SST and Indian monsoon in western and central equatorial Pacific surface wind variations.  相似文献   

17.
A global fine resolution curvilinear ocean model, forced by NCEP Re-Analysis fluxes, is used to study changes in the circulation of the Nordic Seas and surrounding ocean basins during 1994-2001. The model fields exhibit regionally distinct temporal variability, mostly determined by atmospheric forcing but in regions of significant sea-ice longer timescale variability is found. Some abrupt circulation changes accompany the relaxation of the westerlies following the peak North Atlantic Oscillation Index phase of the mid 1990s. The Greenland gyre spins up over the following years, with the increased circulation partially exiting through the Denmark Strait into the northern Atlantic as well as re-circulating within the Nordic Seas. This resulted in a distinct freshening around northern Iceland and an increase in the East Icelandic Current. However, these latter increases steadied after 1998, as the increased Greenland Sea gyre circulation led to a greater proportion of water leaving through the Denmark Strait, rather than re-circulating. The model Denmark Strait Outflow therefore doubles during the latter half of the 1990s. Increased convection in the Icelandic Sea in the model in 1998-2001 acted to obliterate the anomalies that would otherwise have fed into the East Icelandic Current. A fresh, cold anomaly from the Arctic during 1998/1999 is shown to propagate through the system. Model and observations show good agreement generally, but diverge at depth more in the last few years of the simulation. The model shows that density anomalies within the East Greenland Current do not exclusively derive from the Arctic but may also arise from air-sea interaction within the Greenland Sea. Convection is a major means of limiting anomaly propagation within the model. The contrast of climatological with daily forcing shows the inherent strength of the variability in the ocean circulation on sub-decadal timescales.  相似文献   

18.
We review the century time scale climatic variability that is observed in high-resolution proxy data records covering the past 10 000 yr. Cyclic variations with time scales ranging from 50 to 400 yr occur in oxygen isotope ratios derived from ice cores, tree-ring index series, pollen records and sea-ice extents. Century time scale cycles can also be identified in some biological and historical records and in long-term instrumental observations. In order to appreciate the century scale cycles in the context of climatic variability in general, a brief survey of all climatic time scales is presented.The traditional interpretation that decadal-to-century scale fluctuations in the climate system are externally forced, e.g. by variations in solar properties, is questioned. A different mechanism for these fluctuations is proposed on the basis of recent findings of numerical models of the ocean's thermohaline circulation. The results indicate that this oceanic circulation exhibits natural variability on the century time scale which produces oscillations in the ocean-to-atmosphere heat flux. Although global in extent, these fluctuations are largest in the Atlantic Ocean.  相似文献   

19.
The estimates of spatiotemporal variability of climatic parameters in West Siberia are obtained over the period of 1976-2014. It is revealed that this variability is affected by the parameters of atmospheric circulation such as wind speed components, relative vorticity, and large-scale circulation indices. It is found that in winter the warming changed into the cooling that is particularly associated with the change in atmospheric circulation patterns described by the SCAND index.  相似文献   

20.
To what extent is tropical variability forced from the North Pacific through ocean pathways relative to locally generated variability and variability forced through the atmosphere? To address this question, in this study we use an anomaly-coupled model, consisting of a global, atmospheric general circulation model and a 4½-layer, reduced-gravity, Pacific-Ocean model. Three solutions are obtained; with coupling over the entire basin (CNT), with coupling confined to the tropics and wind stress and heat fluxes in the North and South Pacific specified by climatology (TP), and with coupling confined to the Tropics and wind stress and heat fluxes in the North Pacific specified by output from CNT (NPF). It is found that there are two distinct signals forced in the North Pacific that can impact the tropics through ocean pathways. These two signals are forced by wind stress and surface heat flux anomalies in the subtropical North Pacific. The first signal is relatively fast, impacts tropical variability less than a year after forcing, is triggered from November to March, and propagates as a first-mode baroclinic Rossby wave. The second signal is only triggered during springtime when buoyancy forcing can effectively generate higher-order baroclinic modes through subduction anomalies into the permanent thermocline, and it reaches the equator 4–5 years after forcing. The slow signal is found to initiate tropical variability more efficiently than the fast signal with one standard deviation in subtropical zonal wind stress forcing tropical SST anomalies centered on the equator at 135°W of approximately 0.5°C. Allowing extratropically forced tropical variability is found to shift primarily 2-year ENSO variability in a tropics-alone simulation to a more realistic range of 2–6 years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号