首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 62 毫秒
1.
基于随机森林算法的草原地上生物量遥感估算方法研究   总被引:1,自引:0,他引:1  
草原是我国面积最大的陆地生态系统,生物量是反映生态系统质量和功能的关键指标,准确地掌握草原生物量对草原资源合理利用、生态修复、畜牧业高质量发展都具有重要的意义和作用.本研究以内蒙古锡林郭勒盟为研究区,利用高分一号遥感卫星影像,结合216个野外样本数据,采用随机森林算法(Random Forest,RF)对草原地上生物量...  相似文献   

2.
不同机器学习预测滑坡易发性的建模过程及其不确定性有所差异, 另外如何有效识别滑坡易发性的主控因子意义重大。针对上述问题, 以支持向量机(support vector machine, 简称SVM)和随机森林(random forest, 简称RF)为例探讨了基于机器学习的滑坡易发性预测及其不确定性, 创新地提出了"权重均值法"来综合计算出更准确的滑坡主控因子。首先获取陕西省延长县滑坡编录和10类基础环境因子, 将因子频率比值作为SVM和RF的输入变量; 再将滑坡与随机选择的非滑坡样本划分为训练集和测试集, 用训练好的机器学习预测出滑坡易发性并制图; 最后用受试者工作曲线、均值和标准差等来评估建模不确定性, 并计算滑坡主控因子。结果表明: ①机器学习能有效预测出区域滑坡易发性, RF预测的滑坡易发性精度高于SVM, 而其不确定性低于SVM, 但两者的易发性分布规律整体相似; ②权重均值法计算出延长县滑坡主控因子依次是坡度、高程和岩性。实例分析和文献综述显示RF模型相较于其他机器学习模型属于可靠性较高的易发性模型。   相似文献   

3.
植被总初级生产力(GPP)作为衡量陆地生态系统健康的重要指标,可直接反映区域环境状况和改善情况,因此准确估算植被GPP变化对区域可持续发展具有重要意义。本文利用中国及日本涡度通量观测数据,构建了基于CatBoost算法融合地形特征的GPP估算模型;并将模型应用于具有复杂地形特征的福建省,实现了该省GPP长时序模拟。研究结果表明:(1)地形特征是GPP机器学习估算的重要参数,融合地形特征建模的GPP模拟结果精度明显提高,均方根误差(RMSE)下降16%。(2) CatBoost GPP估算模型有效降低了传统GPP估算模型和常用机器学习(随机森林和支持向量机)GPP估算模型中存在的高估和低估现象,模型拥有更高的精度和更强的鲁棒性。本文GPP模拟精度:决定系数(R2)为0.888,RMSE为1.164 gC·m-2·day-1,平均绝对误差(MAE)为0.773 gC·m-2·day-1。(3)基于CatBoost GPP估算模型模拟的福建省多年GPP变化与GOSIF GPP估算结果...  相似文献   

4.
机器学习在崩塌滑坡泥石流地质灾害易发性分析评价领域已得到广泛的研究性应用,非灾害样本的选取是易发性建模过程中的关键问题,传统随机抽样和手工标注方法可能存在随机性和主观性。将土质崩塌易发性评价视为正例无标记(positive and unlabeled,简称PU)学习,提出了一种结合信息量(information value,简称IV)和间谍技术(Spy)的两步卷积神经网络(convolutional neural networks,简称CNN)框架(ISpy-CNN)。以广州市黄埔区崩塌编录和15类基础环境因子,通过信息量模型筛选出部分低信息量样本;采用间谍技术训练CNN模型,从低信息量样本中识别出具有高置信度的可靠负例划分为非崩塌样本;分别基于该学习框架、传统间谍技术和随机抽样,使用支持向量机(support vector machine,简称SVM)和随机森林(random forest,简称RF)对比验证。结果表明,ISpy-CNN框架在验证集上的准确率、F1值、敏感度和特异度较随机采样分别提升了6.82%,6.82%,6.82%,8.23%,较传统Spy技术分别提升了2.86%...  相似文献   

5.
全面准确地描述街景影像的多层次特征在基于街景影像对街道空间品质进行评估的研究中具有重要意义。以广州市越秀区为例,获取前后左右各视角街景影像中手工设计的特征(SURF特征、HOG特征)和基于深度学习的特征(语义特征),基于单一特征和多特征融合采用支持向量机(Support Vector Machine, SVM)、随机森林(Random Forest, RF)训练各视角的评估模型。结果表明,以基于SVM建立的单特征模型为例,基于HOG特征(73.03%)、语义特征(72.28%)的模型平均精度优于SURF特征(56.00%),基于SVM前后左右各视角模型的最优分类精度为82.8%(前)、81.7%(后)、76.6%(左)、76.6%(右),而基于RF各视角模型的最优分类精度为82.8%(前)、85.0%(后)、78.1%(左)、70.3%(右)。前后视角的模型精度略优于左右视角。各视角最优模型均为多特征融合模型,最优模型平均分类精度和Kappa系数可达80.6%和0.62。利用街景影像评估街道空间品质时,各算法之间性能差异微弱,而特征选择及组合方式是提升精度的关键。越秀区街道空间品质存在明显空间分异,其西南部的街道空间品质亟待提升。本研究构建了基于街景影像多特征融合的大规模高精度街道空间品质测度方法,实现了对越秀区街道空间品质的评估,研究结果可为相关部门进行街道环境综合整治提供参考。  相似文献   

6.
依据洪灾风险概念模型,从触发因子、孕灾环境和承灾体3方面选取江西省的12个洪灾风险指标,采用k近邻、随机森林、AdaBoost 3种机器学习算法构建洪灾风险评价模型。利用精度、Kappa系数、ROC曲线(AUC值)3种定量评估指标评价洪灾风险模型,基于随机森林和Boruta特征提取算法共同分析指标重要性,最后对比3种模型绘制的江西省山洪灾害风险分区图并分析山洪灾害分布特征。结果表明:① AdaBoost模型的精度、Kappa系数和AUC值的平均值为别为0.902、0.870和0.826,精度和Kappa系数略优于随机森林,AUC值与随机森林相当,而k近邻模型的3种性能指标均低于前2种算法;② 农田生产潜力、年最大6 h暴雨均值、年最大1 h暴雨均值、归一化差值植被指数、年降雨量均值这5个指标对最终的洪灾风险形成具有非常重要作用;③ 江西省较高风险区与最高风险区的面积和约占江西省总面积的34.4%,且主要分布于高降雨量、高暴雨量、农田生产潜力大的山区。  相似文献   

7.
基于支持向量机的京津冀城市群热环境时空形态模拟   总被引:1,自引:0,他引:1  
城市群热环境作为区域生态重要组成部分,已成为近年来的研究热点。而如何选择针对城市群这种复杂地地貌特征的热环境量化工具一直是亟待解决的技术难点,基于此本研究提出了一种解决多样本、非线性、非平稳及高维函数拟合的计算方法,并建立了基于支持向量机(SVM)的京津冀城市群热环境曲面模型来揭示城市群热环境的时空形态变化。研究结果表明:① SVM模型在刻画多核心、多种土地利用类型城市群热环境的空间分布方面具有理论与实践可行性,能够根据热环境的整体空间布局通过高斯核函数进行局部优化差值,最大限度减少缺省值对模型拟合结果的影响。相比于对照方法可以模拟出更高精度的复杂地貌特征城市群热岛空间分布格局;② 在SVM模型曲面拟合的过程中,拟合精度和拟合时间是衡量拟合结果的重要指标,而原始影像的分辨率则是影响该指标的决定性因素;③ 2003-2013年区域内北京市与天津市的城市热岛效应变化最为明显,热岛面积分别增加7091 km2与4196 km2,空间上呈现出逐年接近连片发展趋势,热岛重心移动轨迹具有明显的时空分异性。北京城市热岛特征为东南部地区异速增长,西部地区缓慢增长;天津城市热岛特征为以城市中心为圆心向周围扩展。本研究进一步丰富了城市群热环境评测的定量方法,可以在实践上对城市群的城市规划、城市建设、环境保护和区域可持续发展等提供定量化、可视化的决策支持。  相似文献   

8.
气象变量常作为重要的影响因子出现在环境污染、疾病健康和农业等领域,而高分辨率的气象资料可作为众多研究的基础数据,对推进相关研究的发展意义重大。本文以中国大陆为研究区域,利用2015年824个气象站点的气温、相对湿度和风速3套数据,结合不同的解释变量组合,分别构建了各自的GAM和残差自编码器神经网络(简称残差网络)模型,以10倍交叉验证判断模型是否过拟合。研究结果表明:① GAM和残差网络方法都不存在过拟合问题,同GAM相比,残差网络显著提高了模型预测的精度(3个气象因素的交叉验证CV R2平均提高了0.21,CV RMSE平均降低了37%),其中相对湿度模型的提升幅度最大(CV R2:0.85 vs. 0.52,CV RMSE:7.53% vs. 13.59%);② 残差模型的结果较普通克里格插值结果和再分析资料更接近站点观测数据,表明残差网络可作为高分辨率气象数据研制的可靠方法。此外,研究还发现在相对湿度模型中加入臭氧浓度和气温、在风速模型中加入GLDAS风速再分析资料,可提升模型的性能。  相似文献   

9.
基于机器学习的稀疏样本下的土壤有机质估算方法   总被引:1,自引:0,他引:1  
采用GRNN(Generalized Regression Neural Network)和RF(Random Forest)2种机器学习方法构建土壤有机质预测模型,以提高稀疏样本情况下的土壤有机质估算精度。依据北京市大兴区农用地2007年的土壤有机质采样数据,按MMSD准则(Minimization of the Mean of the Shortest Distances)抽稀为8种不同采样密度的样本(分别为2703、1352、676、339、169、85、43、22个样本),分别采用GRNN、RF和Ordinary kriging对各采样密度下的未知采样点进行预测,采用交叉检验的方式验证各采样密度下未知样点的预测精度。随着采样点密度的下降,样点间的空间自相关性逐渐减弱,半变异函数的拟和精度变差,预测点结果误差增大,预测的置信度降低。当抽稀到43个和22个采样点时,样点间的空间自相关性接近歼灭,半变异函数的决定系数较低且残差较大。普通克里格受到采样点数量和采样密度、样点的空间结构的影响比较明显,其预测精度随采样点数量的下降而下降。在85个采样点及以下时,其预测值与观测值之间没有显著的相关性。GRNN和RF的预测精度受采样密度的影响不大,其预测精度在一个较小的范围内波动,其预测值围绕观测值在一定阈值空间内震荡波动,具有较好的相关性,在85个及以下的采样密度时,预测精度相对普通克里格有较大的提升。普通克里格法不适合在稀疏样本条件下空间插值计算,尤其是在空间自相关性比较弱的情况下。机器学习模型能充分学习土壤间环境信息、样点空间邻近效应信息,兼顾属性相似性和空间自相关,具有更好的稳定性和适应性,不容易受到采样点数量、构型和采样密度等因素的影响,即使在采样点空间自相关性很弱的情况下也能做出稳定预测精度。  相似文献   

10.
为提高现有多源影像无监督变化检测方法存在的检测结果易受噪声影响和计算效率低等问题,本文提出了一种基于分层极限学习机影像转换的多源影像变化检测方法。分层极限学习机(Hierarchical Extreme Learning Machine,HELM)通过多层前向编码获得丰富的特征表示,且当特征提取完成即可确定网络参数。本文方法首先通过对合成孔径雷达(Synthetic Aperture Radar,SAR)影像进行对数转换,以获得与光学影像相同的影像噪声分布,并利用影像平滑减少影像噪声对变化检测结果的影响;然后分别对多源影像进行聚类分析,通过对比两时相影像的聚类图获得初始变化检测图,选取初始变化检测图中的未变化区域的像元作为初始训练样本,构建训练样本修正模型修正初始训练样本以提高训练样本的准确性;引入HELM以实现多源影像特征空间转换,获取多时相空间转换影像,提高了算法效率;最后通过对比原始影像和多时相空间转换影像获取变化信息。两组多源影像(Google Earth和哨兵1号影像)的实验结果表明:与现有方法相比,本文方法的Kappa系数分别至少提高了6.19%和8.94%,证明了本文方法...  相似文献   

11.
区域作为人类、自然、社会共同作用和互相影响的复杂系统,对区域进行生态量化建模与模拟仿真,是实现区域可持续发展战略的关键。传统机器学习方法对区域生态系统建模取得了一定的成果,但难以确定学习特征和实现时空模拟。深度学习不需事先确定训练特征,具有优异的特征学习能力,能够提高模型预测精度,因此利用深度学习进行建模具有显著优势。本文使用植被净初级生产力(NPP)、气溶胶光学厚度(AOD)和人口格网数据,充分利用深度学习的优点,采用最优深度神经网络时空模拟,得到了河南省2007-2014年3 km分辨率的生态赤字空间分布图和河南省2015-2020年的生态赤字时间预测结果并进行分析,为区域生态的科学管理和建设供科学依据和参考。  相似文献   

12.
基于面向对象与深度学习的榆树疏林识别方法研究   总被引:1,自引:0,他引:1  
榆树疏林是浑善达克沙地中一种特殊的植被类型,它对于维持区域生态系统稳定具有重要意义,在防风固沙、涵养水源、调节气候等方面发挥着重要的作用。本文利用无人机影像与GF-2影像,对高分辨率数据源中榆树疏林的两种自动识别方法进行了研究。在面向对象方法中,首先通过计算影像对象的局部方差变化率得到了最佳分割尺度;其次采用随机森林算法对初选特征的重要性进行排序,并删除无关特征;最后分别对支持向量机(SVM)、随机森林(RF)、深度神经网络(DNN)3种分类器进行参数寻优与榆树疏林提取。此外,在ENVI5.5中基于TensorFlow框架,利用U-Net构建深度学习模型对榆树疏林进行了提取,并与面向对象方法进行对比。结果显示:① 通过面向对象方法过程的优化,最终的识别精度较以往研究有所提升,GF-2影像中SVM总体精度为90.14%,RF总体精度为 90.57%,DNN总体精度为91.14%;无人机影像中SVM总体精度为97.70%, RF与DNN总体精度为97.42%。② 深度学习方法中,GF-2影像的总体精度为91.00%,无人机影像的总体精度达到了98.43%。研究结果说明在榆树疏林提取中,无人机影像具有更高的空间分辨率,更丰富的纹理、形状等信息,能达到比GF-2影像更高的精度。面向对象方法对于2种影像都有较高的适用性;深度学习的方法在本文中更适用于无人机影像,它可以有效地减少无人机影像中的错分现象。  相似文献   

13.
理解城市环境对人类感知的影响,对城市合理规划及布局具有重要的人文参考价值。城市环境是一个动态变化的复杂系统,具有空间异质性的特点。由于研究方法的限制,在复杂的城市环境中,以往基于街景图像的城市感知研究难以全面精细地分析环境关键要素对人类感知的影响。本研究以武汉市中心为研究区,首先利用全卷积神经网络将街景图像分割为城市地物类型,耦合感知打分数据和随机森林算法建立6类城市感知模型;然后基于沙普利值方法分解在随机森林模型中各类城市地物对人类感知的影响,并识别城市环境关键要素;最后结合分解结果,探究在非线性模型中沙普利值方法的适用性和优势。结果表明:沙普利值方法能够有效考虑环境异质性,精确地定量表示在不同场景中各类地物对人类感知的影响;城市高楼、天空、绿地空间是对人类感知影响最大的3类地物,且地物的体积和分布与其对人类感知的影响有关,图像占比大、分布连续的地物对人类感知的影响比图像占比小、分布离散的地物对人类感知的影响大;受城市环境空间异质性的影响,主要地物类型对各类感知的影响程度和形式有显著不同;高楼与人类感知为非线性关系,且具有明显的单调递增或递减的形式;绿地空间与积极感知呈非线性关系,与...  相似文献   

14.
通过对《国际汉语能力标准》的考察,同时与《欧洲语言共同参考框架:学习、教学、评估》比较,发现《国际汉语能力标准》存在三个方面的问题:结构不合理、内容有缺失以及评级等级标准不科学,以此研究结果为《国际汉语能力标准》的修订提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号