首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
古亚洲洋与古特提斯洋关系初探   总被引:1,自引:0,他引:1  
李文渊 《岩石学报》2018,34(8):2201-2210

从板块构造研究中国古生代洋陆关系和构造-岩浆-成矿作用,离不开对古亚洲洋和古特提斯洋的关系判断,特别是对于中国西北部的研究,两个古生代大洋形成演化和关系是理清重要地质构造和成矿事件的关键。本文认为早古生代的原特提斯洋与古亚洲洋应连为一体,合称古亚洲-原特提斯洋,简称古亚洲洋。古亚洲洋是发育于早古生代劳亚大陆与冈瓦纳大陆之间的大洋,金川超大型铜镍矿床的形成是元古宙罗迪尼亚超大陆裂解三叉裂谷开启大洋的开始,塔里木陆块作为古亚洲洋南岸的一个陆块,早古生代的昆仑洋、祁连洋和秦岭洋只是古亚洲洋的分支或次生洋盆,这些次生洋盆于志留纪末闭合,古亚洲洋主洋则直到晚古生代泥盆纪末才闭合。石炭纪天山及邻区是古亚洲洋闭合后板块构造后碰撞机制与地幔柱作用提供热动力的两种地球动力学机制并存的构造背景,为大规模壳幔混合(染)岩浆作用和成矿爆发提供了可能。古特提斯洋是古亚洲洋在晚古生代的发展和继承,东昆仑夏日哈木超大型铜镍矿床的产生是冈瓦纳大陆北侧志留纪末破裂三叉裂谷开启大洋的开始,塔里木和华北等泛华夏陆块群构成了古特提斯洋北岸陆缘,石炭纪大洋形成,西昆仑玛尔坎苏大型优质锰矿可能就形成于大洋北侧被动大陆边缘的浅海或陆表海,成矿物质则很可能来自于同时代的大洋中脊。德尔尼大型铜钴矿为晚石炭世大洋中脊塞浦路斯型块状硫化物矿床。而铜峪沟大型铜矿和大场大型金矿等则分别为古特提斯洋消减俯冲岛弧岩浆作用矽卡岩-斑岩矿床和浅成低温热液矿床。中三叠世末古特提斯洋闭合。

  相似文献   

2.
古亚洲洋不是西伯利亚陆台和华北地台间的一个简单洋盆,而是在不同时间、不同地区打开和封闭的多个大小不一的洋盆复杂活动(包括远距离运移)的综合体.其北部洋盆起始于新元古代末-寒武纪初(573~522Ma)冈瓦纳古陆裂解形成的寒武纪洋盆.寒武纪末-奥陶纪初(510~480Ma),冈瓦纳古陆裂解的碎块、寒武纪洋壳碎块和陆缘过渡壳碎块相互碰撞、联合形成原中亚-蒙古古陆.奥陶纪时,原中亚-蒙古古陆南边形成活动陆缘,志留纪形成稳定大陆.泥盆纪初原中亚-蒙古古陆裂解,裂解的碎块在新形成的泥盆纪洋内沿左旋断裂向北运动,于晚泥盆世末到达西伯利亚陆台南缘,重新联合形成现在的中亚-蒙古古陆.晚古生代时,在现在的中亚-蒙古古陆内发生晚石炭世(318~316Ma)和早二叠世(295~285Ma)裂谷岩浆活动,形成双峰式火山岩和碱性花岗岩类.蒙古-鄂霍次克带是西伯利亚古陆和中亚-蒙古古陆之间的泥盆纪洋盆,向东与古太平洋连通,洋盆发展到中晚侏罗世,与古太平洋同时结束,其洋壳移动到西伯利亚陆台边缘受阻而向陆台下俯冲,在陆台南缘形成广泛的陆缘岩浆岩带,从中泥盆世到晚侏罗世都非常活跃.古亚洲洋的南部洋盆始于晚寒武世.此时,华北古陆从冈瓦纳古陆裂解出来,在其北缘形成晚寒武世-早奥陶世的被动陆缘和中奥陶世-早志留世的沟弧盆系.志留纪腕足类生物群的分布表明,华北地台北缘洋盆与塔里木地台北缘、以及川西、云南、东澳大利亚有联系,而与上述的古亚洲洋北部洋盆没有关连,两洋盆之间有松嫩-图兰地块间隔.晚志留世-早泥盆世,华北地台北部发生弧-陆碰撞运动,泥盆纪时,在松嫩地块南缘形成陆缘火山岩带,晚二叠世-早三叠世华北地台与松嫩地块碰撞,至此古亚洲洋盆封闭.古亚洲洋的南、北洋盆最后的褶皱构造,以及与塔里木地台之间发生的直接关系,很可能是后期的构造运动所造成的.  相似文献   

3.
李利阳  任柄璋  白志达  伍光英  侯红星  刘博 《地质论评》2021,67(Z1):67z1059-67z1060
正大兴安岭地区乌奴耳镇位于头道桥-鄂伦春断裂带上,发育蛇绿混杂岩、岛弧型侵入岩、碰撞型花岗岩等,通过对这些构造岩石组合的年代学及地球化学研究,结合区域地质资料,总结了大兴安岭地区古生代构造演化历史,为东北陆块群及古亚洲洋东段的构造演化提供新的证据。  相似文献   

4.
吴浩若  李忠 《古地理学报》2013,15(3):293-304
泥盆纪—石炭纪放射虫硅质岩在西南天山广泛分布,从东部的独库公路沿线到西部的阿合奇中—吉边境构成一条深水沉积带。独库公路沿线已发现中泥盆世晚期至早石炭世维宪早期的放射虫硅质岩,可用“库勒湖组”统称。从志留系顶统科克铁克达坂组经下泥盆统阿尔腾柯斯组到库勒湖组的生物地层和沉积相研究表明了南天山洋从浅海到深水洋盆的演化过程。南天山洋是塔里木北缘浅海陆架裂解产生的小洋盆。构造古地理和生物古地理研究表明,南天山洋是古特提斯的分支洋盆,不属古亚洲洋范围。塔里木以南的古特提斯分支洋盆,在早石炭世及之后的继续扩张,使塔里木北移,导致南天山洋和准噶尔—北天山区的古亚洲洋在早石炭世晚期和晚石炭世相继消亡。  相似文献   

5.
新疆北部晚古生代独特的构造-成矿作用以发育大量石炭纪-二叠纪构造-成矿事件为特征,其中包括:(1)发育于晚石炭世-二叠世的阿尔泰岛弧及其变质事件、阿尔泰麻粒岩与基性杂岩、西南天山放射虫硅质岩和高压-超高压-低压麻粒岩相变质事件;(2)北疆发育的石炭纪(-二叠世)埃达克岩-高镁安山岩-富Nd玄武质岩组合、阿拉斯加型基性-超基性杂岩和大量的与俯冲相关的钙碱性岩浆活动与斑岩型铜矿床成矿作用;(3)天山晚石炭世晚期蛇绿岩与岛弧火山岩等。结合北疆地区相关的前陆盆地发育不明显、碰撞型花岗岩欠发育与大量发育平行造山带大型走滑构造等现象,可以认为新疆北部在石炭纪-二叠纪挤压-伸展-走滑并存,岩浆活动与成矿作用活跃。这些新进展表明新疆北部在晚石炭世-二叠纪可能仍存在活动陆缘,因此,古亚洲洋构造域南部复杂增生造山作用最后延至晚石炭世晚期-二叠纪。  相似文献   

6.
内蒙古贺根山缝合带梅劳特乌拉SSZ(Supra Subduction Zone)型蛇绿岩中新发现扎嘎音晚石炭世高镁安山岩,岩性为玄武安山岩和安山岩。扎嘎音玄武安山岩—安山岩MgO(4.33%~9.82%)、Mg~#值(57~72)和SiO_2含量(55.34%~64.12%)较高;而TiO_2(0.30%~0.60%)、K_2O(0.06%~0.73%)、Al_2O_3(12.18%~17.32%)含量和FeO~T/MgO值(0.70~1.34)较低,Na_2O/K_2O值(2.23~40.88)较高。稀土元素总量较低(14.29×10~(-6)~60.20×10~(-6)),稀土配分曲线总体为略显右倾的平坦型,(La/Yb)_N为0.57~2.58,无明显Eu异常。岩石富集大离子亲石元素Rb、Ba、Th、U和Sr等,亏损高场强元素Nb、Ta、Ti和P等,具有较低的Ti/V值。该玄武安山岩—安山岩具有高镁安山岩的地球化学特征,与日本西南Setouchi岛弧火山岩带的sanukite(有人音译为"赞岐岩")相类似,可能为俯冲洋壳+俯冲深积物的脱水流体与俯冲沉积物部分熔融形成的硅质熔体与上覆地幔楔橄榄岩平衡反应成因。锆石LA-ICP-MS U-Pb测年表明,扎嘎音玄武安山岩的成岩年龄为315.0±2.3 Ma,反映了晚石炭世高镁安山岩浆作用事件。扎嘎音玄武安山岩—安山岩为晚石炭世形成于洋壳俯冲弧前环境的高镁安山岩组合,为古亚洲洋晚石炭世洋内俯冲作用提供了证据。结合贺根山缝合带的壳幔电性结构特征和晚古生代蛇绿岩—岛弧岩浆岩时空分布与演化关系,提出了扎嘎音高镁安山岩的古亚洲洋晚石炭世洋内俯冲模式。  相似文献   

7.
研究了觉罗塔格南缘石炭系雅满苏组与土古土布拉克组火山岩的主量元素、微量元素和Sr-Nd同位素特征。结果显示,雅满苏组(中)酸性熔岩属贫钾钙碱性岩浆系列,Mg#值介于0.49~0.51,ISr介于0.706 42~0.707 68、εNd(t)为3.28~5.49,富集轻稀土与大离子亲石元素、相对亏损重稀土与高场强元素,具中等负Eu异常(δEu=0.62~0.65),其形成可能与幔源基性岩浆结晶分异有关。土古土布拉克组中(酸)性火山岩属钙碱性-高钾钙碱性系列,Mg#值介于0.53~0.57,轻稀土相对富集,重稀土相对亏损,略具负铕异常(δEu=0.63~0.84),富集大离子亲石元素,相对亏损高场强元素,ISr介于0.703 71~0.708 47、εNd(t)为6.48~6.83,表明其母岩浆来源于受交代的富集岩石圈地幔楔。结合区域地质背景研究成果,认为它们形成于古亚洲洋壳向南俯冲的岛弧环境,并且早石炭世的雅满苏组火山岩代表不成熟的洋内岛弧的产物,而晚石炭世的土古土布拉克组火山岩是岛弧演化到相对成熟阶段的产物。这种物质成分和时空分布特征揭示的石炭纪该区壳幔岩石圈由北向南、由老到新明显增厚现象,为古亚洲洋南缘吐哈古洋壳当时在该处具有向南俯冲的极性提供了有力证据。  相似文献   

8.
黑龙江省西北部发育连续沉积的古生代(O1-C1)地层.结合该地区近年来的区域地质调查和科学研究成果,将该地区奥陶纪-石炭纪岩石地层划分为伊勒呼里山群、黑河群和燎原群3个群15个组,并将各组的岩石建造、化石组合、沉积环境等与古亚洲洋发生、发展、消亡演化历史结合在一起进行论述分析.通过古生代(O1-C1)地层方面的综合研究,为黑龙江省西北部古亚洲洋演化提供了岩石地层、生物地层和沉积环境方面的综合资料.根据上述地层记录,认为古亚洲洋发生于早奥陶世早期,兴盛于早奥陶世晚期-晚奥陶世,收敛期为早志留世-晚志留世-中泥盆世、消亡于晚泥盆世-早石炭世.  相似文献   

9.
中国东北古亚洲与古太平洋构造域演化与转换   总被引:6,自引:0,他引:6  
现今分布于中朝、塔里木古陆与西伯利亚古陆之间的古亚洲构造域,既存在于前中生代,也存在于中新生代.古亚洲构造域不能等同于古亚洲洋及其构造域.作为古亚洲构造域一部分的古亚洲洋开始于晚寒武世-奥陶纪,结束于中三叠世.古太平洋及其构造域形成于晚古生代,印支期后,成为滨太平洋构造域.在晚三叠世-侏罗纪时期与古亚洲构造域并存,形成两个构造域的板内造山带、局部盆山构造和东北高原.早白垩世形成以滨太平洋构造域为主体的北北东向盆山体系.  相似文献   

10.
内蒙古北山造山带自北向南发育红石山-百合山、月牙山-洗肠井和帐房山-玉石山3条蛇绿构造混杂岩带。其中北部的2条蛇绿岩带揭示了北山造山带两阶段演化的历史:月牙山-洗肠井蛇绿混杂岩带洋壳形成于530~520 Ma,沿该带多处保存较完好的蛇绿岩洋壳残块(洋壳结构具向北变新特征),与北侧的早古生代公婆泉岩浆弧(由南向北岛弧成熟度变高)共同指示了北山洋向北俯冲消减的过程,即490 Ma初始俯冲,450~440 Ma为俯冲峰期,430~420 Ma为同碰撞阶段,400 Ma的双峰式岩浆岩组合指示了北山洋的消亡和后造山伸展的过程;红石山-百合山蛇绿混杂岩带是发育在雀儿山-圆包山岛弧基础上的SSZ型蛇绿岩,弧后开裂洋壳的形成与南侧最早发育的岛弧岩浆作用年龄接近(340~320 Ma),310~290 Ma俯冲峰期造成南侧白山岩浆弧大量的岩浆活动,早二叠世末期(275 Ma)的辉长岩和花岗岩侵位及早—中二叠世双堡塘组下部的角度不整合均反映了红石山洋盆的闭合。前人所划"石板井-小黄山蛇绿岩带"实为一条早古生代发育的深大断裂,沿带发育中基性侵入体及少量超基性岩,后期(志留纪末)叠加有较强的韧性剪切变形。中生代以来的走滑作用和逆冲推覆构造改造了古生代的构造格架,使红石山-百合山蛇绿混杂岩带向北左行切错了十余千米,北山南部的中—新元古界推覆至下古生界之上。对内蒙古北山造山带时空结构的厘定,有助于中亚造山带造山作用过程的理解及其对古生代地壳增生的深入研究,也对银额盆地晚古生代新层系油气资源勘查起到基础支撑。  相似文献   

11.
The Paleo-Asian ocean is defined by units located between the Russian (East European), Siberian, Tarim, and Sino-Korean (North China) continents. The study of the composition, age, and structural position of island-arc magmatic rocks, ophiolites, and high-pressure meta-morphic assemblages and their mutual correlations made it possible to identify similarities and differences in the evolution of the Paleo-Asian and Paleo-Pacific oceans. The initial stage of the evolution of the Paleo-Asian ocean defined its opening at 900 Ma, whereas opening of the Paleo-Pacific took place at 750 to 700 Ma. Closing of the Paleo-Asian ocean in the Carboniferous (NE branch) and the Permian corresponds to the main stage of reorganization and reopening of the Paleo-Pacific.

The maximal opening of the Paleo-Asian ocean occurred after or simultaneously with the first accretion-collision event at 600 to 700 Ma, resulting from the collision of microcontinents and the Siberian continent. Vendian-Early Cambrian boninite-bearing island-arc complexes occur as lavas, sheeted dikes, and sill-dikes associated with gabbro-pyroxenites and ultramafics. These complexes are widely distributed in the Gornyy Altay, East Sayan, and West Mongolian regions and can be considered fragments of a giant boninite-bearing belt.

In the late Early Cambrian, collision of seamounts with an island arc caused the squeezing of the subduction zone and return flows within the accretionary wedge. Serpentinite melange within fragments of ophiolites and high-pressure rocks are typical components of the Late Paleozoic accretionary wedges. Because of Middle Cambrian-Early Ordovician collisional events, two new oceans (Junggar-Irtysh-Kazakhstan and Uralian-South Tien Shan-South Mongolian) were formed. The junction of both oceans in East Mongolia opened to the Paleo-Pacific.  相似文献   

12.
13.
The paper reviews and integrates geological, geochronological, geochemical and isotope data from 21 intra-oceanic arcs (IOA) of the Paleo-Asian Ocean (PAO), which have been identified in the Central Asian Orogenic belt, the world largest accretionary orogeny. The data We discuss structural position of intra-oceanic arc volcanic rocks in association with back-arc terranes and accretionary complexes, major periods of intra-oceanic arc magmatism and related juvenile crustal growth, lithologies of island-arc terranes, geochemical features and typical ranges of Nd isotope values of volcanic rocks. Four groups of IOAs have been recognized: Neoproterozoic – early Cambrian, early Paleozoic, Middle Paleozoic and late Paleozoic. The Neoproterozoic – early Cambrian or Siberian Group includes eleven intra-oceanic arcs of eastern and western Tuva-Sayan (southern Siberia, Russia), northern and southwestern Mongolia and Russian Altai. The Early Paleozoic or Kazakhstan Group includes Selety-Urumbai, Bozshakol-Chingiz and Baydaulet-Aqastau arc terranes of the Kazakh Orocline. The Middle Paleozoic or Southern Group includes six arc terranes in the Tienshan orogen, Chinese Altai, East-Kazakhstan-West Junggar and southern Mongoia. Only one Late Paleozoic intra-oceanic arc has been reliably identified in the CAOB: Bogda in the Chinese Tienshan, probably due to PAO shrinking and termination. The lithologies of the modern and fossil arcs are similar, although the fossil arcs contain more calc-alkaline varieties suggesting either their more evolved character or different conditions of magma generation. Of special importance is identification of back-arc basins in old accretionary orogens, because boninites may be absent in both modern and fossil IOAs. The three typical scenarios of back-arc formation - active margin rifting, intra-oceanic arc rifting and fore-arc rifting were reconstructed in fossil intra-oceanic arcs. Some arcs might be tectonically eroded and/or directly subducted into the deep mantle. Therefore, the structural and compositional records of fossil intra-oceanic arcs in intracontinental orogens allow us to make only minimal estimations of their geometric length, life span, and crust thickness.  相似文献   

14.
15.
《Gondwana Research》2003,6(2):143-159
The paper reviews and integrates the recent geological and geochronological data, which allow us to recognize three stages of the evolution of the Paleo-Asian Ocean.The opening of the Paleo-Asian Ocean at 970-850 Ma is dated by the Nersin Complex in the Aldan shield, plagiogranites of the Sunuekit massif, enderbites of the Sludinsk Lake area, and passive margin sediments of the Patoma or Baikal series. The initial subduction (850-700 Ma) is marked by volcanic rocks, trondjemite and gabbro of the Sarkhoy island arc series. Collisions of microcontinents with Siberia at 660 to 620 Ma are evidenced by the exhumation of Muya eclogites (650 Ma), formation of migmatites and amphibolites of the Njurundukan belt (635 and 590 Ma), metamorphic units of the Near-Yenisei belt (640-600 Ma), and orogenic molasse (640-620 Ma). The Paleo-Asian Ocean maximally opened at 620-550 Ma, because at that time a long island arc composed of boninite volcanic rocks was formed. Primitive island arcs of that age have been reconstructed in Kazakhstan, Gorny Altai, West and East Sayan, and North Mongolia. HP and UHP rocks formed in two stages at 550-520 and 520-490 Ma. At 550-490 Ma oceanic islands and Gondwana-derived microcontinents (Kokchetav, Tuva-Mongolian, Central Mongolian and others) collided with the Cambrian-early Ordovician island arc of the Siberian continent. As a result, the island-arc system was extensively modified. Collision occurred twice at 550-520 and 520-490 Ma during which many HP and UHP rocks formed. At that time, the new oceans - the Junggar, Kazakhstan and Uralian - with an Ordovician island arc were formed.  相似文献   

16.
The Northwestern Ordos Terrane (NOT) in the Western North China Craton (W-NCC) comprises the northwestern Ordos Basin in the east and the eastern Alxa Massif in the west, bound by the Helanshan Tectonic Belt (HTB). The key position makes the NOT crucial for understanding the evolutionary processes of the W-NCC and particularly the tectonic relation of the Alxa Massif with the W-NCC. In this study, petrologic, stratigraphic and geochronologic studies were conducted on Permo-Carboniferous successions in the NOT. Stratigraphic correlation reveals that Carboniferous marine successions display a transgressive sequence with a slight westward-deepening facies variation, evidenced by the continuous onlap of tidal-flat layers toward the east. The Permian nonmarine strata in the HTB and the Ordos Basin have no substantial facies variation, defining an upward regressive sequence from deltaic to fluvial associations, while time-equivalent units in the eastern Alxa Massif have been eroded. The generally SSW-directed paleocurrents suggest that Permo-Carboniferous siliciclastic materials were derived from a highland to the northeast. The unified sedimentary system in the NOT constrains the Alxa Massif to be part of the W-NCC. The Lower Carboniferous sandstone contain zircons with a concentrated age cluster of 1700–2700 Ma, comparable to Archean to Paleoproterozoic crystalline basement in the northern W-NCC. By contrast, in addition to zircons of 1700–2700 Ma, Late Carboniferous and Permian sandstones all contain abundant Paleozoic zircons with two age clusters around ~300 Ma and ~420 Ma, which are similar to age patterns of Paleozoic magmatism in the northern W-NCC. Zircon age profile and sandstone modal composition indicate the origin from an Andean-type continental arc. The Permo-Carboniferous tectono-sedimentary processes of the NOT should occur in a marginal basin behind the continental arc along the northern W-NCC in response to the southward subduction of Solonker Ocean, southern branch of Paleo-Asian Ocean.  相似文献   

17.
Based on sedimentological, geochronological and geochemical investigations, a Paleozoic orogenic belt, called the Heihe-Dashizhai orogenic belt (HDOB), has been recognized, which consists of three tectonic units: Duobaoshan-Dashizhai arc belt, Wolihe back-arc basin and Sankuanggou-Jinshuishan molasse basin, representing a northwesternward subduction system of the Heihe-Nenjiang Ocean (HNO) between the Xing'an-Airgin Sum Block (XAB) and the Songliao-Hunshandake Block (SHB) in Great Xing'an area of the northeast China. The Duobaoshan-Dashizhai arc belt includes arc volcanic-sedimentary sequence and pluton belt composed by granodiorites, diorites and quartz diorites, which can be divided into the early (506–469 Ma) and late periods (463–426 Ma). Geochemical research indicates that the primary magma of the early and late period arc rocks was derived from the partial melting of depleted mantle to a relatively enriched lithospheric mantle related with thickened continental crust, and a depleted mantle wedge, respectively. The Wolihe back-arc basin is composed of basalt with pillow structure, gabbro, serpentinized ultramafic rocks and thin-bedded chert in lower part and turbidity with double direction provenance from both arc belt and older continent in upper part. The Sankuanggou-Jinshuishan molasse basin contains several cycles, revealing a transformation from flysch in lower part to marine molasse with rapid proximal accumulation in upper part, indicating a change from neritic to littoral sedimentary environments. The Early-Middle Paleozoic tectonic evolution of the HDOB can be divided into three stages: the early arc stage (506–469 Ma), the late arc stage (463–426 Ma) and molasse basin development (426 Ma to Early Devonian), representing the early and late subduction of the HNO and formation of the HDOB, respectively.  相似文献   

18.
19.
重点分析和总结了由前寒武纪增生复合体和造山带混杂岩重建的古老造山带洋板块地层,包括由英国威尔士安格尔西岛新元古代莫纳超群混杂岩重建的太平洋洋板块地层、由澳大利亚西北部皮尔巴拉早太古代克里夫维尔绿岩带重建的古印度洋洋板块地层。澳大利亚东皮尔巴拉地块大理石坝地区早太古代玄武岩-硅质岩-碎屑岩序列与日本二叠纪-三叠纪洋板块地层在岩石组成和地球化学特征方面具有高度的相似性,这一认识将为早太古代洋板块地层的沉积环境从高热流洋脊扩张区经过热点向低热流海沟陆源碎屑沉积区转变这一过程提供有力支持。从增生造山带洋板块地层保存的岩石记录看,不同年代洋板块地层的主要物质组成和岩石类型相似,因此在地球38亿年的演化进程中,洋壳扩张、海洋沉积、俯冲及增生的过程并没有显著变化;但随着时间推移,年轻造山带洋板块性质和洋板块地层组成与古老造山带相比,可能会发生一些变化。就古老造山带洋板块地层而言,前寒武纪的地幔温度略高,太古代局部熔融显著,熔融量大大超过洋壳扩张速率,因而没有形成席状岩墙群。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号