首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
East China(23.6°–38.4°N, 113.6°–122.9°E) is the largest developed region in China. Based on CO2 products retrieved from the Greenhouse Gases Observing Satellite(GOSAT), the spatial and temporal distributions of CO2 mixing ratios in East China during 2014–17 are discussed, and the retrieved CO2 from AIRS(Atmospheric Infrared Sounder) and OCO-2(Orbiting Carbon Observatory-2), as well as WLG(Waliguan) background station observations, are compared with those of GOSAT...  相似文献   

2.
Emission scenarios and global climate protection   总被引:1,自引:0,他引:1  
This paper evaluates the effectiveness of a wide range of emission scenarios in protecting climate (where ‘protecting climate’ Is used here to mean minimizing ‘dangerous anthropogenic interference with the climate system’ which results in impacts to society and the natural environment). Under baseline (no action) conditions there is a significant Increase in emissions, temperature and climate impacts. Controlling only CO2 emissions (ie freezing emissions in year 2000 at 1990 levels, and decreasing them afterwards at 1%/yr) and only in Annex I countries, does not significantly reduce the impacts observed under the baseline scenario. However, impacts are substantially reduced when emissions are controlled in both Annex I and non-Annex I countries, and when both CO2 and non-CO2 emissions are controlled. It was also found that stabilizing CO2 in the atmosphere below 450 ppm substantially reduces climate impacts. But in order to follow the pathway to stabilization at 450 ppm specified by the IPCC, global emissions can only slightly increase in the coming decades, and then must be sharply reduced. On the other hand, stabilizing CO2 in the atmosphere above 450 ppm can have significant impacts, which indicates that stabilization of greenhouse gases in the atmosphere will not necessarily provide a high level of climate protection. Results from these and other scenarios are synthesized and related to climate protection goals through a new concept — ‘safe emission corridors’. These corridors indicate the allowable range of near-term global emissions (equivalent CO2) which complies with specified short- and long-term climate goals. For an illustrative set of climate goals, the allowable anthropogenic global emissions in 2010 are computed to range from 7.3 to 14.5 GtC/yr equivalent CO2 (1990 level = approximately 9.6 GtC/ yr); when these limits are set twice as strict (ie divided by two), the allowable range becomes 7.6 to 9.3 GtC/yr. To fall within this lower corridor, global emissions must be lower in 2010 than in 1990.  相似文献   

3.
Abstract

This article presents a set of multi-gas emission pathways for different CO2-equivalent concentration stabilization levels, i.e. 400, 450, 500 and 550 ppm CO2-equivalent, along with an analysis of their global and regional reduction implications and implied probability of achieving the EU climate target of 2°C. For achieving the 2°C target with a probability of more than 60%, greenhouse gas concentrations need to be stabilized at 450 ppm CO2-equivalent or below, if the 90% uncertainty range for climate sensitivity is believed to be 1.5–4.5°C. A stabilization at 450 ppm CO2-equivalent or below (400 ppm) requires global emissions to peak around 2015, followed by substantial overall reductions of as much as 25% (45% for 400 ppm) compared to 1990 levels in 2050. In 2020, Annex I emissions need to be approximately 15% (30%) below 1990 levels, and non-Annex I emissions also need to be reduced by 15–20% compared to their baseline emissions. A further delay in peaking of global emissions by 10 years doubles maximum reduction rates to about 5% per year, and very probably leads to high costs. In order to keep the option open of stabilizing at 400 and 450 ppm CO2-equivalent, the USA and major advanced non-Annex I countries will have to participate in the reductions within the next 10–15 years.  相似文献   

4.
This paper synthesizes results of the multi-model Energy Modeling Forum 27 (EMF27) with a focus on climate policy scenarios. The study included two harmonized long-term climate targets of 450 ppm CO2-e (enforced in 2100) and 550 pm CO2-e (not-to-exceed) as well as two more fragmented policies based on national and regional emissions targets. Stabilizing atmospheric GHG concentrations at 450 and 550 ppm CO2-e requires a dramatic reduction of carbon emissions compared to baseline levels. Mitigation pathways for the 450 CO2-e target are largely overlapping with the 550 CO2-e pathways in the first half of the century, and the lower level is achieved through rapid reductions in atmospheric concentrations in the second half of the century aided by negative anthropogenic carbon flows. A fragmented scenario designed to extrapolate current levels of ambition into the future falls short of the emissions reductions required under the harmonized targets. In a more aggressive scenario intended to capture a break from observed levels of stringency, emissions are still somewhat higher in the second half due to unabated emissions from non-participating countries, emphasizing that a phase-out of global emissions in the long term can only be reached with full global participation. A key finding is that a large range of energy-related CO2 emissions can be compatible with a given long-term target, depending on assumptions about carbon cycle response, non-CO2 and land use CO2 emissions abatement, partly explaining the spread in mitigation costs.  相似文献   

5.
Projections of greenhouse gas (GHG) emissions are critical to enable a better understanding and anticipation of future climate change under different socio-economic conditions and mitigation strategies. The climate projections and scenarios assessed by the Intergovernmental Panel on Climate Change, following the Shared Socioeconomic Pathway (SSP)-Representative Concentration Pathway (RCP) framework, have provided a rich understanding of the constraints and opportunities for policy action. However, the current emissions scenarios lack an explicit treatment of urban emissions within the global context. Given the pace and scale of urbanization, with global urban populations expected to increase from about 4.4 billion today to about 7 billion by 2050, there is an urgent need to fill this knowledge gap. Here, we estimate the share of global GHG emissions driven by urban areas from 1990 to 2100 based on the SSP-RCP framework. The urban consumption-based GHG emissions are presented in five regional aggregates and based on a combination of the urban population share, 2015 urban per capita CO2eq carbon footprint, SSP-based national CO2eq emissions, and recent analysis of urban per capita CO2eq trends. We find that urban areas account for the majority of global GHG emissions in 2015 (61.8%). Moreover, the urban share of global GHG emissions progressively increases into the future, exceeding 80% in some scenarios by the end of the century. The combined urban areas in Asia and Developing Pacific, and Developed Countries account for 65.0% to 73.3% of cumulative urban consumption-based emissions between 2020 and 2100 across the scenarios. Given these dominant roles, we describe the implications for potential urban mitigation in each of the scenario narratives in order to meet the goal of climate neutrality within this century.  相似文献   

6.
Emissions of biogenic volatile organic compounds (BVOCs) from mechanical wounding of leaves and branches of plants can contribute to the atmospheric burden of volatile organic compounds (VOCs) in both (a) urban airsheds (from urban garden maintenance) and (b) the global atmosphere (from large scale forest harvesting). These emissions of BVOCs are poorly understood and quantified, and their role in urban and global emissions inventories neglected. This paper presents measurements of the magnitude, duration and composition of emissions of BVOCs, carbon dioxide (CO2) and methane (CH4) from freshly cut leaf mulch and wood chips derived from a common eucalypt tree, Eucalyptus sideroxylon (red ironbark), found in southeastern Australian forests and gardens. The emissions of BVOCs from freshly cut and shredded leaves and wood of E. sideroxylon were found to be 2.3 ± 0.6 and 0.05 ± 0.04 mg g-1 DM (Dry Mass) from leaf mulch and wood chips respectively and to last typically for 1 day following cutting. Three sampling techniques were used for VOC speciation and the 12 most abundant BVOCs released from the mulch materials were identified. The specific BVOCs emitted in order of decreasing abundance from leaf mulch are: (a) stored plant oils, 1,8-cineole, α–pinene and o-cymene which make up the major part of the emissions, (b) a minor contribution from chemicals associated with environmental stress and wound defence, (Z)–3–hexenyl acetate, (E)-2-hexenal and (Z)-3-hexen-1-ol, and (c) a second minor contribution from metabolic products, acetaldehyde and acetone. The observed integrated emissions of BVOCs from leaves following mulching are equivalent to more than half and perhaps all of the likely stored plant oils in the leaves. For the two comparable studies available, one of a plant with stored oils (this study) and one of a plant without stored plant oils, the emissions of leaf wound defence BVOCs are in the same range for both plants. In the plant with stored plant oils, the plant oil emissions are about a factor of 11 larger in emission rate than the plant wound defence BVOCs. A compilation of available leaf wounding BVOC emission studies indicates that for plants with stored plant oils, plant oil emissions dominate, whereas with other plants, leaf wound defence BVOCs dominate the emissions.  相似文献   

7.
The IPCC Fourth Assessment Report, Working Group III, summarises in Box 13.7 the required emission reduction ranges in Annex I and non-Annex I countries as a group, to achieve greenhouse gas concentration stabilisation levels between 450 and 650 ppm CO2-eq. The box summarises the results of the IPCC authors’ analysis of the literature on the regional allocation of the emission reductions. The box states that Annex I countries as a group would need to reduce their emissions to below 1990 levels in 2020 by 25% to 40% for 450 ppm, 10% to 30% for 550 ppm and 0% to 25% for 650 ppm CO2-eq, even if emissions in developing countries deviate substantially from baseline for the low concentration target. In this paper, the IPCC authors of Box 13.7 provide background information and analyse whether new information, obtained after completion of the IPCC report, influences these ranges. The authors concluded that there is no argument for updating the ranges in Box 13.7. The allocation studies, which were published after the writing of the IPCC report, show reductions in line with the reduction ranges in the box. From the studies analysed, this paper specifies the “substantial deviation” or “deviation from baseline” in the box: emissions of non-Annex I countries as a group have to be below the baseline roughly between 15% to 30% for 450 ppm CO2-eq, 0% to 20% for 550 ppm CO2-eq and from 10% above to 10% below the baseline for 650 ppm CO2-eq, in 2020. These ranges apply to the whole group of non-Annex I countries and may differ substantially per country. The most important factor influencing these ranges above, for non-Annex I countries, and in the box, for Annex I countries, is new information on higher baseline emissions (e.g. that of Sheehan, Climatic Change, 2008, this issue). Other factors are the assumed global emission level in 2020 and assumptions on land-use change and forestry emissions. The current, slow pace in climate policy and the steady increase in global emissions, make it almost unfeasible to reach relatively low global emission levels in 2020 needed to meet 450 ppm CO2-eq, as was first assumed feasible by some studies, 5 years ago.  相似文献   

8.
Measurements of column-averaged dry-air mole fractions of carbon dioxide and carbon monoxide, CO2 (XCO2) and CO (XCO), were performed throughout 2019 at an urban site in Beijing using a compact Fourier Transform Spectrometer (FTS) EM27/SUN. This data set is used to assess the characteristics of combustion-related CO2 emissions of urban Beijing by analyzing the correlated daily anomalies of XCO and XCO2 (e.g., ΔXCO and ΔXCO2). The EM27/SUN measurements were calibrated to a 125HR-FTS at the Xianghe station by an extra EM27/SUN instrument transferred between two sites. The ratio of ΔXCO over ΔXCO2 (ΔXCO:ΔXCO2) is used to estimate the combustion efficiency in the Beijing region. A high correlation coefficient (0.86) between ΔXCO and ΔXCO2 is observed. The CO:CO2 emission ratio estimated from inventories is higher than the observed ΔXCO:ΔXCO2 (10.46 ± 0.11 ppb ppm?1) by 42.54%–101.15%, indicating an underestimation in combustion efficiency in the inventories. Daily ΔXCO:ΔXCO2 are influenced by transportation governed by weather conditions, except for days in summer when the correlation is low due to the terrestrial biotic activity. By convolving the column footprint [ppm (μmol m–2 s–1)–1] generated by the Weather Research and Forecasting-X-Stochastic Time-Inverted Lagrangian Transport models (WRF-X-STILT) with two fossil-fuel emission inventories (the Multi-resolution Emission Inventory for China (MEIC) and the Peking University (PKU) inventory), the observed enhancements of CO2 and CO were used to evaluate the regional emissions. The CO2 emissions appear to be underestimated by 11% and 49% for the MEIC and PKU inventories, respectively, while CO emissions were overestimated by MEIC (30%) and PKU (35%) in the Beijing area.  相似文献   

9.
The purpose of this paper is to describe global urban greenhouse gas emissions by region and sector, examine the distribution of emissions through the urban-to-rural gradient, and identify covariates of emission levels for our baseline year, 2000. We use multiple existing spatial databases to identify urban extent, greenhouse gas emissions (CO2, N2O, CH4 and SF6) and covariates of emissions in a “top-down” analysis. The results indicate that urban activities are significant sources of total greenhouse gas emissions (36.8 and 48.6 % of total). The urban energy sector accounts for between 41.5 and 66.3 % of total energy emissions. Significant differences exist in the urban share of greenhouse gas emissions between developed and developing countries as well as among source sectors for geographic regions. The 50 largest urban emitting areas account for 38.8 % of all urban greenhouse gas emissions. We find that greenhouse gas emissions are significantly associated with population size, density, growth rates, and per capita income. Finally, comparison of our results to “bottom-up” estimates suggest that this research’s data and techniques are best used at the regional and global scales.  相似文献   

10.
Climate change mitigation via a reduction in the anthropogenic emissions of carbon dioxide (CO2) is the principle requirement for reducing global warming, its impacts, and the degree of adaptation required. We present a simple conceptual model of anthropogenic CO2 emissions to highlight the trade off between delay in commencing mitigation, and the strength of mitigation then required to meet specific atmospheric CO2 stabilization targets. We calculate the effects of alternative emission profiles on atmospheric CO2 and global temperature change over a millennial timescale using a simple coupled carbon cycle-climate model. For example, if it takes 50 years to transform the energy sector and the maximum rate at which emissions can be reduced is ?2.5% $\text{year}^{-1}$ , delaying action until 2020 would lead to stabilization at 540 ppm. A further 20 year delay would result in a stabilization level of 730 ppm, and a delay until 2060 would mean stabilising at over 1,000 ppm. If stabilization targets are met through delayed action, combined with strong rates of mitigation, the emissions profiles result in transient peaks of atmospheric CO2 (and potentially temperature) that exceed the stabilization targets. Stabilization at 450 ppm requires maximum mitigation rates of ?3% to ?5% $\text{year}^{-1}$ , and when delay exceeds 2020, transient peaks in excess of 550 ppm occur. Consequently tipping points for certain Earth system components may be transgressed. Avoiding dangerous climate change is more easily achievable if global mitigation action commences as soon as possible. Starting mitigation earlier is also more effective than acting more aggressively once mitigation has begun.  相似文献   

11.
Active travel (walking or cycling for transport) is considered the most sustainable and low carbon form of getting from A to B. Yet the net effects of changes in active travel on changes in mobility-related CO2 emissions are complex and under-researched. Here we collected longitudinal data on daily travel behavior, journey purpose, as well as personal and geospatial characteristics in seven European cities and derived mobility-related lifecycle CO2 emissions over time and space. Statistical modelling of longitudinal panel (n = 1849) data was performed to assess how changes in active travel, the ‘main mode’ of daily travel, and cycling frequency influenced changes in mobility-related lifecycle CO2 emissions.We found that changes in active travel have significant lifecycle carbon emissions benefits, even in European urban contexts with already high walking and cycling shares. An increase in cycling or walking consistently and independently decreased mobility-related lifecycle CO2 emissions, suggesting that active travel substituted for motorized travel – i.e. the increase was not just additional (induced) travel over and above motorized travel. To illustrate this, an average person cycling 1 trip/day more and driving 1 trip/day less for 200 days a year would decrease mobility-related lifecycle CO2 emissions by about 0.5 tonnes over a year, representing a substantial share of average per capita CO2 emissions from transport. The largest benefits from shifts from car to active travel were for business purposes, followed by social and recreational trips, and commuting to work or place of education. Changes to commuting emissions were more pronounced for those who were younger, lived closer to work and further to a public transport station.Even if not all car trips could be substituted by active travel the potential for decreasing emissions is considerable and significant. The study gives policy and practice the empirical evidence needed to assess climate change mitigation impacts of urban transport measures and interventions aimed at mode shift to more sustainable modes of transport. Investing in and promoting active travel whilst ‘demoting’ private car ownership and use should be a cornerstone of strategies to meet ‘net zero’ carbon targets, particularly in urban areas, while also reducing inequalities and improving public health and quality of urban life in a post-COVID-19 world.  相似文献   

12.
Using a coupled climate?Ccarbon cycle model, fossil fuel carbon dioxide (CO2) emissions are derived through a reverse approach of prescribing atmospheric CO2 concentrations according to observations and future projections, respectively. In the second half of the twentieth century, the implied fossil fuel emissions, and also the carbon uptake by land and ocean, are within the range of observational estimates. Larger discrepancies exist in the earlier period (1860?C1960), with small fossil fuel emissions and uncertain emissions from anthropogenic land cover change. In the IPCC SRES A1B scenario, the simulated fossil fuel emissions more than double until 2050 (17 GtC/year) and then decrease to 12 GtC/year by 2100. In addition to A1B, an aggressive mitigation scenario was employed, developed within the European ENSEMBLES project, that peaks at 530 ppm CO2(equiv) around 2050 and then decreases to approach 450 ppm during the twenty-second century. Consistent with the prescribed pathway of atmospheric CO2 in E1, the implied fossil fuel emissions increase from currently 8 GtC/year to about 10 by 2015 and decrease thereafter. In the 2050s (2090s) the emissions decrease to 3.4 (0.5) GtC/year, respectively. As in previous studies, our model simulates a positive climate?Ccarbon cycle feedback which tends to reduce the implied emissions by roughly 1 GtC/year per degree global warming. Further, our results suggest that the 450 ppm stabilization scenario may not be sufficient to fulfill the European Union climate policy goal of limiting the global temperature increase to a maximum of 2°C compared to pre-industrial levels.  相似文献   

13.
In recent years, China has implemented several measures to improve air quality. The Beijing-Tianjin-Hebei(BTH)region is one area that has suffered from the most serious air pollution in China and has undergone huge changes in air quality in the past few years. How to scientifically assess these change processes remain the key issue in further improving the air quality over this region in the future. To evaluate the changes in major air pollutant emissions over this region, this paper employs ens...  相似文献   

14.
Sergio Pacca 《Climatic change》2007,84(3-4):281-294
Greenhouse gas (GHG) emissions from hydroelectric dams are often portrayed as nonexistent by the hydropower industry and have been largely ignored in global comparisons of different sources of electricity. However, the life cycle assessment (LCA) of any hydroelectric plant shows that GHG emissions occur at different phases of the power plant’s life. This work examines the role of decommissioning hydroelectric dams in greenhouse gas emissions. Accumulated sediments in reservoirs contain noticeable levels of carbon, which may be released to the atmosphere upon decommissioning of the dam. The rate of sediment accumulation and the sediment volume for six of the ten largest United States hydroelectric power plants is surveyed. The amount of sediments and the respective carbon content at the moment of dam decommissioning (100 years after construction) was estimated. The released carbon is partitioned into CO2 and CH4 emissions and converted to CO2 equivalent emissions using the global warming potential (GWP) method. The global warming effect (GWE) due to dam decommissioning is normalized to the total electricity produced over the lifetime of each power plant. The estimated GWE of the power plants range from 128–380 g of CO2eq./kWh when 11% of the total available sediment organic carbon (SOC) is mineralized and between 35 and 104 g of CO2eq./kWh when 3% of the total SOC is mineralized. Though these values are below emission factors for coal power plants (890 g of CO2eq./kWh), the amount of greenhouse gases emitted by the sediments upon dam decommissioning is a notable amount that should not be ignored and must be taken into account when considering construction and relicensing of hydroelectric dams.  相似文献   

15.
This article assesses Japan's carbon budgets up to 2100 in the global efforts to achieve the 2?°C target under different effort-sharing approaches based on long-term GHG mitigation scenarios published in 13 studies. The article also presents exemplary emission trajectories for Japan to stay within the calculated budget.

The literature data allow for an in-depth analysis of four effort-sharing categories. For a 450?ppm CO2e stabilization level, the remaining carbon budgets for 2014–2100 were negative for the effort-sharing category that emphasizes historical responsibility and capability. For the other three, including the reference ‘Cost-effectiveness’ category, which showed the highest budget range among all categories, the calculated remaining budgets (20th and 80th percentile ranges) would run out in 21–29 years if the current emission levels were to continue. A 550?ppm CO2e stabilization level increases the budgets by 6–17 years-equivalent of the current emissions, depending on the effort-sharing category. Exemplary emissions trajectories staying within the calculated budgets were also analysed for ‘Equality’, ‘Staged’ and ‘Cost-effectiveness’ categories. For a 450?ppm CO2e stabilization level, Japan's GHG emissions would need to phase out sometime between 2045 and 2080, and the emission reductions in 2030 would be at least 16–29% below 1990 levels even for the most lenient ‘Cost-effectiveness’ category, and 29–36% for the ‘Equality’ category. The start year for accelerated emissions reductions and the emissions convergence level in the long term have major impact on the emissions reduction rates that need to be achieved, particularly in the case of smaller budgets.

Policy relevance

In previous climate mitigation target formulation processes for 2020 and 2030 in Japan, neither equity principles nor long-term management of cumulative GHG emissions was at the centre of discussion. This article quantitatively assesses how much more GHGs Japan can emit by 2100 to achieve the 2?°C target in light of different effort-sharing approaches, and how Japan's GHG emissions can be managed up to 2100. The long-term implications of recent energy policy developments following the Fukushima nuclear disaster for the calculated carbon budgets are also discussed.  相似文献   

16.
Multi-gas Emissions Pathways to Meet Climate Targets   总被引:1,自引:1,他引:1  
So far, climate change mitigation pathways focus mostly on CO2 and a limited number of climate targets. Comprehensive studies of emission implications have been hindered by the absence of a flexible method to generate multi-gas emissions pathways, user-definable in shape and the climate target. The presented method ‘Equal Quantile Walk’ (EQW) is intended to fill this gap, building upon and complementing existing multi-gas emission scenarios. The EQW method generates new mitigation pathways by ‘walking along equal quantile paths’ of the emission distributions derived from existing multi-gas IPCC baseline and stabilization scenarios. Considered emissions include those of CO2 and all other major radiative forcing agents (greenhouse gases, ozone precursors and sulphur aerosols). Sample EQW pathways are derived for stabilization at 350 ppm to 750 ppm CO2 concentrations and compared to WRE profiles. Furthermore, the ability of the method to analyze emission implications in a probabilistic multi-gas framework is demonstrated. The probability of overshooting a 2 C climate target is derived by using different sets of EQW radiative forcing peaking pathways. If the probability shall not be increased above 30%, it seems necessary to peak CO2 equivalence concentrations around 475 ppm and return to lower levels after peaking (below 400 ppm). EQW emissions pathways can be applied in studies relating to Article 2 of the UNFCCC, for the analysis of climate impacts, adaptation and emission control implications associated with certain climate targets. See for EQW-software and data.  相似文献   

17.
The Arctic sea-ice cover has decreased in extent, area, and thickness over the last six decades. Most global climate models project that the summer sea-ice extent (SIE) will decline to less than 1 million (mill.) km2 in this century, ranging from 2030 to the end of the century, indicating large uncertainty. However, some models, using the same emission scenarios as required by the Paris Agreement to keep the global temperature below 2°C, indicate that the SIE could be about 2 mill. km2 in 2100 but with a large uncertainty of ±1.5 mill. km2. Here, the authors take another approach by exploring the direct relationship between the SIE and atmospheric CO2 concentration for the summer–fall months. The authors correlate the SIE and ln(CO2/CO2r) during the period 1979–2022, where CO2r is the reference value in 1979. Using these transient regression equations with an R2 between 0.78 and 0.87, the authors calculate the value that the CO2 concentration needs to reach for zero SIE. The results are that, for July, the CO2 concentration needs to reach 691 ± 16.5 ppm, for August 604 ± 16.5 ppm, for September 563 ± 17.5 ppm, and for October 620 ± 21 ppm. These values of CO2 for an ice-free Arctic are much higher than the targets of the Paris Agreement, which are 450 ppm in 2060 and 425 ppm in 2100, under the IPCC SSP1-2.6 scenario. If these targets can be reached or even almost reached, the “no tipping point” hypothesis for the summer SIE may be valid.  相似文献   

18.
The capture and storage of CO2 from combustion of fossil fuels is gaining attraction as a means to deal with climate change. CO2 emissions from biomass conversion processes can also be captured. If that is done, biomass energy with CO2 capture and storage (BECS) would become a technology that removes CO2 from the atmosphere and at the same time deliver CO2-neutral energy carriers (heat, electricity or hydrogen) to society. Here we present estimates of the costs and conversion efficiency of electricity, hydrogen and heat generation from fossil fuels and biomass with CO2 capture and storage. We then insert these technology characteristics into a global energy and transportation model (GET 5.0), and calculate costs of stabilizing atmospheric CO2 concentration at 350 and 450 ppm. We find that carbon capture and storage technologies applied to fossil fuels have the potential to reduce the cost of meeting the 350 ppm stabilisation targets by 50% compared to a case where these technologies are not available and by 80% when BECS is allowed. For the 450 ppm scenario, the reduction in costs is 40 and 42%, respectively. Thus, the difference in costs between cases where BECS technologies are allowed and where they are not is marginal for the 450 ppm stabilization target. It is for very low stabilization targets that negative emissions become warranted, and this makes BECS more valuable than in cases with higher stabilization targets. Systematic and stochastic sensitivity analysis is performed. Finally, BECS opens up the possibility to remove CO2 from the atmosphere. But this option should not be seen as an argument in favour of doing nothing about the climate problem now and then switching on this technology if climate change turns out to be a significant problem. It is not likely that BECS can be initiated sufficiently rapidly at a sufficient scale to follow this path to avoiding abrupt and serious climate changes if that would happen.  相似文献   

19.
The Consequences of CO2 Stabilisation for the Impacts of Climate Change   总被引:1,自引:0,他引:1  
This paper reports the main results of an assessment of the global-scale implications of the stabilisation of atmospheric CO2 concentrations at 750 ppm (by 2250) and 550 ppm (by 2150), in relationto a scenario of unmitigated emissions. The climate change scenarios were derived from simulation experiments conducted with the HadCM2 global climate model and forced with the IPCC IS92a, S750 and S550 emissions scenarios. The simulated changes in climate were applied to an observed global baseline climatology, and applied with impacts models to estimate impacts on natural vegetation, water resources, coastal flood risk and wetland loss, crop yield and food security, and malaria. The studies used a single set of population and socio-economic scenarios about the future that are similar to those adopted in the IS92a emissions scenario.An emissions pathway which stabilises CO2 concentrations at 750 ppmby the 2230s delays the 2050 temperature increase under unmitigated emissions by around 50 years. The loss of tropical forest and grassland which occurs by the 2050s under unmitigated emissions is delayed to the 22nd century, and the switch from carbon sink to carbon source is delayed from the 2050s to the 2170s. Coastal wetland loss is slowed. Stabilisation at 750 ppm generally has relatively little effect on the impacts of climate change on water resource stress, and populations at risk of hunger or falciparum malaria until the 2080s.A pathway which stabilises CO2 concentrations at 550 ppm by the 2170s delays the 2050 temperature increase under unmitigated emissions by around 100 years. There is no substantial loss of tropical forest or grassland, even by the 2230s, although the terrestrial carbon store ceases to act as a net carbon sink by around 2170 (this time because the vegetation has reached a new equilibrium with the atmosphere). Coastal wetland loss is slowed considerably, and the increase in coastal flood risk is considerably lower than under unmitigated emissions. CO2 stabilisation at 550 ppm reduces substantially water resource stress, relative to unmitigated emissions, but has relatively little impact on populations at risk of falciparum malaria, and may even cause more people to be at risk of hunger. While this study shows that mitigation avoids many impacts, particularly in the longer-term (beyond the 2080s), stabilisation at 550 ppm appears to be necessary to avoid or significantly reduce most of the projected impacts in the unmitigated case.  相似文献   

20.
A coupled carbon cycle-climate model is used to compute global atmospheric CO2 and temperature variation that would result from several future CO2 emission scenarios. The model includes temperature and CO2 feedbacks on the terrestrial biosphere, and temperature feedback on the oceanic uptake of CO2. The scenarios used include cases in which fossil fuel CO2 emissions are held constant at the 1986 value or increase by 1% yr–1 until either 2000 or 2020, followed by a gradual transition to a rate of decrease of 1 or 2% yr–1. The climatic effect of increases in non-CO2 trace gases is included, and scenarios are considered in which these gases increase until 2075 or are stabilized once CO2 emission reductions begin. Low and high deforestation scenarios are also considered. In all cases, results are computed for equilibrium climatic sensitivities to CO2 doubling of 2.0 and 4.0 °C.Peak atmospheric CO2 concentrations of 400–500 ppmv and global mean warming after 1980 of 0.6–3.2 °C occur, with maximum rates of global mean warming of 0.2–0.3 °C decade–1. The peak CO2 concentrations in these scenarios are significantly below that commonly regarded as unavoidable; further sensitivity analyses suggest that limiting atmospheric CO2 to as little as 400 ppmv is a credible option.Two factors in the model are important in limiting atmospheric CO2: (1) the airborne fraction falls rapidly once emissions begin to decrease, so that total emissions (fossil fuel + land use-induced) need initially fall to only about half their present value in order to stabilize atmospheric CO2, and (2) changes in rates of deforestation have an immediate and proportional effect on gross emissions from the biosphere, whereas the CO2 sink due to regrowth of forests responds more slowly, so that decreases in the rate of deforestation have a disproportionately large effect on net emission.If fossil fuel emissions were to decrease at 1–2% yr–1 beginning early in the next century, emissions could decrease to the rate of CO2 uptake by the predominantly oceanic sink within 50–100 yrs. Simulation results suggest that if subsequent emission reductions were tied to the rate of CO2 uptake by natural CO2 sinks, these reductions could proceed more slowly than initially while preventing further CO2 increases, since the natural CO2 sink strength decreases on time scales of one to several centuries. The model used here does not account for the possible effect on atmospheric CO2 concentration of possible changes in oceanic circulation. Based on past rates of atmospheric CO2 variation determined from polar ice cores, it appears that the largest plausible perturbation in ocean-air CO2 flux due to changes of oceanic circulation is substantially smaller than the permitted fossil fuel CO2 emissions under the above strategy, so tieing fossil fuel emissions to the total sink strength could provide adequate flexibility for responding to unexpected changes in oceanic CO2 uptake caused by climatic warming-induced changes of oceanic circulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号