共查询到16条相似文献,搜索用时 46 毫秒
1.
基于居民出行特征的北京城市功能区识别与空间交互研究 总被引:1,自引:0,他引:1
受区域功能分化影响,城市居民出行呈现出特定的时序特征,因而不同的出行时序特征可以反映区域功能的差异性。同时,区域功能的交互特征可以通过居民出行的空间交互活动体现。大数据时代的到来,使得以GPS数据为代表的个体时空大数据可以从微观视角反映居民出行特征。本文采用个体时空大数据,应用数据挖掘方法,从居民感知视角研究城市区域功能的差异性与联系性。以北京六环为研究区域,采用规则格网划分城市地块,通过北京市3个月的出租车GPS数据提取地块的居民出行时序特征。采用期望最大化算法进行聚类分析,并结合兴趣点数据和居民出行调查实现功能区识别,识别出居住区、商业娱乐区等6类功能区。从距离和时间2个维度分析功能区之间的空间交互特征,发现功能互补性在一定程度上削弱了空间交互强度的距离衰减效应,同时功能交互呈现出显著的时序差异。 相似文献
2.
基于出租车用户出行的功能区识别 总被引:1,自引:0,他引:1
出租车数据作为城市大数据重要来源,其上车行为和下车行为直接反映城市人群出行行为特征,帮助城市规划者发现城市人群出行规律和城市功能结构。但是出租车数据隐含多维度信息,一维或者二维模型不足以表达和挖掘其蕴含的多维信息,因此本文选择可以承载多维数据的张量模型对出租车OD(上车/下车)数据进行时空模式挖掘。本文将北京六环区域划分为500 m×500 m格网,采用北京市2012年11月1-16日的出租车OD数据,分别构建O点和D点张量,利用张量分解模型从日尺度、时段尺度揭示出租车用户出行时间模式,同时获取不同时段对应的出租车用户出行空间模式,并推测空间模式包含的语义属性。本文结合城市兴趣点(Point of Interest, POI)数据,提高空间模式语义属性推测的准确性,识别出租车用户出行功能区。结果表明:出租车用户出行时间符合工作日和休息日的早高峰、日间、晚高峰以及夜间模式;对应8种时间模式,出租车用户出行包含8种空间模式,每一种空间模式都是对应时间模式下的上下车热点区域,因此空间模式的变化表明城市人群在不同的时间点,到达不同的场所,进行不同的活动,间接表达空间功能的动态变化;区域的功能不是单一静态的,而是随着时间在不断地变化,是不同时段功能的组合。本文揭示出租车OD数据中隐含的出租车用户出行模式和空间功能动态变化,对利用人类行为时空模式研究区域空间功能结构具有科学参考价值。 相似文献
3.
4.
基于出租车GPS数据的居民就医时空特征分析 总被引:1,自引:0,他引:1
城市医疗服务在很大程度上影响着城市居民的生活质量,在公共服务领域中发挥着极其重要的作用。近年来,中国城市化发展过程中产生了海量的大数据,基于这些海量数据分析居民就医出行特征对于优化和改善城市医疗资源布局具有重要意义。本文以北京市主要医疗机构空间位置数据为基础,基于出租车GPS移动轨迹数据,采用时空统计分析方法,研究了出租车出行模式下的居民就医出行时空特征。结果表明,利用医院的OD(Origin-Destination)网络结构特征分析,可以识别出不同医院的服务范围以及受众的时空分布模式。市区尤其是四环以内医院的就医网络密集、紧凑,就医密度较高,而四环以外尤其是郊区周边,就医网络稀疏、分散,医疗资源的级别及地理位置影响了居民的就医倾向。本研究基于浮动车GPS数据开展居民就医时空行为模式挖掘研究,可以为城市医疗资源供需分析和优化配置提供决策支持。 相似文献
5.
探索地铁乘客出行目的识别方法,有助于突破智能卡数据(Smart Card Data,SCD)在具体应用场景中的局限性,提升SCD在交通出行研究、交通发展规划等领域的应用价值。本文融合多源地理大数据,基于城市交通与土地利用时空间互动理论,以北京市居民地铁出行为例,在交通出行调查数据中提取5565个地铁出行样本及其对应的出行目的和出行特征相关变量。基于兴趣点(Point of Interest,POI)数据得到各样本起止站点的土地利用特征相关变量,形成包含每次地铁出行的出行目的、出行特征、土地利用特征的地铁出行数据集。使用基于随机森林(Random Forest,RF)算法对地铁出行数据集进行训练完成的分类器对SCD记录的每一次地铁出行进行分类,获得该次出行的出行目的及其不同目的地铁出行时空间分布规律。研究结果表明,本识别方法可有效预测地铁乘客的出行目的,其中,“上班”、“回家”2类出行目的的预测准确率均超过90%;纳入土地利用特征相关变量可显著提升RF分类器预测准确率,印证了城市交通与土地利用的时空间互动理论。鉴于当前SCD的可获取性逐渐提高,该项技术在居民地铁出行监测与预测、地铁线网布局和地铁周边土地利用规划等实践方面,具有很强的推广性,有助于更全面地认知大城市居民的地铁出行行为。 相似文献
6.
天气状况作为人们生活环境的组成要素之一,对居民日常出行可产生显著的影响,具体可表征为特定空间位置和用地类型范围内出行活动的需求量以及道路交通路线选择的变化。高效、智能化的交通应急管理和城市规划建设亟需理解天气因素影响交通出行时空分布的基本规律。本文选取武汉市作为典型研究区域,基于出租车、气象和空气质量等数据,对不同天气下的居民出行模式和司机路径选择模式进行时空分析,并解释2类模式产生变化的原因和机制。结果表明:① 从时间上看,工作日的出租车需求量更容易受到天气变化的影响,其中降雨、气温的升高和风速的增强会显著降低居民对出租车的需求;② 从全市域空间尺度上看,降雨使得居民对出租车的需求量在工作日时段减少,而在周末时段增加,其中降雨主要刺激短距离出租车出行需求而抑制中长距离出行需求;③ 从城郊区空间尺度上看,雨天时段主城区内部的中距离流量减少,郊区内部的短距离流量增加,往返于主城区和郊区的中长距离流量在工作日减少、在周末增加;④ 从功能区空间尺度上看,下雨使得行政办公用地的出租车需求量减少,商业金融用地的出租车需求量在工作日减少、在周末增加,工业用地的出租车需求量在工作日增加、在周末减少;⑤ 从行驶路径上看,出租车司机在晴天时偏好根据距离来判断最佳路线,而在雨天倾向于改变原先路线选择策略,将距离和车速共同作为最佳路线的指标,选择用时最少的最佳路线。本文研究成果可帮助城市和交通管理部门更加深入地理解城市居民出行规律及其时空分布特征。 相似文献
7.
城际出行具有时间依赖性,不同时间约束与特定时期的城际出行具有相异性,反映的出行模式与表达的地理空间联系规律具有差异性.迁徙大数据记录的人口移动实时记录为开展基于时间依赖的城际出行网络提供了可能.本文以全国19个城市群为研究区域,利用腾讯平台提供的居民城际出行数据,对国庆长假期间(2016年10月1-7日)中国城市群城际... 相似文献
8.
公交乘客出行OD能够反映居民出行特征和出行需求,是进行公交系统评价、调度和线路优化的重要基础数据,对城市规划具有重要的实用价值。现有公交OD推算方法多适用于少量公交数据,无法直接快速地推算海量公交乘客出行OD,因此本文提出了一种基于MapReduce的海量公交乘客OD并行推算方法。首先将公交数据从关系型数据库迁移至HBase数据库;接着利用MapReduce并行计算框架,根据HBase中IC卡数据的Region数量分成多个map任务,每个map任务中Map函数计算上车站点,Reduce函数将上车站点以用户为单位进行归并输出到HDFS;然后在上车记录数据的基础上,根据HDFS存储的块数量分成多个map任务,针对每个乘客的出行记录,综合考虑出行链方法和历史相似出行行为规律实现对公交乘客下车站点较为精确的推算。最后以厦门2015年6月13日至26日的IC卡数据和公交车辆GPS数据进行实例分析,共计算出295条公交线路,16 879 661条上车记录,14 410 058条完整OD记录,占IC卡数据的78.9%,计算效率相比传统方法有较大幅度提升。结果表明:该方法不仅可以较为准确地推算公交乘客上下车站点,而且计算效率较高。 相似文献
9.
城市出租汽车是居民出行的重要方式之一,地理流空间理论为发掘人群出行特征,优化车辆运营效率提供了新视角。本文利用厦门市出租汽车轨迹数据,采用地理流空间分析理论,对人群出行的整体随机性质进行了分析,基于流相似性度量识别并分析了丛集、汇聚、发散和社区4种典型模式及混合模式的空间分布特征,对比了基于巡游车和网约车2种车辆的人群出行模式。结果表明流空间理论能够系统性发现人群出行典型模式及混合模式,主要体现在:(1)基于2类车辆的人群出行流在空间中呈现出显著的非随机特征;(2)巡游车和网约车的典型模式在空间分布上有明显差别,网约车的有关模式分布范围更广,在厦门岛外各区中心及岛内东部软件园等区域附近较为突出,且网约车由于其订单由用户需求驱动,更容易发现潜在的高出行需求区域,同时出行结构更容易形成社区模式,而巡游车主要分布在传统岛内知名城市地标附近;(3)同一区域内巡游车和网约车出行混合模式普遍存在,约占典型模式的四分之一左右,而且不同类型车辆的主要混合模式存在差异,综合考虑混合模式能够提高城市公共设施规划的精确性和科学性。本文结果可以为车辆调度优化和城市交通规划提供支持,也表明地理流空间理论能够更有... 相似文献
10.
分时租赁和网约车同属共享汽车,但规模对比悬殊.找到差异化的出行场景有利于分时租赁在网约车主导的共享汽车市场中谋求立足之地.本文以北京地区某分时租赁公司2017年5月1日—30日的出行订单和2018年4月23日—29日的网约车出行订单为研究对象,结合城市兴趣点数据,利用地理信息层次聚类、关联规则等方法挖掘两共享汽车的典型... 相似文献
11.
大城市公共交通是一个典型的复杂巨系统,采用复杂网络方法分析大城市公共交通网络系统对于城市交通发展具有重要意义。已有大量的研究采用复杂网络理论进行了公共交通线路网络分析,也有研究基于刷卡数据分析了公共交通客流网络的复杂特征,但少有研究探讨客流网络复杂性日内变化特征。鉴于此,本文基于北京市公共汽车刷卡数据识别的不同时间段客流双向邻接矩阵,通过复杂网络指标对比分析公共汽车客流网络的日内变化特征。结果表明:①各个时间段公共汽车客流分布遵循距离衰减规律,5 km以下的短距离出行约占总出行量的一半左右;②度中心性和加权度中心性的空间格局在不同时间段整体呈现出明显的核心-边缘特征,但随时间有一定程度的变化,加权度中心性排名前10的节点存在较大变化;③累积度分布和累积加权度分布服从指数分布,属于小世界网络。本文还进一步讨论了基于大数据的动态复杂网络研究对城市交通规划建设的启示意义。 相似文献
12.
小城市居民出行行为时空动态及驱动机制研究 总被引:1,自引:0,他引:1
相比于大城市,中小城市在新型城镇化中至关重要,具有独特的居民出行行为特征,但以往的研究并没有得到足够的关注。目前研究主要使用浮动车数据分析特大城市居民的出行行为,但考虑到小城市土地开发强度低、公共交通不发达、研究空间尺度精细等特点,这些研究方法不能完全适用于针对小城市的研究。因此,本文使用小城市出租车GPS轨迹数据识别上下客事件,沿道路生成随机样点采样得到了分时段的上下客密度,并对其时空动态进行描述和表达;筛选出显著影响上下客密度时空分布的9类设施,建立出租车上下客事件的地理加权回归模型;分析了小城市出租车上下客时空动态与各类城市设施的时空关系,发现在工作日与双休日和一天中不同时段中,不同城市设施对上下客事件的影响具有不同的分布规律及其驱动机制。研究结果可为小城市的城市规划和交通需求精细化管理提供参考。 相似文献
13.
基于开源大数据的北京地区餐饮业空间分布格局 总被引:1,自引:0,他引:1
基于大数据进行城市服务设施空间格局分析已成为一种新的研究热点,而餐饮业是城市服务业的典型代表,因此通过开源大数据对城市餐饮业的空间布局进行研究具有重要的意义。本文以北京地区作为研究区,采用网络爬虫技术获取大众点评上153 895家餐饮店数据,引入基于密度的CFSFDP聚类算法从空间分布密集度和人均消费等级方面对餐饮业背后蕴含的地理聚集特征进行分析。研究发现:① 北京地区餐饮店总体呈现多中心的空间分布特征,其集聚程度以主城区为核心向外逐级递减,并明显表现出围绕重要商圈、旅游景点和住宅区进行布局以及沿交通轴线扩展的趋势;② 不同人均消费水平的餐饮店呈现等级体系特征,即高档餐馆少而集聚,中低档餐馆多而散的分布特点;③ 餐馆分布密集程度和定价表现出接近市场和消费者的特征。同时,本文综合空间集聚特征和消费水平2项指标对影响餐饮店集群空间分布格局的因素进行了分析,以期为政府规划部门进行城市商业空间布局研究提供借鉴。 相似文献
14.
导航大数据是大量与导航相关且具有泛在导航、定位、授时特征的数据集合。城市环境的特性影响居民的出行活动,而居民出行活动中产生的导航大数据则蕴含了城市环境的时空信息。热点区域空间分布以及热点区域之间的关联性特征是城市环境时空特性的重要组成部分,由客观的环境现状和主观的人为活动造成。通过挖掘导航大数据可以揭示这些特征。本文提出了利用导航大数据的城市热点区域关联性挖掘方法。首先,通过对居民出行的起点和终点坐标进行空间聚类,挖掘城市中的热点区域,并依据点的分布特点对城市热点区域进行离散化;然后,利用基于谱聚类和蚁群算法的方法分析居民出行特征,揭示城市中热点区域之间存在的关联性。本文提出的方法能够充分利用导航大数据对城市动态的感知能力。以上海市2007年2月20日的出租车轨迹数据为例进行分析,结果表明:利用导航大数据分析城市热点区域之间的关联性,可以得到具有紧密关联性的热点区域的空间分布特征;上海市居民出行活动频繁的热点区域被划分为15个内部紧密关联的子图,形成该分布特征的内在机制以及居民流通规律与上海市的土地资源利用及道路交通建设现状密切相关。分析方法和结果可为合理的城市功能区域规划,智慧城市建设等提供决策支持和参考信息。 相似文献
15.
城市大数据信息图谱相较于传统地图信息平台而言,具有可定位、可视化、实时监测的特点;同时,将城市信息图谱平台精确落实到空间地块,则能实现从表层到深层对城市各系统、各单元的全面、综合的信息表达与联动分析。基于此,本文通过大数据采集、人机互动技术及谷地软件等方法,形成从建筑单体-用地地块-道路红线-街区单元-地形地貌的三维建筑精度的城市空间数据库,进而建构出城市多源大数据全信息复合数据库,这一数据库涵盖城市绿化系统、城市市政系统、城市微气候系统、城市产业系统、城市人车系统以及城市意象系统。在此基础上,通过Arc GIS平台将空间形态数据库与复合数据库进行空间耦合,形成基于统一空间坐标系的城市空间大数据信息图谱的基础模型;根据城市规划、城市设计与管理需要进行多对象的大数据组合与相关性分析,获得多源数据融合特征综合信息,进而优化规划和设计的科学决策。 相似文献