首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
桩承式加筋路堤三维土拱效应试验研究   总被引:2,自引:0,他引:2  
曹卫平  胡伟伟 《岩土力学》2014,299(2):351-358
桩承式加筋路堤受力性状比较复杂,土拱效应对路堤的承载变形性状具有重要影响。通过三维土拱效应模型试验,研究桩-土相对位移、路堤高度、桩帽净间距和水平加筋体拉伸强度等因素对桩土应力比及路堤沉降的影响。结果表明:土拱效应发挥程度与桩-土相对位移密切相关,存在一个临界桩-土相对位移使得桩土应力比达到最大值,该临界桩-土相对位移约为6~8 mm。路堤高度与桩帽净间距之比越大,桩土应力比越大,路堤顶面差异沉降越小;桩帽宽度与桩帽净间距之比越大,桩土应力比越大,路堤顶面差异沉降越小。设置水平加筋体能有效提高桩土应力比并减小路堤顶面沉降;路堤越低,水平加筋体对桩土应力比的提高作用及对路面沉降的减小作用越明显;水平加筋体拉伸强度越高,这种作用越明显。桩承式加筋路堤三维土拱效应等沉面高度与桩帽净间距之比约为3.5。  相似文献   

2.
桩土应力比是桩网复合地基或路基设计的重要控制参数,受土拱效应、拉膜效应和桩土相互作用及其耦合作用的综合影响,为此,本文首先引入几何同心拱模型,考虑桩土差异沉降与土拱发挥程度的关系,建立了新型桩网复合地基土拱效应分析模型,并根据水平加筋网变形特征将水平加筋网变形曲面视为球面与柱面的组合,建立了反映桩土差异沉降影响的拉膜效应分析模型。然后,考虑桩土相互作用及桩土差异沉降,建立了考虑路基填土、网、桩土加固区耦合作用的桩网复合地基荷载传递分析模型,进而提出了其桩土应力比分析新方法。该方法不仅能反映土拱效应、拉膜效应和桩土相互作用对桩土应力比的影响,而且还能反映桩土差异沉降对三者发挥程度的影响。最后,通过工程实例计算以及与现有同类相关方法的比较分析,表明了本文分析模型与方法的可行性与合理性。  相似文献   

3.
桩承式路堤土拱效应发挥过程研究   总被引:4,自引:0,他引:4  
费康  陈毅  王军军 《岩土力学》2013,34(5):1367-1374
通过三维模型试验对桩承式路堤中土拱效应发挥过程进行了研究,重点分析了不同桩顶盖板尺寸、不同加筋方式下应力折减系数与差异沉降之间的关系。结果表明,土拱效应随变形的增加而发挥;加筋材料的设置减小了差异沉降,削弱了填土中的土拱效应,荷载向桩顶的传递是土拱效应和拉膜效应共同作用的结果。采用有限元法对桩间距、填土高度等未能在模型试验中考虑的关键因素进行了参数敏感性分析,总结了土拱效应发挥过程的相关规律。根据有限元计算结果、试验数据和文献中收集到的实测资料,提出用土拱效应发挥系数和归一化位移来描述土拱效应的发挥过程,建议二者之间采用双曲线方程模拟,从而在设计中体现土拱效应随位移的发展,并满足路堤填土、加筋材料和地基之间的变形协调要求。  相似文献   

4.
实践证明,桩网复合地基同时具备竖向增强体复合地基与水平向增强体复合地基的加固优点,能很好地提高地基土体承载力,减小不均匀沉降,特别是桥头过渡段地基处理中能有效控制“桥头跳车”现象的产生。本文主要对桩网复合地基的加固机理进行分析,并结合自然平衡拱理论和加筋垫层拉膜效应理论推导出路堤下桩网复合地基桩土应力比计算公式,同时分析了各设计参数变化对桩土应力比的变化规律。工程实体试验表明,本文所推导的桩土应力比计算公式具有较好的适用性。  相似文献   

5.
桩承式路堤土拱形成及荷载传递机制离散元分析   总被引:1,自引:0,他引:1  
土拱效应是桩承式路堤中影响荷载传递的关键因素。基于前人的室内模型试验,建立了桩承式路堤离散元(DEM)数值分析模型。基于路堤中应力偏转规律对土拱随桩土相对位移的形成规律进行了分析。在该基础上提出了合理拱轴线土拱模型,并引入荷载传递系数? 对土拱与土拱下方路堤填料间的荷载传递进行量化分析。模拟结果表明,桩土相对位移引起路堤中应力主方向发生偏转并形成虚拟土拱;土拱形态及高度随桩土相对位移的变化而变化,最大拱高约0.8倍桩净间距;? 随土拱高度的增加呈对数关系减小。  相似文献   

6.
桩承式加筋路堤的现场试验及数值分析   总被引:4,自引:0,他引:4  
费康  刘汉龙 《岩土力学》2009,30(4):1004-1012
对一桩体面积置换率为8.7 %的低置换率桩承式加筋路堤进行了现场试验及三维有限元分析。现场主要进行了桩、土荷载分担,孔压、沉降及侧向水平变形等内容的观测。将观测数据与常规设计方法及三维有限元分析结果进行了对比研究,在此基础上对设计方法的适用性进行了分析。研究结果表明,路堤填土的土拱效应造成荷载向桩体转移,这种荷载转移大幅度减小了在软土层中产生的超孔隙水压力。当填土高度大于2.5 m时,土拱效应的应力折减系数可用Russell和Pierpoint或Hewlett和Randolph提出的土拱效应分析方法进行计算,其结果与三维有限元分析也较相符,但在路堤高度较小时,只有Russell和Pierpoint方法与实测结果相接近。路堤施工过程中,实测的水平变形与沉降之比仅为0.2左右,这表明采用桩承式加筋路堤不仅可减小沉降,而且可减小水平向的变形,提高路堤的稳定性。  相似文献   

7.
许朝阳  周锋  吕惠  马耀仁  孟涛  完绍金 《岩土力学》2014,35(11):3231-3239
对于桩承式路堤作用效应的研究目前主要侧重于对静荷载作用下桩土应力比和土拱效应等,较少考虑动荷载的影响,而车辆运行产生的动应力会对路堤中的土拱产生一定的影响,进而影响桩承式路堤的整体性能。为了分析静、动荷载作用下桩承式加筋路堤的性能变化,采用可视化模型试验和颗粒流数值模拟相结合的方法,对桩承式路堤在静载和动载下的应力传递和变形性状进行研究,分析动载作用下填土高度、桩帽、桩距、加筋形式、荷载频率的影响。试验结果表明,在动载下无筋路堤的桩顶的应力减小,而桩间的应力和位移增大,并且变化的幅度均比加筋路堤大,加筋材料的设置有利于减小动载的影响效应,但不同加筋形式下桩承式路堤的工作性状有所不同,受动载影响程度的大小主要与土拱效应的强弱有关。设置双层加筋时,因加筋材料与周围砂土形成半刚性平台,土拱效应减弱,故受动载影响的程度最小,单层加筋时,格栅设于桩顶上方10 cm比格栅置于桩顶受动载影响的程度明显减小,颗粒流的模拟结果验证了以上结果,并且进一步得出随荷载频率的增加、填土高度与桩净距的减小,动载的影响效应增大的结论。  相似文献   

8.
采用三维有限元程序建立了一长为6 m、直径为0.8 m的加筋碎石桩复合地基流固耦合数值模型,分析了其在堆载和孔压消散过程中的荷载传递和变形特性。较传统碎石桩,加筋碎石桩复合地基桩土应力比显著增大,超孔压、沉降和桩身侧向变形显著减小,且随筋材刚度的增大,其性能进一步改善。加筋碎石桩复合地基在桩间土固结过程中产生明显的桩土差异沉降,形成土拱效应,使得堆载结束后桩土应力比变化很小。筋材长度对加筋碎石桩复合地基桩土应力比和沉降影响显著,应对其全长加筋才能保证桩体刚度和有效减少沉降。  相似文献   

9.
采用桩-网加固拓宽路堤时,土拱效应对于分析新老路堤应力分布和差异沉降有至关重要的作用。依托某高速公路路堤拓宽项目对土拱效应进行研究,对试验段新路堤填筑过程及运营时基底桩及桩间土不同位置处土压力、加筋层拉应变进行监测,得到二维平面土拱效应的变化规律,并利用已有土拱效应计算方法对现场实测结果进行对比验证。结果表明,平面土拱作用范围在一定高度范围内,试验段约为2.0 m,即拱高、拱跨之比约为1.4,与英国规范BS8006[1]相近;按Guido法[2]与BS8006法[3]进行土工格栅的设计均过于保守,除Guido法以外,几种方法均低估桩间地基土的承担荷载贡献。因此,需在理论上作进一步研究。  相似文献   

10.
路堤下桩-网复合地基桩土应力现场试验研究   总被引:3,自引:0,他引:3       下载免费PDF全文
桩-网复合地基是近年常用的一种地基加固措施,桩土应力比则是复合地基研究中一个很重要的参数。通过对某客运专线试验段的桩土应力现场测试,得到了路堤下桩-网复合地基桩土应力及桩土应力比的变化规律和复合地基工作机理。现场测试结果表明:路堤下复合地基桩土应力比要比刚性基础下小很多,而且需要在桩、网垫层和桩间土的相互作用下,逐渐达到稳定;拉膜效应和土拱效应在桩-网复合地基工作时起到非常重要作用,网垫层能够有效提高复合地基桩土应力比。  相似文献   

11.
雷学文  陈凯杰 《岩土力学》2007,28(Z1):819-822
采用ABAQUS有限元软件,通过有限元数值模拟的方法分析了路堤荷载作用下桩-网复合地基中土工合成材料刚度、垫层厚度、桩体模量以及桩间距对复合地基的荷载传递特性、桩-土应力比、路基的表面沉降及侧向位移的影响。总结、分析计算结果,获得了桩-网复合地基承载及变形的一些基本特性,如:增加土工合成材料刚度,可显著地减小桩-土差异沉降和路基侧向位移,并增加桩-土应力比;增加垫层厚度,可明地改善桩-土荷载分担比和桩-土应力比等力学性状。这些结果对桩-网复合地基的设计与施工具有一定的指导意义。  相似文献   

12.
桩承式加筋路堤格栅分析   总被引:4,自引:0,他引:4  
将单桩等效处理范围简化为圆柱体,假定桩间土上部的格栅受上覆土压力作用后变形为二次抛物面,考虑路堤中的土拱效应,得到了格栅受力分析的解析方法。当路堤中的土拱处于弹性状态时,格栅对提高桩体荷载分担比的作用不大;当路堤中的土拱处于塑性状态时,格栅对提高桩体荷载分担比有明显的作用;当格栅与地基的相对刚度较小时,格栅对减小桩间土沉降的作用很小。最后对一个模型试验结果和一个工程实例进行了分析。  相似文献   

13.
考虑桩土侧移的被动桩中土拱效应数值分析   总被引:1,自引:0,他引:1  
陈福全  侯永峰  刘毓氚 《岩土力学》2007,28(7):1333-1337
被动桩对侧向位移的土层起到遮拦作用的机制主要是土拱效应。采用土工有限元软件Plaxis Tunnel 3D 1.2,对堆载荷载作用下邻近桩基中的土拱效应产生机制和性状进行三维数值分析,指出目前被动桩中土拱效应二维有限元分析存在的问题。考虑桩土侧移与相对位移,再利用土工有限元软件Plaxis2D 8.2详细地研究了侧向土体位移大小、桩身水平位移大小、土体性质以及桩土接触面性质等影响因素对土拱效应性态和桩土荷载分担比的影响。  相似文献   

14.
桩承式路堤土拱效应有限元研究   总被引:4,自引:1,他引:3  
贺翀  楼晓明  熊巨华 《岩土力学》2008,29(6):1466-1470
路堤下设置的带承台桩,除了承担承台上方的填土重量外,通过土拱效应还承担桩间土上方的部分重量。将填土重量的大部分传递到地基深部,既增加了路基的稳定性,又减小了路基的沉降。上海国际赛车场建造在软土地基上,为了满足工程需要,除使用了EPS轻质填筑材料外,还在填筑高度较高的地段采用了桩承式路堤作为地基加固方式。为了深入研究土拱效应的工作机制,对上海国际赛车场路堤桩的承台与承台间土压力分布进行了原位测试,并结合实际工况进行有限元分析。结果表明:除了承台上方的土压力相对承台间土有应力集中现象外,承台边缘相对承台中部也有应力集中现象。对EPS的加入和桩体性质的各项参数对于土拱效应产生的影响进行了分析。  相似文献   

15.
被动桩中土拱效应问题的数值分析   总被引:41,自引:6,他引:41  
被动桩对侧向位移的土层起到遮拦作用的机理主要是土拱效应。采用有限元软件Plaxis 8.1,详细地研究了被动桩中土拱效应的产生机理,分析了导致侧向位移的荷载大小、土体性质、群桩以及桩土接触面性质等影响因素对土拱效应性态和桩土应力分担比的影响,分析表明,桩间距是影响土拱效应的最主要因素。  相似文献   

16.
古海东  杨敏 《岩土力学》2014,35(12):3531-3540
采用同济大学中型岩土离心机进行了2组疏排桩支护基坑的离心机模型试验,结合三维有限元数值分析探讨了采用规范方法计算疏排桩支护基坑桩身内力与变形的适宜性,并提出了考虑土拱效应的疏排桩支护基坑桩侧土压力的理论计算方法,最后建立了考虑土拱效应的疏排桩支护基坑桩身内力和变形的计算模型。研究结果表明:对于桩间距与桩径之比为2、3和8的疏排桩支护基坑,桩间土体无法形成土拱效应;对于桩间距与桩径之比为4~7的疏排桩支护基坑,桩间土拱效应明显;规范法计算得到桩身内力与变形结果要比离心机试验结果偏大,与规范方法相比,采用文中提出的计算方法计算疏排桩支护基坑桩身内力与变形更为合理。  相似文献   

17.
路堤下现浇薄壁管桩复合地基工作特性分析   总被引:15,自引:7,他引:15  
费康  刘汉龙  高玉峰 《岩土力学》2004,25(9):1390-1396
现浇薄壁管桩和土工格栅加筋碎石垫层所组成的复合地基加固软弱路基具有经济合理,施工时间短,承载力高,沉降减小明显等优点。采用非线性有限元对路堤荷载作用下的现浇薄壁管桩复合地基的工作特性进行了分析,结果表明:在路堤荷载作用下,路堤填土材料中的拱效应、土工格栅的拉膜效应或加筋垫层的刚性垫层效应、桩土间刚度差异引起的应力集中效应保证了大部分荷载由桩承担,有效地减小了总沉降和不均匀沉降。同时对荷载传递机理的影响因素做了分析.  相似文献   

18.
土拱效应的作用机制是桩承式路堤荷载传递的关键性技术问题,然而高铁荷载作用下桩承式路堤中土拱效应的研究尚不充分。基于高铁设计规范的相关内容,建立了高铁荷载作用下桩承式路堤三维有限元分析模型,并采用已有研究结论验证了数值模型的正确性。根据该数值分析模型,首先分析了高铁荷载作用下路基的动力响应,研究了高铁荷载作用下道床和路堤不同位置处的竖向位移随时间的变化规律,以及路基中速度与加速度沿深度的分布规律。研究发现:道床和路堤表面处的竖向位移随时间变化呈倒“M”型周期变化,而路堤底部处呈“V”型周期变化;速度与加速度在路基深度范围内衰减了80%。通过变化桩间距、路堤高度以及路堤材料参数,分析其对高铁荷载作用下路堤应力和沉降发展规律的影响,进而分析其对土拱效应的影响。研究结果表明:动载作用下土拱效应依然存在,但有所减弱,动载峰值作用下减弱程度最大,谷值情况下有所恢复;桩间距和路堤高度对高铁荷载作用下桩承式路堤中土拱效应的影响较为明显,而路堤填料内摩擦角和剪胀角的影响则相对较小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号