首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CM carbonaceous chondrites can be used to constrain the abundance and H isotopic composition of water and OH in C-complex asteroids. Previous measurements of the water/OH content of the CMs are at the higher end of the compositional range of asteroids as determined by remote sensing. One possible explanation is that the indigenous water/OH content of meteorites has been overestimated due to contamination during their time on Earth. Here we have sought to better understand the magnitude and rate of terrestrial contamination through quantifying the concentration and H isotopic composition of telluric and indigenous water in CM falls by stepwise pyrolysis. These measurements have been integrated with published pyrolysis data from CM falls and finds. Once exposed to Earth's atmosphere CM falls are contaminated rapidly, with some acquiring weight percent concentrations of water within days. The amount of water added does not progressively increase with time because CM falls have a similar range of adsorbed water contents to finds. Instead, the petrologic types of CMs strongly influence the amount of terrestrial water that they can acquire. This relationship is probably controlled by mineralogical and/or petrophysical properties of the meteorites that affect their hygroscopicity. Irrespective of the quantity of water that a sample adsorbs or its terrestrial age, there is minimal exchange of H in indigenous phyllosilicates with the terrestrial environment. The falls and finds discussed here contain 1.9–10.5 wt% indigenous water (average 7.0 wt%) that is consistent with recent measurements of C-complex asteroids including Bennu.  相似文献   

2.
Abstract– The Hayabusa mission recently returned the first samples from an ordinary chondrite (OC) parent body. Olivine, low‐Ca pyroxene, and kamacite compositions fall within the known ranges of minerals from LL4 to LL6 chondrites. Hayabusa samples are being processed and stored in a pure N2 atmosphere. However, during recovery, prior to receiving, and during preliminary examination, some Hayabusa samples were briefly exposed to terrestrial atmosphere. Some of the minerals already identified in the Hayabusa samples (olivine, sulfides) are known to be among the most vulnerable to weathering reactions in moist, oxidizing terrestrial environments. Oxidation of Fe in metal, sulfides, and ferrous silicates is ubiquitous in naturally weathered OC finds, in samples of falls subjected to even a few decades of weathering before recovery, and in OC falls recovered and curated promptly after recovery. All prerecovery oxidation, hydrolysis, hydration, and product‐forming phenomena documented to affect OC finds have been documented to continue in OC samples in curatorial and laboratory settings, producing mineralogical and textural effects at scales easily discernable by electron microscopy, on timescales of decades. Hayabusa samples will be exposed to similar terrestrial conditions at times throughout sample processing, allocation, and examination. Maximizing the science yield from these important samples requires thorough understanding of how LL chondrite minerals like those in the Hayabusa samples react with terrestrial moisture and oxidants in support of proper planning for maintaining Hayabusa sample integrity after allocation, and for proper anticipation of the effects of inevitable exposure to Earth’s atmosphere during storage and examination in terrestrial analytical laboratories.  相似文献   

3.
Abstract— The fall and recovery of the Tagish Lake meteorite in British Columbia in January 2000 provided a unique opportunity to study relatively pristine samples of carbonaceous chondrite material. Measurements of the oxygen isotopic composition of water extracted under stepped pyrolysis from a bulk sample of this meteorite have allowed us to make comparisons with similar data obtained from CI and CM chondrites and so further investigate any relationships that may exist between these meteorites. The much lower yield of water bearing a terrestrial signature in Tagish Lake is indicative of the pristine nature of the meteorite. The relationship between the isotopic composition of this water and reported isotopic values for carbonates, bulk matrix and whole rock have been used to infer the extent and conditions under which parent‐body aqueous alteration occurred. In Tagish Lake the difference in Δ17O isotopic composition between the water and other phases is greater than that found in either CM or CI chondrites suggesting that reaction and isotopic exchange between components was more limited. This in turn suggests that in the case of Tagish Lake conditions during the processes of aqueous alteration on the parent body, which ultimately controlled the formation of new minerals, were distinct from those on both CI and CM parent bodies.  相似文献   

4.
Abstract— We have undertaken a comprehensive study of carbon and nitrogen elemental abundances and isotopic compositions of bulk carbonaceous chondrites. A strategy of multiple analyses has enabled the investigation of hitherto unconstrained small‐scale heterogeneities. No systematic differences are observed between meteorite falls and finds, suggesting that terrestrial processing has a minimal effect on bulk carbon and nitrogen chemistry. The changes in elemental abundance and isotopic composition over the petrologic range may reflect variations in primary accreted materials, but strong evidence exists of the alteration of components during secondary thermal and aqueous processing. These changes are reflected within the CM2 and CO3 groups and follow the published alteration scales for those groups. The nitrogen isotope system appears to be controlled by an organic host, which loses a 15N‐rich component with progressive alteration. This study recommends caution, however, over the use of bulk carbon and nitrogen information for classification purposes; variance in relative abundance of different components in carbonaceous chondrites is significant and reflects intrameteorite heterogeneities.  相似文献   

5.
Abstract— Results from an inorganic geochemical modeling study support a scenario in which low‐temperature aqueous alteration of an anhydrous CM asteroidal parent body and melt water from H2O and CO2 ices produces the altered assemblage observed in CM carbonaceous chondrites (chrysotile, greenalite, tochilinite, cronstedtite and minor calcite and magnetite). We consider a range of possible precursor mineral assemblages, varying with respect to the Fe‐oxidation state of the initial anhydrous phases. The aqueous solutions produced by this alteration are generally strongly basic and reducing and a large quantity of H2, and possible CH4, gas can be released during aqueous alteration.  相似文献   

6.
Abstract– CM chondrites were subjected to aqueous alteration and, in some cases, to secondary metamorphic heating. The effects of these processes vary widely, and have mainly been documented in silicate phases. Herein, we report the characteristic features of Fe‐Ni metal and sulfide phases in 13 CM and 2 CM‐related chondrites to explore the thermal history of these chondrites. The texture and compositional distribution of the metal in CM are different from those in unequilibrated ordinary and CO chondrites, but most have similarities to those in highly primitive chondrites, such as CH, CR, and Acfer 094. We classified the CM samples into three categories based on metal composition and sulfide texture. Fe‐Ni metal in category A is kamacite to martensite. Category B is characterized by pyrrhotite grains always containing blebs or lamellae of pentlandite. Opaque mineral assemblages of category C are typically kamacite, Ni‐Co‐rich metal, and pyrrhotite. These categories are closely related to the degree of secondary heating and are not related to degree of the aqueous alteration. The characteristic features of the opaque minerals can be explained by secondary heating processes after aqueous alteration. Category A CM chondrites are unheated, whereas those in category B experienced small degrees of secondary heating. CMs in category C were subjected to the most severe secondary heating process. Thus, opaque minerals can provide constraints on the thermal history for CM chondrites.  相似文献   

7.
The Mighei-like carbonaceous (CM) chondrites, the most abundant carbonaceous chondrite group by number, further our understanding of processes that occurred in their formation region in the protoplanetary disk and in their parent body/bodies and provide analogs for understanding samples returned from carbonaceous asteroids. Chondrules in the CMs are commonly encircled by fine-grained rims (FGRs) whose origins are debated. We present the abundances, sizes, and petrographic observations of FGRs in six CMs that experienced varying intensities of parent body processing, including aqueous and thermal alteration. The samples studied here, in approximate order of increasing thermal alteration experienced, are Allan Hills 83100, Murchison, Meteorite Hills 01072, Elephant Moraine 96029, Yamato-793321, and Pecora Escarpment 91008. Based on observations of these CM chondrites, we recommend a new average apparent (2-D) chondrule diameter of 170 μm, which is smaller than previous estimates and overlaps with that of the Ornans-like carbonaceous (CO) chondrites. Thus, we suggest that chondrule diameters are not diagnostic for distinguishing between CM and CO chondrites. We also argue that chondrule foliation noted in ALH 83100, MET 01072, and Murchison resulted from multiple low-intensity impacts; that FGRs in CMs formed in the protoplanetary disk and were subsequently altered by both aqueous and thermal secondary alteration processes in their parent asteroid; and that the heat experienced by some CM chondrites may have originated from solar radiation of their source body/bodies during close solar passage as evidenced by the presence of evolved desiccation cracks in FGRs that formed by recurrent wetting and desiccation cycles.  相似文献   

8.
Abstract— The recovery of large numbers of meteorites from Antarctica has dramatically increased the amount of extraterrestrial material available for laboratory studies of solar system origin and evolution. Yet, the great age of Antarctic meteorites raises the concern that significant amounts of terrestrial weathering has corrupted their pre‐terrestrial record. Organic matter found in carbonaceous chondrites is one of the components most susceptible to alteration by terrestrial processes. To assess the effects of Antarctic weathering on both non‐Antarctic and Antarctic chondritic organic matter, a number of CM chondrites have been analyzed. Mössbauer spectroscopy has been used to ascertain pre‐terrestrial and terrestrial oxidation levels, while pyrolysis‐gas chromatography‐mass spectrometry was used to determine the constitution of any organic matter present. Increased oxidation levels for iron bearing minerals within the non‐Antarctic chondrites are likely to be a response to increased amounts of parent body aqueous alteration. Parent body processing also appears to remove ether bonds from organic material and alkyl side chains from its constituent units. The iron in Antarctic chondrites is generally more oxidized than that in their non‐Antarctic counterparts, reflecting terrestrial weathering. Antarctic weathering of chondritic organic matter appears to proceed in a similar way to parent body aqueous alteration and simply enhances the organic responses observed in the non‐Antarctic data set. Degradation of the record of preterrestrial processes in Antarctic chondrites should be taken into account when interpreting data from these meteorites.  相似文献   

9.
The presence of primary iron sulfides that appear to be aqueously altered in CM and CR carbonaceous chondrites provides the potential to study the effects and, by extension, the conditions of aqueous alteration. In this work, we have used SEM, TEM, and EPMA techniques to characterize primary sulfides that show evidence of secondary alteration. The alteration styles consist of primary pyrrhotite altering to secondary pentlandite (CMs only), magnetite (CMs and CRs), and phyllosilicates (CMs only) in grains that initially formed by crystallization from immiscible sulfide melts in chondrules (pyrrhotite‐pentlandite intergrowth [PPI] grains). Textural, microstructural, and compositional data from altered sulfides in a suite of CM and CR chondrites have been used to constrain the conditions of alteration of these grains and determine their alteration mechanisms. This work shows that the PPI grains exhibit two styles of alteration—one to form porous pyrrhotite‐pentlandite (3P) grains by dissolution of precursor PPI grain pyrrhotite and subsequent secondary pentlandite precipitation (CMs only), and the other to form the altered PPI grains by pseudomorphic replacement of primary pyrrhotite by magnetite (CMs and CRs) or phyllosilicates (CMs only). The range of alteration textures and products is the result of differences in conditions of alteration due to the role of microchemical environments and/or brecciation. Our observations show that primary sulfides are sensitive indicators of aqueous alteration processes in CM and CR chondrites.  相似文献   

10.
Abstract— We used high‐resolution transmission electron microscopy (HRTEM), electron tomography, electron energy‐loss spectroscopy (EELS), and energy‐dispersive spectroscopy (EDS) to investigate the structure and composition of polyhedral serpentine grains that occur in the matrices and fine‐grained rims of the Murchison, Mighei, and Cold Bokkeveld CM chondrites. The structure of these grains is similar to terrestrial polygonal serpentine, but the data show that some have spherical or subspherical, rather than cylindrical morphologies. We therefore propose that the term polyhedral rather than polygonal be used to describe this material. EDS shows that the polyhedral grains are rich in Mg with up to 8 atom% Fe. EELS indicates that 70% of the Fe occurs as Fe3+. Alteration of cronstedtite on the meteorite parent body under relatively oxidizing conditions is one probable pathway by which the polyhedral material formed. The polyhedral grains are the end‐member serpentine in a mineralogic alteration sequence for the CM chondrites.  相似文献   

11.
Abstract— Iron‐rich aureoles in CM carbonaceous chondrites are previously unidentified domains of aqueously altered matrix material, whose FeO content may exceed that of the surrounding matrix by up to more than 15 wt%. We describe the petrography and mineralogy of these objects in the CM chondrites Murray, Murchison, and Allan Hills (ALH) 81002. The size of Fe‐rich aureoles ranges from a few hundred microns to several millimeters in diameter and appears to be a function of the degree of alteration of the host chondrite. The origin of Fe‐rich aureoles is related to the alteration of large metal grains that has resulted in the formation of characteristic PCP‐rich reaction products that are frequently observed at the centers of the aureoles. This suggests that Fe‐rich aureoles in CM chondrites are the result of the mobilization of Fe from altering metal grains into the matrix. The fact that Fe‐rich aureoles enclose numerous chondritic components such as chondrules, calcium‐aluminum‐rich inclusions (CAIs), and mineral fragments, as well as their radial symmetric appearance, are strong evidence that they formed in situ and that significant directional fluid flow was not involved in the alteration process. This and additional constraints, such as the distribution of S and other elements, as well as the inferred alteration conditions, are consistent with in situ parent‐body alteration. The observations are, however, entirely incompatible with preaccretionary alteration models in which the individual CM chondrite components have experienced diverse alteration histories. The presence of numerous intact aureoles in the brecciated CM chondrites Murray and Murchison further suggests that the alteration occurred largely after brecciation affected these meteorites. Therefore, the progressive aqueous alteration of CM chondrites may not be necessarily coupled to brecciation as has been previously proposed.  相似文献   

12.
The CM carbonaceous chondrite meteorites experienced aqueous alteration in the early solar system. They range from mildly altered type 2 to almost completely hydrated type 1 chondrites, and offer a record of geochemical conditions on water‐rich asteroids. We show that CM1 chondrites contain abundant (84–91 vol%) phyllosilicate, plus olivine (4–8 vol%), magnetite (2–3 vol%), Fe‐sulfide (<5 vol%), and calcite (<2 vol%). The CM1/2 chondrites contain phyllosilicate (71–88 vol%), olivine (4–20 vol%), enstatite (2–6 vol%), magnetite (2–3 vol%), Fe‐sulfides (1–2 vol%), and calcite (~1 vol%). As aqueous alteration progressed, the abundance of Mg‐serpentine and magnetite in the CM chondrites increased. In contrast, calcite abundances in the CM1/2 and CM1 chondrites are often depleted relative to the CM2s. The modal data support the model, whereby metal and Fe‐rich matrix were the first components to be altered on the CM parent body(ies), before further hydration attacked the coarser Mg‐rich silicates found in chondrules and fragments. Based on the absence of tochilinite, we suggest that CM1 chondrites experienced increased alteration due to elevated temperatures (>120 °C), although higher water/rock ratios may also have played a role. The modal data provide constraints for interpreting the composition of asteroids and the mineralogy of samples returned from these bodies. We predict that “CM1‐like” asteroids, as has been proposed for Bennu—target for the OSIRIS‐REx mission—will have a high abundance of Mg‐rich phyllosilicates and Fe‐oxides, but be depleted in calcite.  相似文献   

13.
Tochilinite/cronstedtite intergrowths are commonly observed as alteration products in CM chondrite matrices, but the conditions under which they formed are still largely underconstrained due to their scarcity in terrestrial environments. Here, we report low temperature (80 °C) anoxic hydrothermal experiments using starting assemblages similar to the constituents of the matrices of the most pristine CM chondrite and S‐rich and S‐free fluids. Cronstedtite crystals formed only in S‐free experiments under circumneutral conditions with the highest Fe/Si ratios. Fe‐rich tochilinite with chemical and structural characteristics similar to chondritic tochilinite was observed in S‐bearing experiments. We observed a positive correlation between the Mg content in the hydroxide layer of synthetic tochilinite and temperature, suggesting that the composition of tochilinite is a proxy for the alteration temperature in CM chondrites. Using this relation, we estimate the mean precipitation temperatures of tochilinite to be 120–160 °C for CM chondrites. Given the different temperature ranges of tochilinite and cronstedtite in our experiments, we propose that Fe‐rich tochilinite crystals resulted from the alteration of metal beads under S‐bearing alkaline conditions at T = 120–160 °C followed by cronstedtite crystals formed by the reaction of matrix amorphous silicates, metal beads, and water at a low temperature (50–120 °C).  相似文献   

14.
Cosmic ray exposure (CRE) ages of CM chondrites have been found to have multiple peaks (as many as four), in stark contrast to other groups of chondrites (Nishiizumi and Caffee 2012; Herzog and Caffee 2014). In this study, we sought correlations between the CRE ages and petrography of CM chondrites, and we conclude that the degree of aqueous alteration does appear to vary with the CRE ages—the CMs displaying the most aqueous alteration all have relatively short exposure ages. However, some CMs with low degrees of alteration also have short exposure ages—thus, this apparent correlation is not exclusive. We also found a definite inverse relation between the number of distinctive lithologies in a CM and its exposure age, which could indicate different responses of homogeneous and heterogeneous meteoroids to the space environment between their onset of exposure (exhumation and ejection from the parent body) and arrival at Earth. Breccias have more internal surfaces of lithologic discontinuity, possibly resulting in weaker meteoroids that disintegrate more readily than their more homogeneous counterparts. Our results suggest that CM chondrite regoliths consist of numerous genomict lithologies in a breccia with millimeter‐ to decimeter‐scale clasts, with varying degree of heating/metamorphism.  相似文献   

15.
Abstract— Fifty‐four fragments of ordinary chondrites from 50 finds representing all searched areas in central Oman and all weathering stages were selected to compare the physical, chemical, and mineralogical effect of terrestrial weathering with 14C terrestrial ages. 14C ages range from 2.0 to >49 kyr with a median value of 17.9 kyr. The peak of the age range, which is between 10–20 kyr, falls in an arid climate period. A comparison of the chemical composition of Omani chondrites with literature data for unweathered H and L chondrites demonstrates a strong enrichment in Sr and Ba, and depletion in S during weathering. Water contents in H chondrites increase with terrestrial age, whereas L chondrites show a rapid initial increase followed by nearly constant water content. Correlating Sr, Ba, and H2O with age indicates two absorption trends: i) an initial alteration within the first 20 kyr dominated by H2O uptake, mainly reflecting Fe‐Ni metal alteration, and ii) a second Ba‐and Sr‐dominated stage correlated with slower and less systematic weathering of troilite that starts after H2O reaches ?2 wt%. Sulfur released from troilite partly combines with Ba and Sr to form sulfate minerals. Other parameters correlated with 14C age are degree of weathering, color of powdered meteorites, and the Ni/Fe ratio. Chemical analyses of 145 soils show a high degree of homogeneity over the entire interior Oman Desert, indicating large‐scale mixing by wind. Soil samples collected from beneath meteorite finds typically are enriched in Ni and Co, confirming mobilization from the meteorites. High Cr and Ni concentrations in reference soil samples, which decrease from NE to SW, are due to detrital material from ultramafic rocks of the Oman Mountains.  相似文献   

16.
Abstract— –The presence of apparently unaltered, micron‐sized Fe,Ni metal grains, juxtaposed against hydrated fine‐grained rim materials in the CM2 chondrite Yamato (Y‐) 791198 has been cited as unequivocal evidence of preaccretionary alteration. We have examined the occurrence, composition, and textural characteristics of 60 Fe,Ni metal grains located in fine‐grained rims in Y‐791198 using scanning electron microscopy (SEM) and electron microprobe analysis. In addition, three metal grains, prepared by focused ion beam (FIB) sample preparation techniques were studied by transmission electron microscopy (TEM). The metal grains are heterogeneously distributed within the rims. Electron microprobe analyses show that all the metal grains are kamacite with minor element contents (P, Cr, and Co) that lie either within or close to the range for other CM2 metal grains. X‐ray maps obtained by electron microprobe show S, P, and/or Ca enrichments on the outermost parts of many of the metal grains. Z‐contrast STEM imaging of FIB‐prepared Fe,Ni metal grains show the presence of a small amount of a lower Z secondary phase on the surface of the grains and within indentations on the grain surfaces. Energy‐filtered TEM (EFTEM) compositional mapping shows that these pits are enriched in oxygen and depleted in Fe relative to the metal. These observations are consistent with pitting corrosion of the metal on the edges of the grains and we suggest may be the result of the formation of Fe(OH)2, a common oxidation product of Fe metal. The presence of such a layer could have inhibited further alteration of the metal grains. These findings are consistent with alteration by an alkaline fluid as suggested by Zolensky et al. (1989), but the location of this alteration remains unconstrained, because Y‐791198 was recovered from Antarctica and therefore may have experienced incipient terrestrial alteration. However, we infer that the extremely low degree of oxidation of the metal is inconsistent with weathering in Antarctica and that alteration in an extraterrestrial environment is more probable. Although the presence of unaltered or incipiently altered metal grains in these fine‐grained rims could be interpreted as evidence for preaccretionary alteration, we suggest an alternative model in which metal alteration was inhibited by alkaline fluids on the asteroidal parent body.  相似文献   

17.
As part of an integrated consortium study, we have undertaken O, Cd, Cr, Si, Te, Ti, and Zn whole rock isotopic measurements of the Winchcombe CM2 meteorite. δ66Zn values determined for two Winchcombe aliquots are +0.29 ± 0.05‰ (2SD) and +0.45 ± 0.05‰ (2SD). The difference between these analyses likely reflects sample heterogeneity. Zn isotope compositions for Winchcombe show excellent agreement with published CM2 data. δ114Cd for a single Winchcombe aliquot is +0.29 ± 0.04‰ (2SD), which is close to a previous result for Murchison. δ130Te values for three aliquots gave indistinguishable results, with a mean value of +0.62 ± 0.01‰ (2SD) and are essentially identical to published values for CM2s. ε53Cr and ε54Cr for Winchcombe are 0.319 ± 0.029 (2SE) and 0.775 ± 0.067 (2SE), respectively. Based on its Cr isotopic composition, Winchcombe plots close to other CM2 chondrites. ε50Ti and ε46Ti values for Winchcombe are 3.21 ± 0.09 (2SE) and 0.46 ± 0.08 (2SE), respectively, and are in line with recently published data for CM2s. The δ30Si composition of Winchcombe is −0.50 ± 0.06‰ (2SD, n = 11) and is essentially indistinguishable from measurements obtained on other CM2 chondrites. In conformity with petrographic observations, oxygen isotope analyses of both bulk and micromilled fractions from Winchcombe clearly demonstrate that its parent body experienced extensive aqueous alteration. The style of alteration exhibited by Winchcombe is consistent with relatively closed system processes. Analysis of different fractions within Winchcombe broadly support the view that, while different lithologies within an individual CM2 meteorite can be highly variable, each meteorite is characterized by a predominant alteration type. Mixing of different lithologies within a regolith environment to form cataclastic matrix is supported by oxygen isotope analysis of micromilled fractions from Winchcombe. Previously unpublished bulk oxygen isotope data for 12 CM2 chondrites, when combined with published data, define a well-constrained regression line with a slope of 0.77. Winchcombe analyses define a more limited linear trend at the isotopically heavy, more aqueously altered, end of the slope 0.77 CM2 array. The CM2 slope 0.77 array intersects the oxygen isotope field of CO3 falls, indicating that the unaltered precursor material to the CMs was essentially identical in oxygen isotope composition to the CO3 falls. Our data are consistent with earlier suggestions that the main differences between the CO3s and CM2s reflect differing amounts of water ice that co-accreted into their respective parent bodies, being high in the case of CM2s and low in the case of CO3s. The small difference in Si isotope compositions between the CM and CO meteorites can be explained by different proportions of matrix versus refractory silicates. CMs and COs may also be indistinguishable with respect to Ti and Cr isotopes; however, further analysis is required to test this possibility. The close relationship between CO3 and CM2 chondrites revealed by our data supports the emerging view that the snow line within protoplanetary disks marks an important zone of planetesimal accretion.  相似文献   

18.
Abstract— We present a method that combines Mössbauer spectroscopy and X‐ray diffraction to quantify the modal mineralogy of unequilibrated ordinary chondrites (UOCs). Despite being a fundamental tool in the interpretation of geological systems, there are no modal mineralogical data available for these meteorites. This is due to their fine‐grained nature, highly heterogeneous silicate mineralogy, and the presence of poorly characterized phases. Consequently, it has not been possible to obtain accurate modal mineralogy by conventional techniques such as point counting. Here we use Mössbauer spectroscopy as a preliminary identification technique and X‐ray diffraction provides the quantification for a suite of recent UOC falls. We find the most primitive UOCs to contain a significant amount of phyllosilicate material that was converted during metamorphism to form ferromagnesian silicates. A complete suite of Antarctic samples is analyzed by each method to observe mineralogical trends and these are compared with trends shown by recent falls. The fact that mineralogical relationships shown by finds and falls are in agreement allows us to be confident that we are observing the products of pre‐terrestrial alteration. Mössbauer spectroscopy reveals evidence of steadily increasing reduction with metamorphism in the UOCs. Because this technique allows comparisons to be made between UOCs and EOCs, our reduction sequence can be combined with other evidence showing progressive oxidation in the EOCs. This yields an integrated model of changing redox conditions on equilibrating ordinary chondrite parent bodies.  相似文献   

19.
We report a petrographic and mineralogical survey of tochilinite/cronstedtite intergrowths (TCIs) in Paris, a new CM chondrite considered to be the least altered CM identified to date. Our results indicate that type‐I TCIs consist of compact tochilinite/cronstedtite rims surrounding Fe‐Ni metal beads, thus confirming kamacite as the precursor of type‐I TCIs. In contrast, type‐II TCIs are characterized by complex compositional zoning composed of three different Fe‐bearing secondary minerals: from the outside inwards, tochilinite, cronstedtite, and amakinite. Type‐II TCIs present well‐developed faces that allow a detailed morphological analysis to be performed in order to identify the precursors. The results demonstrate that type‐II TCIs formed by pseudomorphism of the anhydrous silicates, olivine, and pyroxene. Hence, there is no apparent genetic relationship between type‐I and type‐II TCIs. In addition, the complex chemical zoning observed within type‐II TCIs suggests that the alteration conditions evolved dramatically over time. At least three stages of alteration can be proposed, characterized by alteration fluids with varying compositions (1) Fe‐ and S‐rich fluids; (2) S‐poor and Fe‐ and Si‐rich fluids; and (3) S‐ and Si‐poor, Fe‐rich fluids. The presence of unaltered silicates in close association with euhedral type‐II TCIs suggests the existence of microenvironments during the first alteration stages of CM chondrites. In addition, the absence of Mg‐bearing secondary minerals in Paris TCIs suggests that the Mg content increases during the course of alteration.  相似文献   

20.
CM chondrites are complex impact (mostly regolith) breccias, in which lithic clasts show various degrees of aqueous alteration. Here, we investigated the degree of alteration of individual clasts within 19 different CM chondrites and CM‐like clasts in three achondrites by chemical analysis of the tochilinite‐cronstedtite‐intergrowths (TCIs; formerly named “poorly characterized phases”). To identify TCIs in various chondritic lithologies, we used backscattered electron (BSE) overview images of polished thin sections, after which appropriate samples underwent electron microprobe measurements. Thus, 75 lithic clasts were classified. In general, the excellent work and specific criteria of Rubin et al. (2007) were used and considered to classify CM breccias in a similar way as ordinary chondrite breccias (e.g., CM2.2‐2.7). In BSE images, TCIs in strongly altered fragments in CM chondrites (CM2.0‐CM2.2) appear dark grayish and show a low contrast to the surrounding material (typically clastic matrix), and can be distinguished from TCIs in moderately (CM2.4‐CM2.6) or less altered fragments (CM2.7‐CM2.9); the latter are bright and have high contrast to the surroundings. We found that an accurate subclassification can be obtained by considering only the “FeO”/SiO2 ratio of the TCI chemistry. One could also consider the TCIs’ S/SiO2 ratio and the metal abundance, but these were not used for classification due to several disadvantages. Most of the CM chondrites are finds that have suffered terrestrial weathering in hot and cold deserts. Thus, the observed abundance of metal is susceptible to weathering and may not be a reliable indicator of subtype classification. This study proposes an extended classification scheme based on Rubin’s scale from subtypes CM2.0‐CM2.9 that takes the brecciation into account and includes the minimum to maximum degree of alteration of individual clasts. The range of aqueous alteration in CM chondrites and small spatial scale of mixing of clasts with different alteration histories will be important for interpreting returned samples from the OSIRIS‐REx and Hayabusa 2 missions in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号