首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We examined the relationship between soil oxidation capacity and extractable soil manganese, iron oxides, and other soil properties. The Korean soils examined in this study exhibited low to medium Cr oxidation capacities, oxidizing 0.00–0.47 mmol/kg, except for TG-4 soils, which had the highest capacity for oxidizing added Cr(III) [>1.01 mmol/kg of oxidized Cr(VI)]. TG and US soils, with high Mn contents, had relatively high oxidation capacities. The Mn amounts extracted by dithionite-citrate-bicarbonate (DCB) (Mnd), NH2OH·HCl (Mnh), and hydroquinone (Mnr) were generally very similar, except for the YS1 soils, and were well correlated. Only small proportions of either total Mn or DCB-extractable Mn were extracted by NH2OH·HCl and hydroquinone in the YS1 soils, suggesting inclusion of NH2OH·HCl and hydroquinone-resistant Mn oxides, because these extractants are weaker reductants than DCB. No Cr oxidation test results were closely related to total Mn concentrations, but Mnd, Mnh, and Mnr showed a relatively high correlation with the Cr tests (r = 0.655–0.851; P < 0.01). The concentrations of Mnd and Mnh were better correlated with the Cr oxidation tests than was the Mnr concentration, suggesting that the oxidation capacity of our soil samples can be better explained by Mnd and Mnh than by Mnr. The first component in principal components analysis indicated that extractable soil Mn was a main factor controlling net Cr oxidation in the soils. Total soil Mn, Fe oxides, and the clay fraction are crucial for predicting the mobility of pollutants and heavy metals in soils. The second principal component indicated that the presence of Fe oxides in soils had a significant relationship with the clay fraction and total Mn oxide, and was also related to heavy-metal concentrations (Zn, Cd, and Cu, but not Pb).  相似文献   

2.
Sequestration of Ce3+ by biogenic manganese oxides (BMOs) formed by a Mn(II)-oxidizing fungus, Acremonium strictum strain KR21-2, was examined at pH 6.0. In anaerobic Ce3+ solution, newly formed BMOs exhibited stoichiometric Ce3+ oxidation, where the molar ratio of Ce3+ sequestered (Ceseq) relative to Mn2+ released (Mnrel) was maintained at approximately two throughout the reaction. A similar Ce3+ sequestration trend was observed in anaerobic treatment of BMOs in which the associated Mn(II) oxidase was completely inactivated by heating at 85 °C for 1 h or by adding 50 mM NaN3. Aerobic Ce3+ treatment of newly formed BMO (enzymatically active) resulted in excessive Ce3+ sequestration over Mn2+ release, yielding Ceseq/Mnrel > 200, whereas heated or poisoned BMOs released a significant amount of Mn2+ with lower Ce3+ sequestration efficiency. Consequently, self-regeneration by the Mn(II) oxidase in newly formed BMO effectively suppressed Mn2+ release and enhanced oxidative Ce3+ sequestration under aerobic conditions. Repeated treatments of heated or poisoned BMOs under aerobic conditions confirmed that oxidative Ce3+ sequestration continued even after most Mn oxide was released from the solid phase, indicating auto-catalytic Ce3+ oxidation at the solid phase produced through primary Ce3+ oxidation by BMO. From X-ray diffraction analysis, the resultant solid phases formed through Ce3+ oxidation by BMO under both aerobic and anaerobic conditions consisted of cerianite with crystal sizes of 5.00–7.23 Å. Such nano-sized CeO2 (CeO2,BMO) showed faster auto-catalytic Ce3+ oxidation than that on well-crystalized cerianite under aerobic conditions, where the normalized pseudo-first order rate constants for auto-catalytic Ce3+ oxidation on CeO2,BMO was two orders of magnitude higher. Consequently, we concluded that Ce3+ contact with BMOs sequesters Ce3+ through two oxidation paths: primary Ce3+ oxidation by BMOs produces nano-sized crystalline cerianite, and subsequent auto-catalytic Ce3+ oxidation efficiently occurs using dissolved oxygen as the oxidizing agent. Pretreatment of newly formed BMOs with La3+ solution resulted in decreased rate constants for primary Ce3+ oxidation by BMO due to site blocking by La3+ sorption. The results presented herein increase our understanding of the role of BMO in oxidative Ce3+ sequestration process(es) through enzymatic and abiotic paths in natural environments and provide supporting evidence for the potential application of BMOs towards the recovery of Ce3+ from contaminated waters.  相似文献   

3.
Optical absorption spectra obtained on glasses quenched from sodium silicate melts show Mn3+ to be the dominant species for melts heated in air and Mn2+ to be the dominant species for melts heated at Po2 = 10?17 bar. The absorption spectrum of Mn3+ consists of an intense band at 20,000cm?1 with a 15,000cm?1 satellite possibly arising from the Jahn-Teller effect. The independence of the spectrum from melt composition and the high band intensity is offered as evidence for a distinct Mn3+ complex in the melt. The spectrum of Mn2+ is weak and many expected bands are not observed. A two-band luminescence spectrum from Mn2+ has been tentatively interpreted as due to Mn2+ in interstitial sites in the network and Mn2+ coordinated by non-bridging oxygens.  相似文献   

4.
Mössbauer and polarized optical absorption spectra of the kyanite-related mineral yoderite were recorded. Mössbauer spectra of the purple (PY) and green yoderite (GY) from Mautia Hill, Tanzania, show that the bulk of the iron is Fe3+ in both varieties, with Fe2+/(Fe2++Fe3+) ratios near 0.05. Combining this result with new microprobe data for PY and with literature data for GY gives the crystallochemical formulae: $$\begin{gathered} ({\text{Mg}}_{{\text{1}}{\text{.95}}} {\text{Fe}}_{{\text{0}}{\text{.02}}}^{{\text{2 + }}} {\text{Mn}}_{{\text{0}}{\text{.01}}}^{{\text{2 + }}} {\text{Fe}}_{{\text{0}}{\text{.34}}}^{{\text{3 + }}} {\text{Mn}}_{{\text{0}}{\text{.07}}}^{{\text{3 + }}} {\text{Ti}}_{{\text{0}}{\text{.01}}} {\text{Al}}_{{\text{3}}{\text{.57}}} )_{5.97}^{[5,6]} \hfill \\ {\text{Al}}_{{\text{2}}{\text{.00}}}^{{\text{[5]}}} [({\text{Si}}_{{\text{3}}{\text{.98}}} {\text{P}}_{{\text{0}}{\text{.03}}} ){\text{O}}_{{\text{18}}{\text{.02}}} ({\text{OH)}}_{{\text{1}}{\text{.98}}} ] \hfill \\ \end{gathered}$$ and PY and $$\begin{gathered} ({\text{Mg}}_{{\text{1}}{\text{.98}}} {\text{Fe}}_{{\text{0}}{\text{.02}}}^{{\text{2 + }}} {\text{Mn}}_{{\text{< 0}}{\text{.001}}}^{{\text{2 + }}} {\text{Fe}}_{{\text{0}}{\text{.45}}}^{{\text{3 + }}} {\text{Ti}}_{{\text{0}}{\text{.01}}} {\text{Al}}_{{\text{3}}{\text{.56}}} )_{6.02}^{[5,6]} \hfill \\ {\text{Al}}_{{\text{2}}{\text{.00}}}^{{\text{[5]}}} [({\text{Si}}_{{\text{3}}{\text{.91}}} {\text{O}}_{{\text{17}}{\text{.73}}} {\text{(OH)}}_{{\text{2}}{\text{.27}}} ] \hfill \\ \end{gathered}$$ for GY. The Mössbauer spectra at room temperature contain one main doublet with isomer shifts and quadrupole splittings of 0.36 (PY), 0.38 (GY) and 1.00 (PY), 0.92 (GY) mm s?1, respectively. These values correspond to Fe3+ in six or five-fold coordination. The doublet components have anomalously large half widths indicating either accomodation of Fe3+ in more than one position (e.g., octahedraA1 and five coordinatedA2) or the yet unresolved superstructure. Besides strong absorption in the ultraviolet (UV) starting from about 25,000 cm?1, the polarized optical absorption spectra are dominated by strong bands around 16,500 and 21,000 cm?1 (PY) and a medium strong band at around 13,800 cm?1 (GY). Position and polarization of these bands, in combination with the UV absorption, explain the colour and pleochroism of the two varieties. The bands in question are assigned to homonuclear metal-to-metal charge transfer transitions: Mn2+(A1) Mn3+(A1′) ? Mn3+(A1) Mn2+(A1′) and Mn2+(A1) Mn3+(A2 ? Mn3+(A1) Mn2+(A2) in PY and Fe2+(A1) Fe3+(A1′) ? Fe3+(A1) Fe2+(A1′) in GY. The evidence for homonuclear Mn2+ Mn3+ charge transfer (CTF) is not quite clear and needs further study. Heteronuclear FeTi CTF does not contribute to the spectra. In PY, additional weak bands were resolved at energies around 17,700, 18,700, 21,000, and 21,900 cm?1 and assigned to Mn3+ in two positions. Weak bands around 10,000 cm?1 in both varieties are assigned to Fe2+ spin-alloweddd-transitions. Very weak and sharp bands, around 15,400, 16,400, 21,300, 22,100, 23,800, and 25,000 cm?1 are identified in GY and assigned to Fe3+ spin-forbiddendd-transitions.  相似文献   

5.
Polarized spectra EX, EY, and EZ of purple yoderite, taken at 295 and 100 K, result in a revised interpretation for the mineral. Major bands at around 16,900 (X>Y?Z), 18,600 (X?Y), and 20,600 cm?1 (XZ>Y) may be attributed to spin-allowed transitions of Mn3+ in trigonal bipyramids (A2 or A3). Minor features may be assigned to single ion Fe3+. However, charge transfer possibilities for bands at 18,600 and 25,500 cm?1 in yoderite cannot be ruled out and are discussed. The extremely high intensity of Mn3+ spin-allowed bands (?, 216 to 1,900 [1·g-atom?1·cm?1]) is attributed to fivefold coordination of the A2 and A3 position and to the covalency of the Mn3+-O bonds.  相似文献   

6.
A new single beam microtechnique has been developed for measuring the polarized absorption spectra in the region 44,000-4,000 cm?1. Spectra of a natural garnet (Spess70Alm30), measured by the microtechnique and by conventional macrotechniques, are consistent and thus prove the applicability of the microtechnique described. It is possible to obtain well resolved spectra down to about 13,000 cm?1 with crystals as small as about 10 μm. Thus spectra of crystals obtained in routine high-pressure high-temperature silicate syntheses can be measured. The polarized spectra of Mn3+, Fe3+, Fe2+, and Cr3+ in the following synthetic silicate minerals are presented: piemontite (I), acmite (II), orthoferrosilite (III), and kyanite (IV) or uvarovite (V), respectively. O-Cr3+, O-Mn3+, and O-Fe2+ charge transfer band maxima in the UV region are identified at 38,700 cm?1, in V; at 33,200, 35,300, and 39,000 cm?1, in I; and at 32,800, 35,200, and 37,300 cm?1, in III, respectively. Bands in the region ≦25,000 cm?1 are assigned to spin-allowed and spin-forbidden dd transitions as predicted from crystal field theoretical considerations for the foregoing ions in the respective structures.  相似文献   

7.
Manganese at equilibrium in seawater occurs dominantly as Mn2+ and inorganic complexes at a concentration ratio of about 1:0.72; solubility decreases exponentially with increasing pH or Eh. However, the nodule oxides birnessite and todorokite are at least four orders of magnitude undersaturated relative to the Mn concentrations of seawater, and are metastable relative to hausmannite and manganite. This apparent lack of equilibrium is explicable by the mechanism of precipitation.Surfaces assist Mn precipitation by catalyzing equilibration between dissolved and reactive O2 and simultaneously also by adsorbing ionic Mn species. The effective Eh at the surface becomes 200–400 mV above that of seawater; the oxidation rate of Mn increases about 108 ×, and the activation energies for Mn oxidation decrease ~ 11.5 kcal/mole. Consequently, marine Mn nodules and crusts form by adsorption and catalytic oxidation of Mn2+ and ferrous ions at nucleating surfaces such as sea-floor silicates, oxyhydroxides, carbonates, phosphates and biogenic debris. The resulting ferromanganese surfaces autocatalyze further growth. In addition, Mn-fixing bacteria may also significantly accelerate accretion rates on these surfaces.Mn which accumulates in submarine sediments may be diagenetically recycled in response to steep solubility gradients causing upward migration from more acidic and reducing horizons toward the sea floor. In contrast, the concentrations of the predominant ferric complexes, Fe(OH)30 and Fe(OH)4?, are relatively less sensitive to the Eh's and pH's found in this environment; Fe is therefore not as readily recycled within buried sediments. Consequently, Fe is not so effectively enriched on the sea floor, although it precipitates more readily than Mn because seawater is saturated in amorphous Fe(OH)3.The metastable, perhaps kinetically-related, Mn oxides of nodules have a characteristic distribution: birnessite predominates in oxidizing environments of low sedimentation rate and todorokite where sedimentation rates and diagenetic Mn mobility are higher. Surface adsorption and cation substitution within the disordered birnessite-todorokite structure account for the high trace element content of Mn nodules.  相似文献   

8.
Iron and manganese redox cycling in the sediment — water interface region in the Kalix River estuary was investigated by using sediment trap data, pore-water and solid-phase sediment data. Nondetrital phases (presumably reactive Fe and Mn oxides) form substantial fractions of the total settling flux of Fe and Mn (51% of Fetotal and 84% of Mntotal). A steady-state box model reveals that nondetrital Fe and Mn differ considerably in reactivity during post-depositional redox cycling in the sediment. The production rate of dissolved Mn (1.6 mmol m–2 d–1) exceeded the depositional flux of nondetrital Mn (0.27 mmol m–2 d–1) by a factor of about 6. In contrast, the production rate of upwardly diffusing pore-water Fe (0.77 mmol m–2 d–1) amounted to only 22% of the depositional flux of nondetrital Fe (3.5 mmol m–2 d–1). Upwardly diffusing pore-water Fe and Mn are effectively oxidized and trapped in the oxic surface layer of the sediment, resulting in negligible benthic effluxes of Fe and Mn. Consequently, the concentrations of nondetrital Fe and Mn in permanently deposited, anoxic sediment are similar to those in the settling material. Reactive Fe oxides appear to form a substantial fraction of this buried, non-detrital Fe. The in-situ oxidation rates of Fe and Mn are tentatively estimated to be 0.51 and 0.16–1.7 mol cm–3 d–1, respectively.  相似文献   

9.
Experiments on the sorption of dissolved Ni, Co, Mn, Fe from seawater by Mn3O4 reveal a sequence of reactions taking place: Ion exchange, hydrolysis, then autocatalytic oxidation and layer formation on the interface. The composition of the new compounds depends on the kinetics of i) sorption, and ii) interface oxidation. The highest oxidized Me ions accumulate at low sorption rates, i. e. when sorption does not inhibit interface oxidation: 60% Mn4+, 30% Ni3+ & 30% Co3+ are a representative example for that layer type. Iron is present in this layer as amorphous FeOOH·xH2O according to Mössbauer spectra. Specific for the Me sorption by Mn3O4 is the interaction of Ni & Co with Mn2+ and Mn3+ of the sorbent lattice. Mn is found in the solute phase equivalent to 16, 14% of the adsorbed Co or 17, 96% of the adsorbed Ni. These results confirm the earlier presented model on the transition metal accumulation in recent basins as taking place in distinct stages with interface autocatalysis for the Me oxidation playing the main role.  相似文献   

10.
The influence of pressure on the OH-stretching vibration of zoiste has been studied by single crystal high pressure infrared spectroscopy. A band related to the OH-stretching vibration displayed a linear shift from 3170 cm?1 at 1 bar to 2795 cm?1 at 116 kbar. The half-band width increased linearly with respect to pressure from 60 cm?1 at 1 bar to 500 cm?1 at 116 kbar. The strength of the absorption of this band is strongly frequency dependent. The high-energy shift of a band at around 2200 cm?1 on pressure increase indicates that this band is not due to a second OH-stretching vibration as previously suggested by Langer and Lattard (1980).  相似文献   

11.
Montmorillonite, kaolinite, goethite, and particulate and soluble natural organic materials influence the rate of Mn(II) oxidation. While surfaces accelerate the reaction, apparently by bonding Mn2+ in a manner which fulfills the requirements of the transition state, soluble organic materials retard the reaction by complexing the oxidizable species. It is doubtful whether particulate matter would influence the oxidation process under natural loading conditions since 50–500 mg l?1quantities are required to produce measurable changes in the reaction rate. Complexation by humic materials, however, might be expected to reduce the rate of oxidation by an amount proportional to the dissolved organic carbon concentration. Oxidation followed by precipitation is predicted to be an important mechanism for Mn2+ removal in oceanic waters. The situation is less predictable in lake waters.  相似文献   

12.
Permanganate (MnO4) has widely been used as an effective oxidant for drinking water treatment systems, as well as for in situ treatment of groundwater impacted by various organic contaminants. The reaction stoichiometry of As(III) oxidation by permanganate has been assumed to be 1.5, based on the formation of solid product, which is putatively considered to be MnO2(s). This study determined the stoichiometric ratio (SR) of the oxidation reaction with varying doses of As(III) (3-300 μM) and MnO4 (0.5 or 300 μM) under circumneutral pH conditions (pH 4.5-7.5). We also characterized the solid product that was recovered ∼1 min after the oxidation of 2.16 mM As(III) by 0.97 mM MnO4 at pH 6.9 and examined the feasibility of secondary heterogeneous As(III) oxidation by the solid product. When permanganate was in excess of As(III), the SR of As(III) to Mn(VII) was 2.07 ± 0.07, regardless of the solution pH; however, it increased to 2.49 ± 0.09 when As(III) was in excess. The solid product was analogous to vernadite, a poorly crystalline manganese oxide based on XRD analysis. The average valence of structural Mn in the solid product corresponded to +III according to the splitting interval of the Mn3s peaks (5.5 eV), determined using X-ray photoelectron spectroscopy (XPS). The relative proportions of the structural Mn(IV):Mn(III):Mn(II) were quantified as 19:62:19 by fitting the Mn2p3/2 spectrum of the solid with the five multiplet binding energy spectra for each Mn valence. Additionally, the O1s spectrum of the solid was comparable to that of Mn-oxide but not of Mn-hydroxide. These results suggest that the solid product resembled a poorly crystalline hydrous Mn-oxide such as (MnII0.19MnIII0.62MnIV0.19)2O3·nH2O, in which Mn(II) and Mn(IV) were presumably produced from the disproportionation of aqueous phase Mn(III). Thermodynamic calculations also show that the formation of Mn(III) oxide is more favorable than that of Mn(IV) oxide from As(III) oxidation by permanganate under circumneutral pH conditions. Arsenic(III), when it remained in the solution after all of the permanganate was consumed, was effectively oxidized by the solid product. This secondary heterogeneous As(III) oxidation consisted of three steps: sorption to and oxidation on the solid surface and desorption of As(V) into solution, with the first step being the rate-limiting process as observed in As(III) oxidation by various Mn (oxyhydr)oxides reported elsewhere. We also discussed a potential reaction pathway of the permanganate oxidation of As(III).  相似文献   

13.
The redox processes regulating transport of Mn in the water column of a eutrophic, dimictic lake (Lake Norrviken, Sweden) are interpreted based on a one-dimensional diffusion-reaction model for Mn(II). It is found that rates and rate constants for oxidation and reduction vary greatly with depth and also with time during the season of stratification. Calculated rates show that Mn(II) oxidation and reduction generally occur in narrow depth intervals (25–50 cm). This is in good agreement with measured profiles of particulate Mn (MnO x ). Maximum oxidation rate constants (assuming first order kinetics) at each date are in the first half of the season <1 d–1, but then increases to a rather constant value of about 25 d–1. These high rate constants are indicative of microbiological involvement in the Mn(II) oxidation. This is further evidenced by SEM-EDS analysis showing Mn enriched particles morphologically similar toMetallogenium. Reductive dissolution of Mn oxides occurs mainly in the zone just below the zone of maximum oxidation rate. The release of Mn(II) is accompanied by production of alkalinity and CO2. The relation between production rates of Mn(II) and alkalinity indicates that Mn oxides act as terminal electron acceptors in the bacterially mediated oxidation of organic matter. However, the Mn2+/CO2 ratio is significantly lower than what is expected from this process. It is suggested that the Mn reduction is coupled to fermentation. Close coexistence of Mn reduction and oxidation at high rates, such as found in the water column of this lake, facilitates rapid and continuous regeneration of reducible Mn oxides. This gives rise to a quantitatively important mechanism of organic matter oxidation in the water column.  相似文献   

14.
The temperature dependence (at ambient pressure) of the Raman spectra of both the quartz- and rutile-types of GeO2 has been studied from 109 to 874?K. All spectra were corrected for the effects of temperature and are presented in their reduced form to allow a direct comparison of intensities at all temperatures. In the quartz-type GeO2, the Raman bands above 400?cm?1 exhibited relatively larger temperature dependences and at least four of the bands in this region vary nonlinearly with increasing temperature. Deconvolution of the most intense Raman band at 700?cm?1 in the rutile-type GeO2 revealed the presence of a previously unreported band at 684?cm?1 at 298?K which may arise from splitting of the A1g mode. A nonlinear temperature dependence was observed for all the Raman bands above 600?cm?1 in the rutile-type GeO2 with the new band at 684?cm?1 exhibiting the largest curvature. In common with previous studies of rutile-type oxides, the B1g mode at 171?cm?1 showed anomalous behaviour by increasing linearly in frequency with increasing temperature. In a separate experiment, the oxidation of metallic germanium in air demonstrated that the quartz-type GeO2 is the preferred form of germanium oxide at temperatures above 745?K at atmospheric pressure. Thermodynamic calculations predict that the rutile-form of GeO2 should be the stable species under these conditions. This suggests that atmospheric gases may have a marked effect on the kinetics and stability of the quartz and rutile forms of GeO2.  相似文献   

15.
Blanfordite (I), winchite (II), and juddite (III), all showing vivid colors and pleochroism, from highly oxidized parageneses of Indian gondites were studied by microprobe, Mössbauer, and microscope-spectrophotometric techniques and by X-ray structure refinements. The compositions of the Mn-bearing minerals were close to diopsideacmite (I) and magnesio-arfvedsonite to magnesio-riebeckite (II and III). Transition metal ions are located inM(1)-octahedra (I) or predominantlyM(2)-octahedra (II, III). Mössbauer spectra of57Fe(IS, ΔE Q) are typical of octahedral Fe3+ only. Polarized absorption spectra in the UV/VIS/NIR ranges explain color and pleochroism of the minerals. The position of the UV-“edge” is correlated with Fe3+-contents of the minerals, except for judditeEZ, where the edge shows an unusual low energy position. This is most likely due to Mie-scattering of submicroscopic inclusions of braunite with nearly uniform dimensions. In the VIS range, the spectra are dominated by a complex band system between 15,000 and 20,000 cm?1. Energies and ?-values of component bands are compatible with those of Mn3+ d-d transitions in other Mn3+-bearing silicates. The polarization behavior of component bands can best be explained by aC 2(C2″) symmetry of the crystal field. The Jahn-Teller splitting (<9,000 cm?1) of the5 E g ground state of Mn3+ inO h crystal fields is appreciably smaller than in other Mn3+-silicates. Crystal field parameters 10Dq, (I) 13,650, (II) ca. 11,640, and (III) 11,925 cm?1, are near to that in piemontite. The crystal field stabilization energy of Mn3+, (I) 146, (II) ca. 140, (III) 142 \({{{\text{kJ}}} \mathord{\left/ {\vphantom {{{\text{kJ}}} {\text{g}}}} \right. \kern-0em} {\text{g}}}{\text{ - atom}}_{{\text{Mn}}^{{\text{3 + }}} } \) , is appreciably smaller than that found in other Mn3+-silicates (piemontites and manganian andalusites, viridines and kanonaite).  相似文献   

16.
Polarized infrared absorption spectra of thin single-crystal slabs parallel to (010) and (001) of a staurolite from Pizzo Forno, Ticino, with analyzed composition (Fe2.9Mg0.9Zn0.1Mn0.1)Al17.5Ti0.1(Si7.7Al0.3)O48H3 have been measured in the range of 3000–4000 cm?1. From the pleochroitic behaviour of the OH-vibrations three groups of bands can be distinguished: the bands of group I, a strong band at 3445 cm?1 plus a weak shoulder at 3358 cm?1, and the bands of group II, a weak band centered at 3677 cm?1 plus a shoulder at 3635 cm?1, are assigned to the H1 and H2 protons, respectively. The bands of group III, a weak band at 3577 cm?1 plus a shoulder, cannot be interpreted on the basis of the proton positions known so far. We assign them to an additional proton H3, which is bonded to O1 and shows a bifurcated hydrogen bridge to two O5 in a vacant T2 site.  相似文献   

17.
Summary ?Rocks containing braunite from the Ossa-Morena central belt (Iberian Massif, SW Spain) have been studied; these include nodules and layers of braunite (association I), Mn-slates (association II) and Mn-metatuffs (associations III and IV). Geochemical features of braunite nodules such as Mn/Fe ratios around 2, positive Ce-anomalies and good correlations among Mn, Fe, Co, Cu and REE contents indicate that the protolith of the braunite-nodules was precipitated from oxidising sea water. Greenschist facies Hercynian metamorphism reduced initial Mn4+ to Mn3+ and Mn2+. High initial fO2 of oxide beds (association I) limited reduction to the formation of braunite. Reduction continued until the formation of garnet + piemontite (associations II and III), and pyroxmangite + pyrophanite (association IV). Ti-rich braunites (up to 6.8% of TiO2) occur in slates and metatuffs in which the (Mn + Fe)/Ti ratio of the whole rock is lower than 30, while braunites have lower Ti contents in slates and metatuffs with (Mn + Fe)/Ti ratios around 90. Fe-rich braunite crystallized in rocks with Mn2+ oxide and silicate where low Mn3+/Mn2+ in the whole rock facilitated substitution of Fe3+ for Mn3+. Received January 30, 2002; revised version accepted May 7, 2002 Published online November 22, 2002  相似文献   

18.
The E∥c and E ⊥ c polarized optical absorption spectra of a variety of blue/green tourmalines and a schorl were measured from room temperature down to helium temperatures. Heat treatments at 750–800° C in air and hydrogen were carried out on several green tourmalines. From the results obtained, absorptions at 7,900 and 13,800 cm?1 in the E∥c spectra of tourmalines are assigned to Fe2+ in the b-site. In the same polarization, bands detected at 9,000 and 13,400 cm?1 are attributed to Fe2+ in the smaller c position. In contrast to previous interpretations, the E ⊥ c polarized bands at 9,000 and 13,800 cm?1 are not assigned to single ion transitions, but are largely associated with nearest neighbour Fe2+-Fe3+ pairs. Correlations between near-infrared band absorption coefficients and FeO concentration reinforce these assignments. The temperature dependence and the reaction to heat treatment of the strongly polarized (E⊥c?E∥c) band near 18,000 cm?1 in blue and green tourmaline spectra are shown to be consistent with previous assignments of the band to Fe2++Fe3+→Fe3++Fe2+ charge transfer. Similar results are discussed for broad absorptions (also E⊥c?E∥c) found in the 22,000–25,000 cm?1 region of the spectra of certain green and brown tourmalines. It is concluded that these absorptions are due to Fe2++Ti4+→Fe3++Ti3+ charge transfer. The proposal is made that the initial effect of heating green tourmalines in air and hydrogen is to reduce Fe3+ cations located in both b- and c-sites. Further heat treatment in air and hydrogen results in the oxidation of Fe2+→Fe3+ and leads to the generation of bands near 19,100 and 21,600 cm?1. The newly formed bands are assigned to Fe3+-Fe3+ pairs.  相似文献   

19.
The influence of bottom water anoxia on manganese (Mn), iron (Fe), and sulfur (S) biogeochemistry was examined in defaunated sandy sediment from Kærby Fed, Denmark, under controlled laboratory incubations. The initial narrow peaks and steep gradients in solid Mn(IV) and Fe(III) as well as porewater Mn2+ and Fe2+ observed in the upper 2–5 cm of the sediment indicate rapid metal reduction-oxidation cycles under oxic conditions in the overlying water. The fe zones were generally displaced about 0.5 cm downward compared with the Mn zones due to differences in reactivity. Mn(IV) was reduced and gradually disappeared first (within 10 d) when the sediment was exposed to anoxia followed by reduction and disappearance of Fe(III) (day 7 to 18). The associated loss of Mn2+ to the overlying water was most rapid during the first 15 d, whereas the Fe2+ efflux initiated around day 10, and after a few days with modest rates the efflux peaked around day 20. A considerable portion of the total Mn (26%) and Fe (23%) inventory initially present in the sediment was lost by efflux after about 1 mo of anoxia. The ability of the sediment to retain upward diffusion of H2S gradually disappeared in a temporal pattern closely related to the changes in pool size of the reactive Mn and Fe present. The total metal pool in Kærby Fed sediment prevented H2S release to the overlying water for at least a month of anoxia. It is speculated that external supplies from the overlying water allows a rapid refuelling of surface Mn and Fe oxides in the field when oxic conditions returns between periods of anoxia.  相似文献   

20.
Al hydroxide was prepared by hydrolysis of Al(NO3)3, and oc-B-Al hydroxide was prepared by hydrolysis of Al(NO3)3 in the presence of boric acid solution. Curve-fitted B1s XPS spectrum of oc-B-Al hydroxide demonstrated that the boron atom was probably incorporated with Al hydroxide to some extent. The IR band of Al–OH at 1,074 cm?1 of oc-B-Al hydroxide was weaker than that of Al hydroxide. This indicated some surface hydroxyl groups of Al–OH of oc-B-Al hydroxide had disappeared. These peaks at 1,320 and 1,458 cm?1 bands found in the oc-B-Al hydroxide were closer together than the salts containing boron, which are attributed to an interaction of aluminum hydroxide with boron. Analysis of XRD patterns indicated that Al hydroxide was very poorly crystalline boehmite, and oc-B-Al hydroxide appeared to have crystallite dimensions slightly smaller than those present in Al hydroxide. TEM showed that the presence of boron significantly decreased the size of Al hydroxide particles. The specific surface area of oc-B-Al hydroxide (556.0 m2 g?1) using BET method was larger than that of Al hydroxide (421.6 m2 g?1). This indicated the likelihood of Mn2+ adsorption ability of oc-B-Al hydroxide than the Al hydroxide. Boron-doped Al hydroxide always adsorbed more Mn2+, stabilized the sample solution pH to a higher value and slowed soil acidification than the Al hydroxide. It is suggested that boron in soils not only serves as a plant nutrient, but can also decrease the Mn2+ toxicity and slows soil acidification by formation of oc-B-Al hydroxide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号