共查询到19条相似文献,搜索用时 78 毫秒
1.
该文以福建省为例,探讨了区域性暴雨过程的识别方法和综合强度评估模型。采用福建省66个国家级气象观测站1961—2010年逐日降水量资料,首先在给定区域性暴雨过程识别方法的基础上,筛选出941次区域性暴雨过程;其次选取区域最大日降水量、区域最大过程降水量、区域暴雨范围和区域暴雨持续时间4项暴雨过程指标,采用百分位数方法分别确定4项指标的等级划分标准;采用相关系数法确定各指标权重,构建福建区域性暴雨过程的综合强度评估模型,并给出福建区域性暴雨过程的综合强度等级划分标准。业务服务和历史事件验证表明:采用该方法的评估结果较为合理,且与历史重大暴雨事件具有良好的一致性。 相似文献
2.
利用贵州省84个国家级气象观测站1991-2020年逐日、逐时降水量资料,以暴雨过程中持续天数、累积降水量、最大日降水量、最大小时降水量4个评价指标为基础,得到年雨涝指数和最大降水量阈值,再结合地形、水系及地质灾害等影响,对贵州省雨涝危险性进行评估和区划。结果表明:(1)贵州省大部分地区年雨涝指数为中等以上的等级,其中安顺市大部、黔西南州东部达到极强;(2)雨涝危险性程度具有西南部和东北部高、西北部低的分布特点,高危险性等级虽然占比小,但分布较为集中连片,易产生区域性影响;(3)针对不同时间长度,不同重现期的可能最大降水量阈值进行了分析,对预警服务及决策有一定的参考价值。 相似文献
3.
基于广州市5个国家气象站1981-2015年逐小时降水资料,应用线性趋势法、Mann-Kendall突变检验等方法对广州市气象站不同历时降雨年际变化特征进行分析,应用百分位法建立了一种基于降雨极值和降雨持续时间的短历时降雨综合等级评估方法,并使用此方法对2007-2011年广州市21次降雨过程进行综合评估,同时对灾损因子和短历时降雨因子进行相关性分析。结果表明,广州市短历时强降雨发生频次和极值均呈现上升趋势,其中1h强降雨频次上升趋势最为显著;综合等级评估方法对短历时降雨灾情具有一定的指示作用;短历时降雨持续时间和6h降雨极值与部分灾损因子相关系数较高。 相似文献
4.
长江中下游沿江地区暴雨过程综合评估模型及应用 总被引:4,自引:2,他引:4
选取长江中下游沿江地区87个站点,利用1957—2007年中国高密度台站地面日降水资料,对长江中下游沿江地区暴雨过程的历史资料进行统计分析,建立长江中下游沿江地区暴雨过程综合评估模型。首先选取平均降水量、降水强度、覆盖范围和持续时间4个指标,并对每个指标进行了正态化转化或Г分布拟合,然后利用相应的分布概率密度函数的反函数确定数年一遇的概率等级作为等级标准,将长江中下游沿江地区的暴雨过程划分为5个等级,最终运用权重分析法建立了暴雨过程综合评估模型。应用此模型对1999年6—8月的5次暴雨过程进行了试评估,结果表明,该模型评估效果较好,可以在实际业务中应用。 相似文献
5.
利用1961—2017年广东86个地面气象观测站逐日降水资料,定义广东区域性暴雨过程的标准,构建了综合考虑区域暴雨过程持续时间、暴雨范围、最大日降水量和最大过程降水量4个指标的广东区域性暴雨过程综合强度评估方法,由此分析近57年广东区域性暴雨过程次数、强度、雨涝年景等特征和变化。结果表明:近57年来,广东共出现1211次区域性暴雨过程,平均每年21.2次,主要出现在4—9月,单次过程平均持续时间是2.3 d;广东区域性暴雨过程的次数和强度存在明显的月际、年际和年代际变化,次数最多出现在5月,强度最大出现在6月;广东雨涝年景指数以0.17/(10 a)的速率显著上升;强和较强等级的广东区域性暴雨过程次数呈显著增加趋势,较弱等级区域性暴雨次数呈显著减少趋势。评估得到广东强雨涝年有5年:2008年、2001年、1973年、1994年、1993年,其中有4年出现在1990年以后。 相似文献
6.
基于江苏省昆山市2008—2015年12个自动气象站逐分钟降雨数据和常规气象站小时降雨量数据,并选取5个代表站分别代表不同的生态系统,先对昆山市降雨和暴雨的时空特征进行分析,然后采用年多个样法进行暴雨选样,利用指数分布、皮尔逊Ⅲ型分布和耿贝尔分布分析暴雨发生频率,最后使用高斯-牛顿法推求不同生态系统代表站的暴雨强度公式参数,结果表明:(1)昆山市各站点2008—2015年期间年降雨量都呈增长趋势,夏季降雨量最多、冬季最少,一天中01时(北京时间,下同)左右为降雨谷值,18时左右为降雨峰值,白天降雨多于夜晚;在空间分布上,农田和城市生态系统的年降雨量、年降雨日数最多,湿地和湖泊生态系统较少。(2)暴雨日数年际差异大,年内暴雨主要集中在夏季,暴雨发生频次日变化呈"双峰型"分布,暴雨发生频次在02时和18时最多,09时和24时最少;市区的暴雨日数空间变异系数大于郊区,且从市中心向外递减。(3)城市生态系统适宜采用皮尔逊Ⅲ型分布推求暴雨强度公式,其他类型生态系统适宜采用指数分布推求暴雨强度公式。 相似文献
7.
利用贵州省84个气象观测站点1961—2020年逐日降水数据,定义贵州省区域暴雨标准,构建了综合考虑暴雨过程持续时间、暴雨范围、平均暴雨量3个指标的贵州区域性暴雨过程综合强度评估方法和雨涝年景指数,分析近60a贵州区域暴雨过程次数、强度和雨涝年景指数等特征和变化。结果表明:贵州区域性暴雨过程共出现721次,平均每年12.0次,2015年最多达20次,1961年最少仅4次;区域性暴雨过程3—9月均可出现,6—7月最为集中,6月最多,3月最少;区域性暴雨过程以0.4次/10a 的速率呈弱的上升趋势,年际和年代际特征明显;区域性暴雨过程的影响范围多为6~19站,持续天数为 1~5 d,平均暴雨量多为60~80mm;强、特强暴雨过程呈显著增加趋势,较强暴雨过程呈略微增加趋势,一般性暴雨过程呈略微减少趋势;雨涝年景指数呈显著上升趋势,7个强雨涝年2014、2020、1996、1999、1995、2000和1991年均出现在1990年后。 相似文献
8.
9.
10.
我国长江中下游梅雨锋暴雨研究的进展 总被引:12,自引:8,他引:12
我国长江中下游梅雨锋暴雨研究在最近五年中取得了明显的进展,其中有:第一,提出了基于多种实时观测资料的梅雨锋暴雨的多尺度物理模型;第二,建立了梅雨锋暴雨的天气学模型;第三,提出了梅雨锋的详实结构及其维持机理;第四,提出了多种中尺度暴雨的定量卫星遥感反演理论和方法,并形成一系列新的反演产品;第五,成功地研究了双多普勒雷达同步探测和反演中尺度暴雨三维结构的理论和方法;第六,发展了配有三维变分同化系统的中尺度暴雨数值预报模式系统,在2003年淮河抗洪救灾中发挥了积极作用。 相似文献
11.
利用客观分析资料和常规观测资料,分析了2011年6月长江中下游梅雨锋暴雨的大尺度环流特征,并对其中两次梅雨锋暴雨过程的降水特征和锋生条件进行对比分析。结果表明:(1) 500 hPa 中高纬地区两槽一脊强度均比常年偏强,持续稳定的高纬经向环流形势的存在为梅雨锋强降水持续稳定提供了所需的冷空气,冷空气与印缅槽前稳定的西南气流在长江流域频繁交汇,有利梅雨锋锋生以及形成大范围持续性强降水;(2) 200 hPa 南亚高压北侧强西风急流以及其南侧东风急流均比常年明显偏强;(3) 来自孟加拉湾的西南急流与副热带高压南侧偏强的东南气流辐合形成强南风影响我国华东地区,为梅雨锋强降水提供了充足的水汽输送,梅雨锋区水汽辐合明显加强时段与梅雨期四次强降水过程一一对应;(4) 两次梅雨锋暴雨过程降水特征和锋生条件存在明显差异,前者冷暖空气同时对锋区作用造成能量锋区锋生,是一次对流性降水,后者无冷空气影响,是一次地面静止锋波动引起的稳定性降水。 相似文献
12.
基于C4.5算法的长江中下游地区夏季降水预测模型研究及应用 总被引:2,自引:0,他引:2
为了对长江中下游夏季降水进行短期气候预测,利用国家气候中心提供的74项环流指数和NOAA整编的西太平洋型WP指数、MEI指数、ENSO指数等多种全球环流指数资料,归纳整理了影响长江中下游夏季降水的34个前期春季因子,讨论了前期春季因子与夏季降水的关系,并利用这34个前期春季因子通过数据挖掘中的C4.5算法对1951—2013年(63 a)长江中下游夏季降水,建立判别降水偏多以及偏少的两类决策树预测模型,并分别得到5条和7条综合判别规则。随机选取80%左右历史年份数据作为模型的训练集,两模型的训练集准确率分别为94.12%和93.88%,剩余20%年份数据作为模型测试集,模型的测试预测准确率分别达91.67%和85.71%。模型预测应用也显示结果正确。模型研究和应用显示,基于C4.5算法的长江中下游夏季降水预测模型具有较高的预测准确率,模型构建合理有效,判别规则依据大数据理论,广泛考虑相关因子以及因子的排列组合,智能化选择关键因子,易于客观化、自动化实施,为长江流域汛期降水的短期气候预测提供了新的思路与方法。 相似文献
13.
利用区域性极端事件客观识别方法(OITREE)和长江中下游地区381站逐日降水资料对1961—2018年长江中下游地区的暴雨过程进行了客观识别.共识别挑选出245次区域性暴雨过程.长江中下游地区暴雨过程持续时间以2~3 d为主,最长为8 d,累积强度主要集中于(2~4)×103 mm之间,累积面积主要集中于(2~5)×... 相似文献
14.
以2010年6月19日发生在浙闽赣地区的一次强降水过程为例,利用中尺度WRF模式进行模拟,用模拟资料对该地区降水收支特征和冰云热力作用进行分析。依据局地水汽/热量变化项、水汽/热量辐合辐散项和云凝物辐合辐散项这3个因子可将降水分为8类,其中局地水汽变干和大气变暖、水汽辐合和热量辐散以及云凝物辐合时,降水强度(雨强)最强,而局地水汽变湿和大气变冷、水汽辐合和热量辐散以及云凝物辐合时,降水覆盖率最大。冰云热力效应包括辐射和潜热两部分。基准试验与敏感性试验对比分析表明冰云辐射减弱降水,而冰云潜热增强降水。热量收支对比分析发现冰云辐射造成辐射冷却的减弱在对流层中低层随高度增加,减弱大气不稳定和降水;而冰云潜热造成潜热增强在对流层中高层随高度减小,增强大气不稳定和降水。 相似文献
15.
Adjoint Sensitivity Experiments of a Meso-β-scale Vortex in the Middle Reaches of the Yangtze River 总被引:1,自引:0,他引:1
A relatively independent and small-scale heavy rainfall event occurred to the south of a slow eastwardmoving meso-α-scale vortex. The analysis shows that a meso-β-scale system is heavily responsible for the intense precipitation. An attempt to simulate it met with some failures. In view of its small scale, short lifetime and relatively sparse observations at the initial time, an adjoint model was used to examine the sensitivity of the meso-β-scale vortex simulation with respect to initial conditions. The adjoint sensitivity indicates how small perturbations of initial model variables anywhere in the model domain can influence the central vorticity of the vortex. The largest sensitivity for both the wind and temperature perturbation is located below 700 hPa, especially at the low level. The largest sensitivity for the water vapor perturbation is located below 500 hPa, especially at the middle and low levels. The horizontal adjoint sensitivity for all variables is mainly located toward the upper reaches of the Yangtze River with respect to the simulated meso-β-scale system in Hunan and Jiangxi provinces with strong locality. The sensitivity shows that warm cyclonic perturbations in the upper reaches can have a great effect on the development of the meso-β-scale vortex. Based on adjoint sensitivity, forward sensitivity experiments were conducted to identify factors influencing the development of the meso-β-scale vortex and to explore ways of improving the prediction. A realistic prediction was achieved by using adjoint sensitivity to modify the initial conditions and implanting a warm cyclone at the initial time in the upper reaches of the river with respect to the meso-β-scale vortex, as is commonly done in tropical cyclone prediction. 相似文献
16.
根据NECP1°×1°客观再分析资料和常规观测资料,利用中尺度数值模式WRF对2008年1月25—29日长江中下游暴雪冻雨过程进行了数值模拟,结果表明:WRF模式可以很好地模拟出此次强降雪过程高低空环流形势演变特征以及降水带的分布。分析表明,中层西南急流对暖湿空气的输送以及低层冷空气的持续扩散为暴雪和冻雨的发生提供了很好的温度层结条件。云微物理过程特征分析表明,此次暴雪冻雨过程存在多种云系共同降水,中低空600—850 hpa强逆温层尤其是0 ℃层的存在使得雪、冰晶等冰相粒子融化形成过冷却水,是大范围冻雨形成的必要条件,同时也是区分大范围冻雨暴雪形成的重要条件。 相似文献
17.
利用1955~1990年黄河中游地区的降水和洪水资料,分析了致洪暴雨的主要气候特征、容易产和致洪暴雨的地区及暴雨与洪水的关系。 相似文献
18.
19.
2013年长江中下游夏季高温干旱演变过程及环流异常成因简析 总被引:2,自引:1,他引:2
利用改进的CIn指数,结合NCEP/NCAR再分析资料,逐候分析2013年夏季长江中下游地区高温干旱演变过程和高温异常成因。结果表明:改进后的CIn指数能够准确识别此次干旱过程,整体持续时间近一个月。旱情从7月第4候湖南南部开始,8月第3候干旱程度最强,特旱中心位于湖南省中东部,浙江省为高温中心,8月第4候旱情得到缓解。在干旱成因上,极涡位置异常偏西,影响长江中下游地区冷空气偏弱,南亚高压东伸与西太平洋副热带高压西伸明显;鄂霍次克海至菲律宾一带呈较强的EAP遥相关型,其中长江中下游地区位势高度的正异常加强了西太平洋副热带高压的中心强度并使其位置偏西;乌拉尔山地区的阻塞高压与西太平洋副热带高压相对峙,有利于西太平洋副热带高压长期稳定地控制在长江中下游地区;同时欧亚大陆与西太平洋海陆温差增大,东亚夏季风偏强,西太平洋副热带高压异常偏北,长江中下游地区下沉气流强盛,在西太平洋副热带高压和南亚高压共同作用下,造成持续的高温干旱过程。 相似文献