首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Accurate ion microprobe analysis of oxygen isotope ratios in garnet requires appropriate reference materials to correct for instrumental mass fractionation that partly depends on the garnet chemistry (matrix effect). The matrix effect correlated with grossular, spessartine and andradite components was characterised for the Cameca IMS 1280HR at the SwissSIMS laboratory based on sixteen reference garnet samples. The correlations fit a second‐degree polynomial with maximum bias of ca. 4‰, 2‰ and 8‰, respectively. While the grossular composition range 0–25% is adequately covered by available reference materials, there is a paucity of them for intermediate compositions. We characterise three new garnet reference materials GRS2, GRS‐JH2 and CAP02 with a grossular content of 88.3 ± 1.2% (2s), 83.3 ± 0.8% and 32.5 ± 3.0%, respectively. Their micro scale homogeneity in oxygen isotope composition was evaluated by multiple SIMS sessions. The reference δ18O value was determined by CO2 laser fluorination (δ18OLF). GRS2 has δ18OLF = 8.01 ± 0.10‰ (2s) and repeatability within each SIMS session of 0.30–0.60‰ (2s), GRS‐JH2 has δ18OLF = 18.70 ± 0.08‰ and repeatability of 0.24–0.42‰ and CAP02 has δ18OLF = 4.64 ± 0.16‰ and repeatability of 0.40–0.46‰.  相似文献   

2.
The high‐precision δ60/58Ni values of twenty‐six geological reference materials, including igneous rocks, sedimentary rocks, stream sediments, soils and plants are reported. The δ60/58Ni values of all samples were determined by double‐spike MC‐ICP‐MS (Nu Plasma III). Isotope standard solution (NIST SRM 986) and geological reference materials (BHVO‐2, BCR‐2, JP‐1, PCC‐1, etc.) were used to evaluate the measurement bias and intermediate precision over a period of six months. Our results show that the intermediate precision of Ni isotope determination was 0.05‰ (2s, n = 69) for spiked NIST SRM 986 and typically 0.06‰ for actual samples, and the δ60/58Ni NIST SRM 986 values were in excellent agreement with previous studies. Eighteen high‐precision Ni isotope ratios of geological reference materials are first reported here, and their δ60/58Ni values varied from ?0.27‰ to 0.52‰, with a mean of 0.13 ± 0.34‰ (2s, n = 18). Additionally, SGR‐1b (0.56 ± 0.04‰, 2s), GSS‐1 (?0.27 ± 0.06‰, 2s), GSS‐7 (?0.11 ± 0.01‰, 2s), GSD‐10 (0.46 ± 0.06‰, 2s) and GSB‐12 (0.52 ± 0.06‰, 2s) could potentially serve as candidate reference materials for Ni isotope fractionation and comparison of Ni isotopic compositions among different laboratories.  相似文献   

3.
Five new biotite reference materials were calibrated at the SwissSIMS laboratory (University of Lausanne) for oxygen isotope determination by secondary ion mass spectrometry (SIMS) and are available to the scientific community. The oxygen isotope composition of the biotites, UNIL_B1 to B5, was determined by laser‐heating fluorination to be 11.4 ± 0.11‰, 8.6 ± 0.15‰, 6.1 ± 0.04‰, 7.1 ± 0.05‰ and 7.6 ± 0.04‰, respectively. SIMS analyses on spots smaller than 20 μm gave a measurement repeatability of 0.3‰ (2 standard deviation, 2s). The matrix effect due to solid solution in natural biotite could be expressed as a linear function of XMg and XF for biotite. No effect was found for different crystallographic orientations. SIMS analysis allows the oxygen isotope composition of biotite to be measured with a measurement uncertainty of 0.3–0.4‰ (2s) for biotites with similar major element compositions. A measurement uncertainty of 0.5‰ (2s) is realistic when F poor biotites (lower than 0.2% m/m oxides) within the compositional range of XMg of 0.3–0.9 were compared from different sessions. The linear correlation with F content offers a reasonable working curve for F‐rich biotites, but additional reference materials are needed to confirm the model.  相似文献   

4.
Three tourmaline reference materials sourced from the Harvard Mineralogical and Geological Museum (schorl 112566, dravite 108796 and elbaite 98144), which are already widely used for the calibration of in situ boron isotope measurements, are characterised here for their oxygen and lithium isotope compositions. Homogeneity tests by secondary ion mass spectrometry (SIMS) showed that at sub‐nanogram test portion masses, their 18O/16O and 7Li/6Li isotope ratios are constant within ± 0.27‰ and ± 2.2‰ (1s), respectively. The lithium mass fractions of the three materials vary over three orders of magnitude. SIMS homogeneity tests showed variations in 7Li/28Si between 8% and 14% (1s), which provides a measure of the heterogeneity of the Li contents in these three materials. Here, we provide recommended values for δ18O, Δ’17O and δ7Li for the three Harvard tourmaline reference materials based on results from bulk mineral analyses from multiple, independent laboratories using laser‐ and stepwise fluorination gas mass spectrometry (for O), and solution multi‐collector inductively coupled plasma‐mass spectroscopy (for Li). These bulk data also allow us to assess the degree of inter‐laboratory bias that might be present in such data sets. This work also re‐evaluates the major element chemical composition of the materials by electron probe microanalysis and investigates these presence of a chemical matrix effect on SIMS instrumental mass fractionation with regard to δ18O determinations, which was found to be < 1.6‰ between these three materials. The final table presented here provides a summary of the isotope ratio values that we have determined for these three materials. Depending on their starting mass, either 128 or 512 splits have been produced of each material, assuring their availability for many years into the future.  相似文献   

5.
Two quartz samples of igneous origin, UNIL‐Q1 (Torres del Paine Intrusion, Chile) and BGI‐Q1 (Shandong province, China), were calibrated for their oxygen isotope composition for SIMS measurements. UNIL‐Q1 and BGI‐Q1 were evaluated for homogeneity using SIMS. Their reference δ18O values were determined by CO2 laser fluorination. The average δ18O value found for UNIL‐Q1 is 9.8 ± 0.06‰ and that for BGI‐Q1 is 7.7 ± 0.11‰ (1s). The intermediate measurement precision of SIMS oxygen isotope measurements was 0.32–0.41‰ (2s; UNIL‐Q1) and 0.40–0.48‰ (2s; BGI‐Q1), respectively. While less homogeneous in its oxygen isotope composition, BGI‐Q1 is also suitable for SIMS trace element measurements.  相似文献   

6.
Magnesium isotopic compositions are reported for twenty‐four international geological reference materials including igneous, metamorphic and sedimentary rocks, as well as phlogopite and serpentine minerals. The long‐term reproducibility of Mg isotopic determination, based on 4‐year analyses of olivine and seawater samples, was ≤ 0.07‰ (2s) for δ26Mg and ≤ 0.05‰ (2s) for δ25Mg. Accuracy was tested by analysis of synthetic reference materials down to the quoted long‐term reproducibility. This comprehensive dataset, plus seawater data produced in the same laboratory, serves as a reference for quality assurance and inter‐laboratory comparison of high‐precision Mg isotopic data.  相似文献   

7.
The characterisation of relative copper isotope amount ratios (δ65Cu) helps constrain a variety of geochemical processes occurring in the geosphere, biosphere and hydrosphere. The accurate and precise determination of δ65Cu in matrix reference materials is crucial in the effort to validate measurement methods. With the goal of expanding the number and variety of available geological and biological materials, we have characterised the δ65Cu values of ten reference materials by MC‐ICP‐MS using C‐SSBIN model for mass bias correction. SGR‐1b (Green River shale), DOLT‐5 (dogfish liver), DORM‐4 (fish protein), TORT‐3 (lobster hepatopancreas), MESS‐4 (marine sediment) and PACS‐3 (marine sediment) have for the first time been characterised for δ65Cu. Additionally, four reference materials (with published δ65Cu values) have been characterised: BHVO‐1 (Hawaiian basalt), BIR‐1 (Icelandic basalt), W‐2a (diabase) and Seronorm? Trace Elements Serum L‐1 (human serum). The reference materials measured in this study possess complex and varied matrices with copper mass fractions ranging from 1.2 µg g?1 to 497 µg g?1 and δ65Cu values ranging from ?0.20‰ to 0.52‰ with a mean expanded uncertainty of ± 0.07‰ (U, k = 2), covering much of the natural copper isotope variability observed in the environment.  相似文献   

8.
In this study the homogeneity of the zinc isotopic composition in the NIST SRM 683 reference material was examined by measuring the Zn isotopic signature in microdrilled sample powders from two metal nuggets. Zinc was purified using AG MP‐1M resin and then measured by MC‐ICP‐MS. Instrumental mass bias was corrected using the “sample‐standard bracketing” method and empirical external normalisation with Cu doping. After evaluating the potential effects of varying acid mass fractions and different matrices, high‐precision Zn isotope data were obtained with an intermediate measurement precision better than ± 0.05‰ (δ66Zn, 2s) over a period of 5 months. The δ66ZnJMC‐Lyon mean values of eighty‐four and fourteen drilled powders from two nuggets were 0.11 ± 0.02‰ and 0.12 ± 0.02‰, respectively, indicating that NIST SRM 683 is a good isotopic reference material with homogeneous Zn isotopes. The Zn isotopic compositions of seventeen rock reference materials were also determined, and their δ66Zn values were in agreement with most previously published data within 2s. The δ66Zn values of most of the rock reference materials analysed were in the range 0.22–0.36‰, except for GSP‐2 (1.07 ± 0.06‰, n = 12), NOD‐A‐1 (0.96 ± 0.03‰, = 6) and NOD‐P‐1 (0.78 ± 0.03‰, = 6). These comprehensive data should serve as reference values for quality assurance and interlaboratory calibration exercises.  相似文献   

9.
Measurement of Ba isotope ratios of widely available reference materials is required for interlaboratory comparison of data. Here, we present new Ba isotope data for thirty‐four geological reference materials, including silicates, carbonates, river/marine sediments and soils. These reference materials (RMs) cover a wide range of compositions, with Ba mass fractions ranging from 6.4 to 1900 µg g?1, SiO2 from 0.62% to 90.36% m/m and MgO from 0.08% to 41.03% m/m. Accuracy and precision of our data were assessed by the analyses of duplicate samples and USGS rock RMs. Barium isotopic compositions for all RMs were in agreement with each other within uncertainty. The variation of δ138/134Ba in these RMs was up to 0.7‰. The shale reference sample, affected by a high degree of chemical weathering, had the highest δ138/134Ba (0.37 ± 0.03‰), while the stream sediment obtained from a tributary draining carbonate rocks was characterised by the lowest δ138/134Ba (?0.30 ± 0.05‰). Geochemical RMs play a fundamental role in the high‐precision and accurate determination of Ba isotopic compositions for natural samples with similar matrices. Analyses of these RMs could provide universal comparability for Ba isotope data and enable assessment of accuracy for interlaboratory data.  相似文献   

10.
《Comptes Rendus Geoscience》2019,351(4):303-311
This paper presents the first seismic measurements of serpentinite of Bou Azzer ophiolite, central Anti-Atlas of Morocco, including seismic velocities and anisotropy. Two serpentinite samples collected from the Ait Ahmane fault zone were analyzed in order to define the mineralogical and seismic features of the natural serpentinite of the Bou Azzer ophiolite. The mineralogical features were investigated using microscopic observation and Raman spectroscopy, while the seismic features were performed using an Electron Backscatter Diffraction (EBSD) instrument. Microscopy and spectroscopy analyses confirmed that the investigated serpentinite suffers from a variable degree of serpentinization, and the antigorite is the dominant variety of serpentine minerals in the study area. The crystal preferred orientation (CPO) results show that the axis [001] of the antigorite deformation is aligned subnormal to the foliation, while the axis [010] is mostly aligned subparallel to the lineation. The seismic anisotropy results are depending on serpentine amount in the rock samples. The sample with a low serpentine amount (30%) shows lowest P- and S-wave anisotropy (Vp = 7.2% and AVs = 6.55%), while the sample with a high amount of serpentine (85%) presents highest P-wave and S-wave anisotropy (Vp = 8.6% and AVs = 11.06%). Consequently, the results indicate that seismic anisotropy increases when increasing the antigorite amount.  相似文献   

11.
This study is Part II of a series that documents the development of a suite of calibration reference materials for in situ SIMS analysis of stable isotope ratios in Ca‐Mg‐Fe carbonates. Part I explored the effects of Fe2+ substitution on SIMS δ18O bias measured from the dolomite–ankerite solid solution series [CaMg(CO3)2–CaFe(CO3)2], whereas this complementary work explores the compositional dependence of SIMS δ13C bias (calibrated range: Fe# = 0.004–0.789, where Fe# = molar Fe/(Mg+Fe)). Under routine operating conditions for carbonate δ13C analysis at WiscSIMS (CAMECA IMS 1280), the magnitude of instrumental bias increased exponentially by 2.5–5.5‰ (session‐specific) with increasing Fe‐content in the dolomite structure, but appeared insensitive to minor Mn substitution [< 2.6 mole % Mn/(Ca+Mg+Fe+Mn)]. The compositional dependence of bias (i.e., the matrix effect) was expressed using the Hill equation, yielding calibration residual values ≤ 0.3‰ relative to CRM NBS‐19 for eleven carbonate reference materials (6‐μm‐diameter spot size measurements). Based on the spot‐to‐spot repeatability of a drift monitor material that ‘bracketed’ each set of ten sample‐spot analyses, the analytical precision was ± 0.6–1.2‰ (2s, standard deviations). The analytical uncertainty for individual sample analyses was approximated by combining the precision and calibration residual values (propagated in quadrature), suggesting an uncertainty of ± 1.0–1.5‰ (2s).  相似文献   

12.
Chalcopyrite is an important sulfide mineral in many types of ore deposits, but matrix‐matched chalcopyrite reference materials for microanalysis are lacking. A new natural chalcopyrite‐bearing specimen (HTS4‐6) was analysed in this study to investigate its potential as a reference material for microbeam sulfur isotope ratio measurement. Detailed textural examination and major element determination showed that the HTS4‐6 chalcopyrite grains have no growth rim or zoning. A total of 607 sulfur isotope ratio spot measurements with secondary ion mass spectrometry (SIMS) conducted on the cruciform sections, and over 120 randomly selected grains yielded highly consistent sulfur isotope ratio. The intermediate measurement precision for four measurement sessions of the 34S/32S measurement results was better than 0.39‰ (2s). Randomly selected chalcopyrite grains of HTS4‐6 were further analysed by LA‐MC‐ICP‐MS, which gave a mean δ34S value of +0.58 ± 0.38‰ (2s, n = 95). The maximum variance (expressed as intermediate precision from SIMS and LA‐MC‐ICP‐MS measurements) is not worse than 0.39‰ (the SIMS value), indicating that HTS4‐6 chalcopyrite is a potential reference material for in situ microbeam sulfur isotope measurements. The mean δ34S value determined by gas source isotope ratio mass spectrometry (GS‐IRMS) is +0.63 ± 0.16‰ (2s, n = 23), consistent with that derived by LA‐MC‐ICP‐MS, and can represent the recommended value for this potential reference material.  相似文献   

13.
Measurements of sulfur stable isotope ratios (34S/32S) have suffered from technical difficulties in analysing low‐S materials reducing their use despite their undeniable scientific interest. The measurement of 34S/32S ratios is a powerful tool for deciphering problems such as determining the sources of environmental pollutants, to detect adulteration, tracking the evolution of the redox state of the oceans and quantifying the role of the bacterial activity in sulfide minerals genesis. We have used a high‐precision method of sulfur isotope determination using a new type of elemental analyser based on ‘purge and trap’ technology. This new technique demonstrates the high quality of 34S/32S measurements for samples with S concentrations lower than 1% m/m. International calibrated references of diverse sulfur‐bearing materials were used to calibrate two low (< 1%) S‐bearing phosphorites used as compositional reference material for future use as isotopic references: BCR 32 and NBS 120c. δ34SCDT values of, respectively, 18.2‰ (1s = 0.3; n = 23) and 18.3‰ (1s = 0.4; n = 20) are proposed for these. Calibration of both phosphorites with international reference materials led to calculation of a mean standard error close to 0.4‰. The demonstration of a capability to reliably measure S isotope ratios in low‐S phosphate minerals or rocks opens up new fields of palaeoenvironmental reconstructions.  相似文献   

14.
Sulfur isotope measurements in three sulfide (two pyrite and one pyrrhotite) samples on two epoxy mounts showed that the mount‐to‐mount variation of raw δ34S values was negligible when secondary ion mass spectrometry (SIMS) analytical settings remained stable. In consequence, an off‐mount calibration procedure for SIMS sulfur isotope analysis was applied in this study. YP136 is a pyrrhotite sample collected from northern Finland. Examination of thin sections with a polarising microscope, backscattered electron image analyses and wavelength dispersive spectrometry mapping showed that the sample grains display no internal growth or other zoning. A total of 318 sulfur isotope (spot) measurements conducted on more than 100 randomly selected grains yielded highly consistent sulfur isotope ratios. The repeatability of all the analytical results of 34S/32S was 0.3‰ (2s,= 318), which is the same as that of the well‐characterised pyrite reference materials PPP‐1 and UWPy‐1. Its δ34S value determined by gas mass spectrometry was 1.5 ± 0.1‰ (2s,= 11), which agrees with the SIMS data (1.5 ± 0.3‰, 2s) calibrated by pyrrhotite reference material Po‐10. Therefore, YP136 pyrrhotite is considered a candidate reference material for in situ sulfur isotope determination.  相似文献   

15.
Recent analytical developments in germanium stable isotope determination by multicollector ICP‐MS have provided new perspectives for the use of Ge isotopes as geochemical tracers. Here, we report the germanium isotope composition of the NIST SRM 3120a elemental reference solution that has been calibrated relative to internal isotopic standard solutions used in the previous studies. We also intercalibrate several geological reference materials as well as geological and meteoritic samples using different techniques, including online hydride generation and a spray chamber for sample introduction to MC‐ICP‐MS, and different approaches for mass bias corrections such as sample–calibrator bracketing, external mass bias correction using Ga isotopes and double‐spike normalisation. All methods yielded relatively similar precisions at around 0.1‰ (2s) for δ74/70Ge values. Using igneous and mantle‐derived rocks, the bulk silicate Earth (BSE) δ74/70Ge value was re‐evaluated to be 0.59 ± 0.18‰ (2s) relative to NIST SRM 3120a. Several sulfide samples were also analysed and yielded very negative values, down to ?4.3‰, consistent with recent theoretical study of Ge isotope fractionation. The strong heavy isotope depletion in ore deposits also contrasts with the generally positive Ge isotope values found in many modern and ancient marine sediments.  相似文献   

16.
A double‐spike method in combination with MC‐ICP‐MS was applied to obtain molybdenum (Mo) mass fractions and stable isotope compositions in a suite of sedimentary silicate (marine, lake, stream, estuarine, organic‐rich sediment, shales, slate, chert) and carbonate reference materials (coral, dolomite, limestones, carbonatites), and a manganese nodule reference material, poorly characterised for stable Mo isotope compositions. The Mo contents vary between 0.076 and 364 μg g?1, with low‐Mo mass fractions (< 0.29 μg g?1) found almost exclusively in carbonates. Intermediate Mo contents (0.73–2.70 μg g?1) are reported for silicate sediments, with the exception of chert JCh‐1 (0.24 μg g?1), organic‐rich shale SGR‐1b (36.6 μg g?1) and manganese nodule NOD‐A‐1 (364 μg g?1). The Mo isotope compositions (reported as δ98Mo relative to NIST SRM 3134) range from ?1.77 to 1.03‰, with the intermediate precision varying between ± 0.01 and ± 0.12‰ (2s) for most materials. Low‐temperature carbonates show δ98Mo values ranging from 0.21 to 1.03‰ whereas δ98Mo values of ?1.77 and ?0.17‰ were obtained for carbonatites CMP‐1 and COQ‐1, respectively. Silicate materials have δ98Mo values varying from ?1.56 to 0.73‰. The range of δ98Mo values in reference materials may thus reflect the increasingly important relevance of Mo isotope investigations in the fields of palaeoceanography, weathering, sedimentation and provenance, as well as the magmatic realm.  相似文献   

17.
Six tourmaline samples were investigated as potential reference materials (RMs) for boron isotope measurement by secondary ion mass spectrometry (SIMS). The tourmaline samples are chemically homogeneous and cover a compositional range of tourmaline supergroup minerals (primarily Fe, Mg and Li end‐members). Additionally, they have homogeneous boron delta values with intermediate precision values during SIMS analyses of less than 0.6‰ (2s). These samples were compared with four established tourmaline RMs, that is, schorl IAEA‐B‐4 and three Harvard tourmalines (schorl HS#112566, dravite HS#108796 and elbaite HS#98144). They were re‐evaluated for their major element and boron delta values using the same measurement procedure as the new tourmaline samples investigated. A discrepancy of about 1.5‰ in δ11B was found between the previously published reference values for established RMs and the values determined in this study. Significant instrumental mass fractionation (IMF) of up to 8‰ in δ11B was observed for schorl–dravite–elbaite solid solutions during SIMS analysis. Using the new reference values determined in this study, the IMF of the ten tourmaline samples can be modelled by a linear combination of the chemical parameters FeO + MnO, SiO2 and F. The new tourmaline RMs, together with the four established RMs, extend the boron isotope analysis of tourmaline towards the Mg‐ and Al‐rich compositional range. Consequently, the in situ boron isotope ratio of many natural tourmalines can now be determined with an uncertainty of less than 0.8‰ (2s).  相似文献   

18.
Silicon is a beneficial element for many plants and is deposited in plant tissue as amorphous bio‐opal called phytoliths. The biochemical processes of silicon uptake and precipitation induce isotope fractionation: the mass‐dependent shift in the relative abundances of the stable isotopes of silicon. At the bulk scale, δ30Si ratios span from ?2 to +6‰. To further constrain these variations in situ, at the scale of individual phytolith fragments, we used femtosecond laser ablation multi‐collector inductively coupled plasma‐mass spectrometry (fsLA‐MC‐ICP‐MS). A variety of phytoliths from grasses, trees and ferns were prepared from plant tissue or extracted from soil. Good agreement between phytolith δ30Si ratios obtained by bulk solution MC‐ICP‐MS analysis and in situ isotope ratios from fsLA‐MC‐ICP‐MS validates the method. Bulk solution analyses result in at least twofold better precision for δ30Si (2s on reference materials ≤ 0.11‰) over that found for the means of in situ analyses (2s typically ≤ 0.24‰). We find that bushgrass, common reed and horsetail show large internal variations up to 2‰ in δ30Si, reflecting the various pathways of silicon from soil to deposition. Femtosecond laser ablation provides a means to identify the underlying processes involved in the formation of phytoliths using silicon isotope ratios.  相似文献   

19.
We document the development of a suite of carbonate mineral reference materials for calibrating SIMS determinations of δ18O in samples with compositions along the dolomite–ankerite solid solution series [CaMg(CO3)2–CaFe(CO3)2]. Under routine operating conditions for the analysis of carbonates for δ18O with a CAMECA IMS 1280 instrument (at WiscSIMS, University of Wisconsin‐Madison), the magnitude of instrumental bias along the dolomite–ankerite series decreased exponentially by ~ 10‰ with increasing Fe content in the dolomite structure, but appeared insensitive to minor Mn substitution [< 2.6 mol% Mn/(Ca+Mg+Fe+Mn)]. The compositional dependence of bias (i.e., the sample matrix effect) was calibrated using the Hill equation, which relates bias to the Fe# of dolomite–ankerite [i.e., molar Fe/(Mg+Fe)] for thirteen reference materials (Fe# = 0.004–0.789); for calibrations employing either 10 or 3 μm diameter spot size measurements, this yielded residual values ≤ 0.3–0.4‰ relative to CRM NBS 19 for most reference materials in the suite. Analytical precision was ± 0.3‰ (2s, standard deviations) for 10‐μm spots and ± 0.7‰ (2s) for 3‐μm spots, based on the spot‐to‐spot repeatability of a drift monitor material that ‘bracketed’ each set of ten sample‐spot analyses. Analytical uncertainty for individual sample analyses was approximated by a combination of precision and calibration residual values (propagated in quadrature), suggesting an uncertainty of ± 0.5‰ (2s) for 10‐μm spots and ± 1‰ (2s) for 3‐μm spots.  相似文献   

20.
This study presents a high‐precision Cd isotope measurement method for soil and rock reference materials using MC‐ICP‐MS with double spike correction. The effects of molecular interferences (e.g., 109Ag1H+, 94Zr16O+, 94Mo16O+ and 70Zn40Ar+) and isobaric interferences (e.g., Pd, In and Sn) to Cd isotope measurements were quantitatively evaluated. When the measured solution has Ag/Cd ≤ 5, Zn/Cd ≤ 0.02, Mo/Cd ≤ 0.4, Zr/Cd ≤ 0.001, Pd/Cd ≤ 5 × 10?5 and In/Cd ≤ 10?3, the measured Cd isotope data were not significantly affected. The intermediate measurement precision of pure Cd solutions (BAM I012 Cd, Münster Cd and AAS Cd) was better than ± 0.05‰ (2s) for δ114/110Cd. The δ114/110Cd values of soil reference materials (NIST SRM 2709, 2709a, 2710, 2710a, 2711, 2711a and GSS‐1) relative to NIST SRM 3108 were in the range of ?0.251 to 0.632‰, the δ114/110Cd values of rock reference materials (BCR‐2, BIR‐1, BHVO‐2, W‐2, AGV‐2, GSP‐2 and COQ‐1) varied from ?0.196‰ to 0.098‰, and that of the manganese nodule (NOD‐P‐1) was 0.163 ± 0.040‰ (2s, n = 8). The large variation in Cd isotopes in soils and igneous rocks indicates that they can be more widely used to study magmatic and supergene processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号