首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fission‐track (FT) analysis of detrital zircon from synorogenic sediment is a well‐established tool to examine the cooling and exhumation history of convergent mountain belts, but has so far not been used to determine the long‐term evolution of the central Himalaya. This study presents FT analysis of detrital zircon from 22 sandstone and modern sediment samples that were collected along three stratigraphic sections within the Miocene to Pliocene Siwalik Group, and from modern rivers, in western and central Nepal. The results provide evidence for widespread cooling in the Nepalese Himalaya at about 16.0±1.4 Ma, and continuous exhumation at a rate of about 1.4±0.2 km Myr?1 thereafter. The ~16 Ma cooling is likely related to a combination of tectonic and erosional activity, including movement on the Main Central thrust and Southern Tibetan Detachment system, as well as emplacement of the Ramgarh thrust on Lesser Himalayan sedimentary and meta‐sedimentary units. The continuous exhumation signal following the ~16 Ma cooling event is seen in connection with ongoing tectonic uplift, river incision and erosion of lower Lesser Himalayan rocks exposed below the MCT and Higher Himalayan rocks in the hanging wall of the MCT, controlled by orographic precipitation and crustal extrusion. Provenance analysis, to distinguish between Higher Himalayan and Lesser Himalayan zircon sources, is based on double dating of individual zircons with the FT and U/Pb methods. Zircons with pre‐Himalayan FT cooling ages may be derived from either nonmetamorphic parts of the Tethyan sedimentary succession or Higher Himalayan protolith that formerly covered the Dadeldhura and Ramgarh thrust sheets, but that have been removed by erosion. Both the Higher and Lesser Himalaya appear to be sources for the zircons that record either ~16 Ma cooling or the continuous exhumation afterwards.  相似文献   

2.
40Ar–39Ar dating of detrital white micas, petrography and heavy mineral analysis and whole‐rock geochemistry has been applied to three time‐equivalent sections through the Siwalik Group molasse in SW Nepal [Tinau Khola section (12–6 Ma), Surai Khola section (12–1 Ma) and Karnali section (16–5 Ma)]. 40Ar–39Ar ages from 1415 single detrital white micas show a peak of ages between 20 and 15 Ma for all the three sections, corresponding to the period of most extensive exhumation of the Greater Himalaya. Lag times of less than 5 Myr persist until 10 Ma, indicating Greater Himalayan exhumation rates of up to 2.6 mm year?1, using one‐dimensional thermal modelling. There are few micas younger than 12 Ma, no lag times of less than 6 Myr after 10 Ma and whole‐rock geochemistry and petrography show a significant provenance change at 12 Ma indicating erosion from the Lesser Himalaya at this time. These changes suggest a switch in the dynamics of the orogen that took place during the 12–10 Ma period whereby most strain began to be accommodated by structures within the Lesser Himalaya as opposed to the Greater Himalaya. Consistent data from all three Siwalik sections suggest a lateral continuity in tectonic evolution for the central Himalayas.  相似文献   

3.
ABSTRACT Apatite fission track ages of 20 samples collected from turbidite successions deposited in foreland basins adjacent to the Northern Apennines range between ∼3 and ∼10 Ma. The youngest fission track ages are concentrated in a NW–SE elongated belt, which approximately runs through the centre of the study area, while gradually increasing ages are distributed towards the south-western and north-eastern borders. Integration of apatite fission track data and published vitrinite reflectance values indicate this region of the Apennines experienced continuous but variable exhumation starting from ∼14 Ma. The extent of exhumation and uplift range between 5 and 6 km at the south-western and north-eastern borders of the study area, and ∼7 km in the central part. Exhumation was driven mainly by erosion, with minor faulting in response to structural readjustment related to differential exhumation. Regional exhumation and erosion are interpreted as the result of isostatic rebound following crustal thickening in the lower part of the orogen.  相似文献   

4.
The arid Puna plateau of the southern Central Andes is characterized by Cenozoic distributed shortening forming intramontane basins that are disconnected from the humid foreland because of the defeat of orogen‐traversing channels. Thick Tertiary and Quaternary sedimentary fills in Puna basins have reduced topographic contrasts between the compressional basins and ranges, leading to a typical low‐relief plateau morphology. Structurally identical basins that are still externally drained straddle the eastern border of the Puna and document the eastward propagation of orographic barriers and ensuing aridification. One of them, the Angastaco basin, is transitional between the highly compartmentalized Puna highlands and the undeformed Andean foreland. Sandstone petrography, structural and stratigraphic analysis, combined with detrital apatite fission‐track thermochronology from a ~6200‐m‐thick Miocene to Pliocene stratigraphic section in the Angastaco basin, document the late Eocene to late Pliocene exhumation history of source regions along the eastern border of the Puna (Eastern Cordillera (EC)) as well as the construction of orographic barriers along the southeastern flank of the Central Andes. Onset of exhumation of a source in the EC in late Eocene time as well as a rapid exhumation of the Sierra de Luracatao (in the EC) at about 20 Ma are recorded in the detrital sediments of the Angastaco basin. Sediment accumulation in the basin began ~15 Ma, a time at which the EC had already built sufficient topography to prevent Puna sourced detritus from reaching the basin. After ~13 Ma, shortening shifted eastward, exhuming ranges that preserve an apatite fission‐track partial annealing zone recording cooling during the late Cretaceous rifting event. Facies changes and fossil content suggest that after 9 Ma, the EC constituted an effective orographic barrier that prevented moisture penetration into the plateau. Between 3.4 and 2.4 Ma, another orographic barrier was uplifted to the east, leading to further aridification and pronounced precipitation gradients along the mountain front. This study emphasizes the important role of tectonics in the evolution of climate in this part of the Andes.  相似文献   

5.
The syntectonic continental conglomerates of the South‐Central Pyrenees record the late stages of thin‐skinned transport of the South‐Pyrenean Central Units and the onset of exhumation of the Pyrenean Axial Zone (AZ) in the core of the orogen. New magnetostratigraphic data of these syntectonic continental conglomerates have established their age as Late Lutetian to Late Oligocene. The data reveal that these materials were deposited during intense periods of tectonic activity of the Pyrenean chain and not during the cessation of the deformation as considered previously. The magnetostratigraphic ages have been combined with new detrital apatite fission track (AFT) thermochronology from AZ‐derived granite cobbles within the syntectonic conglomerates. Distribution of the granitic cobbles with different AFT ages and track lengths combined with their depositional ages reveal information on the timing and rate of episodes of exhumation in the orogen. Some AFT ages are considerably older than the AFT ages of the outcropping AZ granitic massifs, indicating erosion from higher crustal levels within the massifs than presently exposed or from completely eroded plutons. Inverse thermal modelling reveals two well‐defined periods of rapid cooling in the hinterland at ca. 50–40 and ca. 30–25 Ma, with another poorly defined cooling episode at ca. 70–60 Ma. The lowest stratigraphic samples experienced postburial annealing caused by the deposition of younger syntectonic sediments during progressive burial of the south Pyrenean thrust and fold belt. Moreover, samples from the deeper stratigraphic levels also reveal postorogenic cooling during the Late Miocene as a response to the excavation of the Ebro River towards the Mediterranean Sea. Our data strongly support previous ideas about the burial of the South Pyrenean fold and thrust belt by Late Palaeogene syntectonic conglomerates and their subsequent re‐excavation and are consistent with other thermochronological data and thermal modelling from the interior part of the orogen.  相似文献   

6.
Our study explores the geohydraulic history of the Acre retroarc foreland basin by gathering both spatial and temporal information from the upper 400 m of sediments. We also inquire into controls on sediment accommodation space as well as on stream vs. lacustrine domination. The Acre basin is located in south-west Amazonia, proximal to the Serra do Divisor which demarcates the eastern edge of the Andean fold–thrust belt. Radiocarbon ages from a range of materials indicate that the upper 50–250 m of the Solimôes Formation accumulated during the past 50 000 years. Both surficial and drill-core sediment records show lacustrine–fluvial transitions throughout the Late Quaternary. These shifts in depositional environments are in response to episodic changes in hydrological conditions as well as to geodynamic activity, such as subsidence. Juxtaposition of lacustrine and fluvial systems in the vertical Acre basin record mimics the regional-scale trends in the modern, upper and middle Solimôes–Amazon floodplains. In the Acre basin record lacustrine successions are characterized by increasing calcium contents up-section. This is also manifested, in the upper portions of lacustrine sequences outcropping at the surface, as alternating clastic and calcareous layers. The up-section increase in carbonate content is related to increasing salinities brought about by drier hydrodynamic conditions. Desiccation cracks are typically infilled with gypsum as are cavities of fossils in bone-beds. The latter represent isolated ponds in which the original fauna died as aridity intensified and waters became increasingly saline. Modern trunk river systems in the Acre basin flow from south-west to north-east with tributaries entering from the south-west, suggesting the influence of a domino-style, basement, fault regime. Fault or, at least, fracture control on stream channels is also suggested throughout the greater Amazon basin in the orthogonal dispositions and asymmetric terrace systems of trunk rivers as well as of major tributaries.  相似文献   

7.
The Patagonian Magallanes retroarc foreland basin affords an excellent case study of sediment burial recycling within a thrust belt setting. We report combined detrital zircon U–Pb geochronology and (U–Th)/He thermochronology data and thermal modelling results that confirm delivery of both rapidly cooled, first‐cycle volcanogenic sediments from the Patagonian magmatic arc and recycled sediment from deeply buried and exhumed Cretaceous foredeep strata to the Cenozoic depocentre of the Patagonian Magallanes basin. We have quantified the magnitude of Eocene heating with thermal models that simultaneously forward model detrital zircon (U–Th)/He dates for best‐fit thermal histories. Our results indicate that 54–45 Ma burial of the Maastrichtian Dorotea Formation produced 164–180 °C conditions and heating to within the zircon He partial retention zone. Such deep burial is unusual for Andean foreland basins and may have resulted from combined effects of high basal heat flow and high sediment accumulation within a rapidly subsiding foredeep that was floored by basement weakened by previous Late Jurassic rifting. In this interpretation, Cenozoic thrust‐related deformation deeply eroded the Dorotea Formation from ca. 5 km burial depths and may be responsible for the development of a basin‐wide Palaeogene unconformity. Results from the Cenozoic Río Turbio and Santa Cruz formations confirm that they contain both Cenozoic first‐cycle zircon from the Patagonian magmatic arc and highly outgassed zircon recycled from older basin strata that experienced burial histories similar to those of the Dorotea Formation.  相似文献   

8.
We present a new lithostratigraphy and chronology for the Miocene on central Crete, in the Aegean forearc. Continuous sedimentation started at ~10.8 Ma in the E–W trending fluvio‐lacustrine Viannos Basin, formed on the hangingwall of the Cretan detachment, which separates high‐pressure (HP) metamorphic rocks from very low‐grade rocks in its hangingwall. Olistostromes including olistoliths deposited shortly before the Viannos Basin submerged into the marine Skinias Basin between 10.4 and 10.3 Ma testifies to significant nearby uplift. Uplift of the Skinias Basin between 9.7 and 9.6 Ma, followed by fragmentation along N–S and E–W striking normal faults, marks the onset of E–W arc‐parallel stretching superimposed on N–S regional Aegean extension. This process continued between 9.6 and 7.36 Ma, as manifested by tilting and subsidence of fault blocks with subsidence events centred at 9.6, 8.8, and 8.2 Ma. Wholesale subsidence of Crete occurred from 7.36 Ma until ~5 Ma, followed by Pliocene uplift and emergence. Subsidence of the Viannos Basin from 10.8 to 10.4 Ma was governed by motion along the Cretan detachment. Regional uplift at ~10.4 Ma, followed by the first reworking of HP rocks (10.4–10.3 Ma) is related to the opening and subsequent isostatic uplift of extensional windows exposing HP rocks. Activity of the Cretan detachment ceased sometime between formation of extensional windows around 10.4 Ma, and high‐angle normal faulting cross‐cutting the detachment at 9.6 Ma. The bulk of exhumation of the Cretan HP‐LT metamorphic rocks occurred between 24 and 12 Ma, before basin subsidence, and was associated with extreme thinning of the hangingwall (by factor ~10), in line with earlier inferences that the Cretan detachment can only explain a minor part of total exhumation. Previously proposed models of buyoant rise of the Cretan HP rocks along the subducting African slab provide an explanation for extension without basin subsidence.  相似文献   

9.
As the highest part of the central Andean fold‐thrust belt, the Eastern Cordillera defines an orographic barrier dividing the Altiplano hinterland from the South American foreland. Although the Eastern Cordillera influences the climatic and geomorphic evolution of the central Andes, the interplay among tectonics, climate and erosion remains unclear. We investigate these relationships through analyses of the depositional systems, sediment provenance and 40Ar/39Ar geochronology of the upper Miocene Cangalli Formation exposed in the Tipuani‐Mapiri basin (15–16°S) along the boundary of the Eastern Cordillera and Interandean Zone in Bolivia. Results indicate that coarse‐grained nonmarine sediments accumulated in a wedge‐top basin upon a palaeotopographic surface deeply incised into deformed Palaeozoic rocks. Seven lithofacies and three lithofacies associations reflect deposition by high‐energy braided river systems, with stratigraphic relationships revealing significant (~500 m) palaeorelief. Palaeocurrents and compositional provenance data link sediment accumulation to pronounced late Miocene erosion of the deepest levels of the Eastern Cordillera. 40Ar/39Ar ages of interbedded tuffs suggest that sedimentation along the Eastern Cordillera–Interandean Zone boundary was ongoing by 9.2 Ma and continued until at least ~7.4 Ma. Limited deformation of subhorizontal basin fill, in comparison with folded and faulted rocks of the unconformably underlying Palaeozoic section, implies that the thrust front had advanced into the Subandean Zone by the 11–9 Ma onset of basin filling. Documented rapid exhumation of the Eastern Cordillera from ~11 Ma onward was decoupled from upper‐crustal shortening and coeval with sedimentation in the Tipuani‐Mapiri basin, suggesting climate change (enhanced precipitation) or lower crustal and mantle processes (stacking of basement thrust sheets or removal of mantle lithosphere) as possible controls on late Cenozoic erosion and wedge‐top accumulation. Regardless of the precise trigger, we propose that an abruptly increased supply of wedge‐top sediment produced an additional sedimentary load that helped promote late Miocene advance of the central Andean thrust front in the Subandean Zone.  相似文献   

10.
A multidisciplinary approach, combining sediment petrographic, palynological and thermochronological techniques, has been used to study the Miocene‐Pliocene sedimentary record of the evolution of the Venezuelan Andes. Samples from the Maracaibo (pro‐wedge) and Barinas (retro‐wedge) foreland basins, proximal to this doubly vergent mountain belt, indicate that fluvial and alluvial‐fan sediments of similar composition were shed to both sides of the Venezuelan Andes. Granitic and gneissic detritus was derived from the core of the mountain belt, whereas sedimentary cover rocks and uplifted foreland basin sediments were recycled from its flanks. Palynological evidence from the Maracaibo and Barinas basins constrains depositional ages of the studied sections from late Miocene to Pliocene. The pollen assemblages from the Maracaibo Basin are indicative of mountain vegetation, implying surface elevations of up to 3500–4000 m in the Venezuelan Andes at this time. Detrital apatite fission‐track (AFT) data were obtained from both stratigraphic sections. In samples from the Maracaibo basin, the youngest AFT grain‐age population has relatively static minimum ages of 5 ± 2 Ma, whereas for the Barinas basin samples AFT minimum ages are 7 ± 2 Ma. With exception of two samples collected from the Eocene Pagüey Formation and from the very base of the Miocene Parángula Formation, no evidence for resetting and track annealing in apatite due to burial heating in the basins was found. This is supported by rock‐eval analyses on organic matter and thermal modelling results. Therefore, for all other samples the detrital AFT ages reflect source area cooling and impose minimum age constraints on sediment deposition. The main phase of surface uplift, topography and relief generation, and erosional exhumation in the Venezuelan Andes occurred during the late Miocene to Pliocene. The Neogene evolution of the Venezuelan Andes bears certain similarities with the evolution of the Eastern Cordillera in Colombia, although they are not driven by exactly the same underlying geodynamic processes. The progressive development of the two mountain belts is seen in the context of collision of the Panama arc with northwestern South America and the closure of the Panama seaway in Miocene times, as well as contemporaneous movement of the Caribbean plate to the east and clock‐wise rotation of the Maracaibo block.  相似文献   

11.
Apatite fission‐track (FT) and (U–Th)/He analyses are used to constrain the low‐temperature thermal history of the San Gabriel and San Bernardino Mountains (SGM and SBM), which are part of the southern California Transverse Ranges. FT ages from 33 SGM samples range from 3 to 64 Ma. Helium ages, ranging from 3 to 43 Ma, were obtained from 13 of these samples: all of the He ages are the same or younger than their respective FT ages. FT ages from 10 SBM samples were older, ranging from 45 to 90 Ma. The FT and He data document at least three phases of cooling in the SGM, but only two in the SBM. Prior to ~7 Ma, the thermal history of the SGM appears to have been nearly identical to many of the core complexes in the Basin and Range of south‐eastern California: a major phase of cooling is indicated from ~60 to 40 Ma, with a more recent phase beginning at ~23 Ma and continuing until ~10 Ma. The similarity of this timing to that of core complexes suggests that the SGM also originated as a core complex, when the rocks were adjacent to the Chocolate–Orocopia Mountains, and that some of the range‐bounding faults were initially extensional. In the SBM, the two phases of cooling documented by the FT data occurred from ~65 to 55 Ma, and from ~18 Ma to the present. The timing on the second phase is very poorly constrained and, therefore, we do not speculate on the origin of the SBM. The most recent phase of cooling appears to have begun at ~7 Ma in the SGM, as the result of the onset of contractional deformation. A more accelerated phase of cooling may have begun at ~3 Ma. Distinct variations in the total amounts and rates of cooling between different fault‐bounded blocks within the SGM are documented since 7 Ma. We use these variations in cooling rates to calculate denudation rates, which are then compared to topographic characteristics for each structural block. These comparisons suggest that more rapid bedrock uplift in the eastern and southern part of the range has strongly affected the present‐day physiography. Despite a higher mean elevation, the SBM are much less dissected than the SGM, suggesting that the most recent phase of cooling and bedrock uplift began in the last 3 Myr, much later than the initiation of recent bedrock uplift in the SGM.  相似文献   

12.
Clay mineral assemblages of the Neogene Himalayan foreland basin are studied to decipher their significance with respect to tectonic and climate processes. Fluvial deposits of the Siwalik Group (west‐central Nepal), and sediment of the Ganga River drainage system were analysed for clay mineralogy. The observed clay mineral assemblages are mainly composed of illite (dominant), chlorite, smectite and kaolinite. Illite and chlorite are chiefly of detrital origin, derived from Himalayan sources. Kaolinite and smectite are authigenic, and mainly developed within pore space and as coating of detrital particles. With increasing burial, diagenetic processes affected the original clay mineral signature. Illitisation of smectite and kaolinite occurred below 2500 and 3500 m depth, respectively. Therefore, illite in the lower parts of the Siwalik Group consists of a mixture of inherited illite and illitised smectite and kaolinite, as suggested by illite crystallinity. Detrital grains that make up the framework of the Siwalik Group sandstones mainly consist of quartz, feldspar and lithic fragments, which are principally of sedimentary and metamorphic origin. Lithoclast content increases over time at the expense of quartz and K‐feldspar in response to uplift and erosion of the Lesser Himalaya Series since about 11–10 Ma. Despite mainly felsic source rocks, dominantly physical erosion processes in the Himalayan belt, and high‐energy fluvial depositional systems, smectite is abundant in the <7 Ma Siwalik Group deposits. Analyses of the Siwalik deposits and comparison with the clay mineralogy of the modern drainage system suggest that smectite preferentially formed in floodplains and intermontane valleys during early diagenesis because of downward percolating fluids rich in cations from weathering and soil development. In general, increasing seasonality and aridity linked to variability of the Asian monsoon from about 8 Ma enhanced clay mineral formation and development of authigenic smectite in paleo‐plains on the southern side of the Himalaya.  相似文献   

13.
Evolution of mountain landscapes is controlled by dynamic interactions between erosional processes that vary in efficiency over altitudinal domains. Evaluation of spatial and temporal variations of individual erosion processes can augment our understanding of factors controlling relief and geomorphic development of alpine settings. This study tests the application of detrital apatite (U‐Th)/He thermochronology (AHe) to evaluate variable erosion in small, geologically complex catchments. Detrital grains from glacial and fluvial sediment in a single basin were dated and compared with a bedrock derived age‐elevation relationship to estimate spatial variation in erosion over different climate conditions in the Teton Range, Wyoming. Controls and pitfalls related to apatite quality and yield were fully evaluated to assess this technique. Probability density functions comparing detrital age distributions identify variations in erosional patterns between glacial and fluvial systems and provide insight into how glacial, fluvial, and hillslope processes interact. Similar age distributions representing erosion patterns during glacial and interglacial times suggest the basin may be approaching steady‐state. This also implies that glaciers are limited and no longer act as buzzsaws or produce relief. However, subtle differences in erosional efficiency do exist. The high frequency of apatite cooling ages from high altitudes represents either rapid denudation of peaks and ridges by mass wasting or an artifact of sample quality. A gap in detrital ages near the mean age, or mid‐altitude, indicates the fluvial system is presently transport limited by overwhelming talus deposits. This study confirms that sediment sources can be traced in small basins with detrital AHe dating. It also demonstrates that careful consideration of mineral yield and quality is required, and uniform erosion assumptions needed to extract basin thermal history from detrital ages are not always valid.  相似文献   

14.
15.
16.
利用MS-2000型激光粒度仪及相关软件,对位于塔里木盆地腹地的塔中KT2号钻孔进行粒度测试与分析,绘制频率曲线图、概率累计曲线图等,结合其他测试数据、资料,进行沉积环境分析.结果表明塔里木盆地在早更新世以河湖相沉积为主,其晚期出现了风成相沉积;中更新世早期以洼地湖泊相沉积为主,但风成相沉积作用明显加强,至中更新世晚期,发展成为以风成相为主,经晚更新世到全新世,沙漠大规模形成,并逐步发展.气候总体由温暖湿润变为寒冷干旱.  相似文献   

17.
Understanding the relationships between sedimentation, tectonics and magmatism is crucial to defining the evolution of orogens and convergent plate boundaries. Here, we consider the lithostratigraphy, clastic provenance, syndepositional deformation and volcanism of the Almagro‐El Toro basin of NW Argentina (24°30′ S, 65°50′ W), which experienced eruptive and depositional episodes between 14.3 and 6.4 Ma. Our aims were to elucidate the spatial and temporal record of the onset and style of the shortening and exhumation of the Eastern Cordillera in the frame of the Miocene evolution of the Central Andes foreland basin. The volcano‐sedimentary sequence of the Almagro‐El Toro basin consists of lower red floodplain sandstones and siltstones, medial non‐volcanogenic conglomerates with localised volcanic centres and upper volcanogenic coarse conglomerates and breccia. Coarse, gravity flow‐dominated (debris‐flow and sheet‐flow) alluvial fan systems developed proximal to the source area in the upper and medial sequence. Growing frontal and intrabasinal structures suggest that the Almagro‐El Toro portion of the foreland basin accumulated on top of the eastward‐propagating active thrust front of the Eastern Cordillera. Synorogenic deposits indicate that the shortening of the foreland deposits was occurring by 11.1 Ma, but conglomerates derived from the erosion of western sources suggest that the uplift and erosion of this portion of the Eastern Cordillera has occurred since ca.12.5 Ma. An unroofing reconstruction suggests that 6.5 km of rocks were exhumed. A tectono‐sedimentary model of an episodically evolving thick‐skinned foreland basin is proposed. In this frame, the NW‐trending, transtensive Calama–Olacapato–El Toro (COT) structures interacted with the orogen, influencing the deposition and deformation of synorogenic conglomerates, the location of volcanic centres and the differential tilt and exhumation of the foreland.  相似文献   

18.
Exceptional 3‐D exposures of fault blocks forming a 5 km × 10 km clastic sediment‐starved, marine basin (Carboneras subbasin, southeast Spain) allow a test of the response of carbonate sequence stratigraphic architectures to climatic and tectonic forcing. Temperate and tropical climatic periods recorded in biofacies serve as a chronostratigraphic framework to reconstruct the status of the basin within three time‐slices (late Tortonian–early Messinian, late Messinian, Pliocene). Structural maps and isopach maps trace out the distribution of fault blocks, faults, and over time, their relative motions, propagational patterns and life times, which demonstrate a changing layout of the basin because of a rotation of the regional transtensional stress field. Progradation of early Messinian reefal systems was perpendicular to the master faults of the blocks, which were draped by condensed fore‐slope sediments. The hangingwall basins coincided with the toe‐of‐slope of the reef systems. The main phase of block faulting during the late Tortonian and earliest Messinian influenced the palaeogeography until the late Pliocene (cumulative throw < 150–240 m), whereas displacements along block bounding faults, which moved into the hangingwall, died out over time. An associated shift of the depocentres of calciturbidites, slump masses and fault scarp degradation breccias reflects 500–700 m of fault propagation into the hangingwall. The shallow‐water systems of the footwall areas were repeatedly subject to emergence and deep peripheral erosion, which imply slow net relative uplift of the footwall. In the dip‐slope settings, erosional truncations of tilted proximal deposits prevail, which indicate rotational relative uplift. Block movements were on the order of magnitude of third order sea‐level fluctuations during the late Tortonian and earliest Messinian. We suggest that this might be the reason for the common presence of offlapping geometries in early Messinian reef systems of the Betic Cordilleras. During the late Pliocene, uplift rates fell below third order rates of sea‐level variations. However, at this stage, the basin was uplifted too far to be inundated by the sea again. The evolution of the basin may serve as a model for many other extensional basins around the world.  相似文献   

19.
Foreland basins are important recorders of tectonic and climatic processes in evolving mountain ranges. The Río Iruya canyon of NW Argentina (23° S) exposes ca. 7500 m of Orán Group foreland basin sediments, spanning over 8 Myr of near continuous deposition in the Central Andes. This study presents a record of sedimentary provenance for the Iruya Section in the context of a revised stratigraphic chronology. We use U‐Pb zircon ages from six interbedded ash layers and new magnetostratigraphy to constrain depositional ages in the section between 1.94 and 6.49 Ma, giving an average sedimentation rate of 0.93 ± 0.02 (2σ) km Myr?1. We then pair U‐Pb detrital zircon dating with quartz trace‐element analysis to track changes in sedimentary provenance from ca. 7.6 to 1.8 Ma. Results suggest that from ca. 7.6 to ca. 6.3 Ma, the Iruya watershed did not tap the Salta Group or Neogene volcanics that are currently exposed in the eastern Cordillera and Puna margin. One explanation is that a long‐lived topographic barrier separated the eastern Puna from the foreland for much of the mid‐late Miocene, and that the arrival of Jurassic‐Neogene zircons records regional tectonic reactivation at ca. 6.3 Ma. A second major provenance shift at ca. 4 Ma is marked by changes in the zircon and quartz populations, which appear to be derived from a restricted source region in Proterozoic‐Ordovician meta‐sediments. Considered in conjunction with the onset of coarse conglomerate deposition, we attribute this shift to accelerated uplift of the Santa Victoria range, which currently defines the catchment's western limit. A third shift at ca. 2.3 Ma records an apparent disconnection of the Iruya with the eastern Puna, perhaps due to defeat of the proto Rio‐Iruya by the rising Santa Victoria range. This study is one of the first applications of quartz trace‐element provenance analysis, which we show to be an effective complement to U‐Pb detrital zircon dating when appropriate statistical methods are applied.  相似文献   

20.
The Supanberget area, situated in the southern part of the Tertiary Spitsbergen fold-and-thrust belt, occupies a position mainly within the central zone of the belt, characterized by basement-involved thrusting, but includes part of an eastern foreland zone of detached, thin-skinned thrust tectonics. The peculiar feature of Supanberget is the thrust- 'sliced' tectonic style that deforms a previously tightly folded basement-cover contact. Foreland structures indicate the additional presence of a subsurface detachment at a deeper structural level. Contrasts in magnitude and orientation of basement anisotropics may control lateral changes in tectonic style.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号