首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Benthic macrofauna–habitat associations in Willapa Bay, Washington, USA   总被引:1,自引:0,他引:1  
Estuary-wide benthic macrofauna–habitat associations in Willapa Bay, Washington, United States, were determined for 4 habitats (eelgrass [Zostera marina], Atlantic cordgrass [Spartina alterniflora], mud shrimp [Upogebia pugettensis], ghost shrimp [Neotrypaea californiensis]) in 1996 and 7 habitats (eelgrass, Atlantic cordgrass, mud shrimp, ghost shrimp, oyster [Crassostrea gigas], bare mud/sand, subtidal) in 1998. Most benthic macrofaunal species inhabited multiple habitats; however, 2 dominants, a fanworm, Manayunkia aestuarina, in Spartina, and a sand dollar, Dendraster excentricus, in subtidal, were rare or absent in all other habitats. Benthic macrofaunal Bray–Curtis similarity varied among all habitats except eelgrass and oyster. There were significant differences among habitats within- and between-years on several of the following ecological indicators: mean number of species (S), abundance (A), biomass (B), abundance of deposit (AD), suspension (AS), and facultative (AF) feeders, Swartz's index (SI), Brillouin's index (H), and jackknife estimates of habitat species richness (HSR). In the 4 habitats sampled in both years, A was about 2.5× greater in 1996 (a La Niña year) than 1998 (a strong El Niño year) yet relative values of S, A, B, AD, AS, SI, and H among the habitats were not significantly different, indicating strong benthic macrofauna–habitat associations despite considerable climatic and environmental variability. In general, the rank order of habitats on indicators associated with high diversity and productivity (high S, A, B, SI, H, HSR) was eelgrass = oyster ≥ Atlantic cordgrass ≥ mud shrimp ≥ bare mud/sand ≥ ghost shrimp = subtidal. Vegetation, burrowing shrimp, and oyster density and sediment %silt + clay and %total organic carbon were generally poor, temporally inconsistent predictors of ecological indicator variability within habitats. The benthic macrofauna–habitat associations in this study can be used to help identify critical habitats, prioritize habitats for environmental protection, index habitat suitability, assess habitat equivalency, and as habitat value criteria in ecological risk assessments in Willapa Bay.  相似文献   

2.
Subtidal habitats have not yet been accounted for in habitat maps of South African estuaries. In this study, a novel method for mapping subtidal estuarine habitats, using a remotely operated underwater vehicle (ROV) piloted from a boat, was developed and tested in the Knysna Estuary. Video footage was recorded along 48 transects across the width of the estuary, and then reviewed to identify, classify and map habitats. Using the method developed in this study, 21 hours of footage was recorded over 15 days of sampling, and about 30 hours of post-processing was carried out to map an area exceeding 850 ha. This study has produced the first baseline dataset of subtidal habitats for a South African estuary. Additionally, the study revealed the previously unknown distribution of the invasive red seaweed Asparagopsis taxiformis, and the underestimation in previous studies of the estuary of area cover of eelgrass Zostera capensis by 130 ha.  相似文献   

3.
To evaluate the relative importance of possible food sources, including riverine particulate organic matter, reeds, benthic microalgae, seaweeds, cultured laver (Porphyra) and coastal phytoplankton, for commercial bivalves and co-occurring benthic animals, 73 macrofaunal species were collected from intertidal and subtidal soft bottoms in the inner part of Ariake Sound, Kyushu, southern Japan, and their isotopic compositions were analyzed. The results revealed that (1) both intertidal and subtidal food webs were constituted of 3 trophic levels, (2) suspension-feeding bivalves utilize a mixture of benthic microalgae and coastal phytoplankton, and omnivores and carnivores incorporate benthic microalgae and phytoplankton through their intermediate prey, and (3) 3 bivalves (Scapharca kagoshimensis, Modiolus metcalfei and Atrina lischkeana) inhabiting both intertidal and subtidal bottoms showed similar seasonal fluctuations, suggesting no difference in the diet composition among the species and between the 2 habitats. We conclude that a large biomass of benthic microalgae which was approximately equal to that of phytoplankton and the strong tidal currents that would resuspend benthic microalgae and transport them to subtidal bottom areas account for the benthic microalgal and phytoplankton based trophic structure in the inner part of Ariake Sound.  相似文献   

4.
A study of an expanding seagrass bed on the south-west coast of British Columbia, Canada involved documentation and explanation of the pattern of expansion of the vegetation as well as documentation and experimental investigation of the accompanying changes in the distribution of infaunal invertebrates. Expansion followed a major environmental change, improved water clarity initiated in 1969 when a causeway blocked access to the site for silty Fraser River water. The original eelgrass (Zostera marina) bed expanded landward over 30 m year−1, probably causing more and more water to be retained in the bed at low tide and thus improving its own habitat. More rapid expansion occurred from 1979–1983 after Z.japonica colonized at the landward edge of the eelgrass bed and in a separate intertidal area. Expansion ceased around 1983 coincident with, but probably independent of, further construction.Burrowing shrimp (Callianassa californiensis) decreased in abundance between 1977 and 1984 in areas where the two seagrasses colonized. Short-term experiment over one summer and fall showed that removal of all shoots allowed adult shrimp and tube worms to colonize the sediment while addition of shoots of Z. japonica by transplanting caused temporary decreases in shrimp abundance. After a few weeks an established shrimp population destroyed the transplants. Among reasonable alternate hypotheses for the decline in Callianassa, the effect of sediment texture can be eliminated, but either direct negative effects of seagrass, i.e. inhibition of the burrowing of adult shrimp or of settlement of juveniles, or indirect effects, i.e. the harboring of more predators of shrimp in seagrass beds, deserve further study.  相似文献   

5.
Accurate predictions of benthic macrofaunal biodiversity greatly benefit the efficient planning and management of habitat restoration efforts in tidal flat habitats. Artificial neural network (ANN) prediction models for such biodiversity were developed and tested based on 13 biophysical variables, collected from 50 sites of tidal flats along the coast of Korea during 1991–2006. The developed model showed high predictions during training, cross-validation and testing. Besides the training and testing procedures, an independent dataset from a different time period (2007–2010) was used to test the robustness and practical usage of the model. High prediction on the independent dataset (r = 0.84) validated the networks proper learning of predictive relationship and its generality. Key influential variables identified by follow-up sensitivity analyses were related with topographic dimension, environmental heterogeneity, and water column properties. Study demonstrates the successful application of ANN for the accurate prediction of benthic macrofaunal biodiversity and understanding of dynamics of candidate variables.  相似文献   

6.
Effective management of marine ecosystems is enhanced when detailed information on biodiversity is available. Key information to underpin management actions and conservation planning includes relationships between species assemblages and environmental gradients, and information on species distributions. We conducted a subtidal biodiversity assessment of surface‐dwelling subtidal molluscs in eight a priori defined habitat types using underwater visual censuses to quantitatively explore relationships between molluscan assemblages, and their correlation with benthic habitats and abiotic variables. In addition, variations in diversity were examined for two key habitat types (areas dominated by Dendronephthya australis and by filter feeders) over a period of 15 months to examine temporal change. We found that molluscs form distinct assemblages within subtidal habitats, but that assemblages within key habitats show inherent temporal variability. Regional (gamma) diversity of molluscs was found to result from a combination of: (i) within habitat alpha diversity, which increased with habitat complexity; (ii) between habitat beta diversity, with significant differences in molluscan assemblages amongst habitats with differing benthic growth, substrate type, and depth; and (iii) temporal beta diversity, with significant changes detected in molluscan assemblages over time. The results demonstrate how habitats and abiotic variables (principally depth and substrate type) combine to contribute to molluscan biodiversity in temperate estuaries, and illustrate the value of these factors as surrogates for surface‐dwelling subtidal molluscs in conservation planning.  相似文献   

7.
The benthic invertebrates of Block Island Sound have not been adequately studied, in contrast to other adjacent southern New England sounds. This study examines the species composition, abundance and biomass of benthic macrofaunal invertebrates at nine locations within Block Island Sound. The sites sampled, represent a wide range of subtidal habitats within the Sound, and were visited in February and September.Some 224 species were identified, of which almost half (104) were polychaetes. The benthic assemblages at most stations were dominated numerically by tube dwelling, surface detritus or suspension feeding amphipods, e.g. Ampelisca agassizi and A. vadorum, as well as the protobranch bivalve, Nucula proxima. This dominant Ampelisca-Nucula assemblage was associated with silty fine sand sediments. The average macrofaunal biomass for all stations was 158 g (wet weight) m?2, two thirds the average benthic biomass of Georges Bank, an important fishery area. Based on the examination of the records of earlier surveys in Block Island Sound, there is evidence that this silty-sand, ampeliscid-dominated assemblage has persisted since at least the mid-1940s.  相似文献   

8.
The capacity of filter feeders to reduce seston and phytoplankton concentrations in the water column has important implications for restoration and management of coastal ecosystems. We directly measured changes in chlorophyll a concentration on commercially stocked intertidal oyster beds (Crassostrea gigas) in Willapa Bay, Washington, USA by recording water properties near small drifters as they tracked parcels of water across tide flats. Chlorophyll declined 9.6% per half hour in water passing on-bottom adult oysters and 41% for longline adult oysters, whereas chlorophyll concentrations increased as water flowed across tide flats without adult oysters. Field filtration rates, which were fit to exponential declines in chlorophyll and accounted for oyster density and water depth, averaged 0.35 L g 1 h 1 (shucked dry weight) for on-bottom aquaculture and 0.73 L g 1 h 1 for longline culture, compared to values of 2.5–12 L g 1 h 1 reported from laboratory studies of C. gigas. Field filtration rates may be lower than laboratory rates due to unfavorable field conditions (e.g., low initial chlorophyll concentrations) or masked by resuspension of benthic microalgae. In addition to distinctions among on-bottom, longline, and no-oyster habitats, Akaike's Information Criterion analysis showed temperature, initial chlorophyll concentration, and depth related to chlorophyll decline. This research corroborates mathematical models suggesting that benthic suspension feeders are exerting top-down control of pelagic production in this estuary, with strong patterns in chlorophyll emerging across extensive tideflats populated by C. gigas despite low field filtration rates.  相似文献   

9.
Scleractinian corals create three-dimensional reefs that provide sheltered refuges, facilitate sediment accumulation, and enhance colonization of encrusting fauna. While heterogeneous coral habitats can harbor high levels of biodiversity, their effect on the community composition within nearby sediments remains unclear, particularly in the deep sea. Sediment macrofauna from deep-sea coral habitats (Lophelia pertusa) and non-coral, background sediments were examined at three sites in the northern Gulf of Mexico (VK826, VK906, MC751, 350–500 m depth) to determine whether macrofaunal abundance, diversity, and community composition near corals differed from background soft-sediments. Macrofaunal densities ranged from 26 to 125 individuals 32 cm−2 and were significantly greater near coral versus background sediments only at VK826. Of the 86 benthic invertebrate taxa identified, 16 were exclusive to near-coral habitats, while 14 were found only in background sediments. Diversity (Fisher’s α) and evenness were significantly higher within near-coral sediments only at MC751 while taxon richness was similar among all habitats. Community composition was significantly different both between near-coral and background sediments and among the three primary sites. Polychaetes numerically dominated all samples, accounting for up to 70% of the total individuals near coral, whereas peracarid crustaceans were proportionally more abundant in background sediments (18%) than in those near coral (10%). The reef effect differed among sites, with community patterns potentially influenced by the size of reef habitat. Taxon turnover occurred with distance from the reef, suggesting that reef extent may represent an important factor in structuring sediment communities near L. pertusa. Polychaete communities in both habitats differed from other Gulf of Mexico (GOM) soft sediments based on data from previous studies, and we hypothesize that local environmental conditions found near L. pertusa may influence the macrofaunal community structure beyond the edges of the reef. This study represents the first assessment of L. pertusa-associated sediment communities in the GOM and provides baseline data that can help define the role of transition zones, from deep reefs to soft sediments, in shaping macrofaunal community structure and maintaining biodiversity; this information can help guide future conservation and management activities.  相似文献   

10.
Ecosystem engineers such as mussels may affect strongly both the structure of benthic assemblages and the ecosystem functioning. The black-pygmy mussel Limnoperna securis is an invasive species that is spreading along the Galician coast (NW Spain). Its current distribution overlaps with the distribution of the commercial native mussel species Mytilus galloprovincialis, but only in the inner part of two southern Galician rias. Here, we analysed the assemblages associated with clumps of the two mussel species and evaluated if the invasive species increased complexity of habitat. To measure complexity of clumps we used a new method modified from the “chain and tape” method. Results showed that the identity of the mussel influenced macrofaunal assemblages, but not meiofauna. L. securis increased the complexity of clumps, and such complexity explained a high percentage of variability of macrofauna. The shift in dominance from M. galloprovincialis to L. securis may alter habitat structure and complexity, affecting the macrofaunal assemblages with unpredictable consequences on trophic web relations.  相似文献   

11.
Ecosystem engineering by plants and animals significantly influences community structure and the physico-chemical characteristics of marine habitats. In this paper we document the contrasting effects of ecosystem engineering by the cordgrass Spartina maritima and the burrowing sandprawn Callianassa kraussi on physico-chemical characteristics, microflora, macrofaunal community structure and morphological attributes in the high shore intertidal sandflats of Langebaan Lagoon, a marine-dominated system on the west coast of South Africa. Comparisons were made at six sites in the lagoon within Spartina and Callianassa beds, and in a “bare zone” of sandflat between these two habitats that lacks both sandprawns and cordgrass. Sediments in Spartina habitats were consolidated by the root-shoot systems of the cordgrass, leading to low sediment penetrability, while sediments in beds of C. kraussi were more penetrable, primarily due to the destabilising effects of sandprawn bioturbation. Sediments in the “bare zone” had intermediate to low values of penetrability. Sediment organic content was lowest in bare zones and greatest in Spartina beds, while sediment chl-a levels were greatest on bare sand, but were progressively reduced in the Spartina and Callianassa beds. These differences among habitats induced by ecosystem engineering in turn affected the macrofauna. Community structure was different between all three habitats sampled, with species richness being surprisingly greater in Callianassa beds than either the bare zone or Spartina beds. In general, the binding of surface sediments by the root systems of Spartina favoured rigid-bodied, surface-dwelling and tube-building species, while the destabilising effect of bioturbation by C. kraussi favoured burrowing species. The contrasting effects of these ecosystem engineers suggest that they play important roles in increasing habitat heterogeneity. Importantly, the role of bioturbation by C. kraussi in enhancing macrofaunal richness was unexpected. By loosening sediments, reducing anoxia and enhancing organic content, C. kraussi may engineer these high shore habitats to ameliorate environmental stresses or increase food availability.  相似文献   

12.
Seagrass beds serve as nursery grounds for many fish species and often play an important role in the juvenile stages of economically and recreationally important fishes. The eelgrass Zostera capensis is the dominant submerged macrophyte in permanently open South African estuaries and occupies large intertidal and subtidal areas within the Knysna system. The primary objective of this study was to compare the occurrence of sparids and mugilids in eelgrass and nearby bare sediment areas using sampling with seine nets. The hypothesis that was tested is that mugilids are dominant in unvegetated areas of the Knysna Estuary littoral whereas sparids predominate within eelgrass beds located in the same zone. The results indicate that the family Mugilidae is better represented at unvegetated sites when compared to members of the family Sparidae, with the exception of Lithognathus lithognathus, but that the dominant three sparids and dominant two mugilids were most abundant in sparse eelgrass beds that included both bare and vegetated areas within this habitat type. The main fish species responsible for the separation of fish assemblages associated with unvegetated sites versus those associated with vegetated areas were Rhabdosargus holubi, Liza dumerili, Liza richardsonii, Lithognathus lithognathus, Sarpa salpa and Diplodus capensis, with R. holubi, S. salpa and D. capensis being mainly attracted to eelgrass habitats and L. dumerili, L. richardsonii and L. lithognathus having a stronger affinity for bare areas. This finding confirms a previous estuarine study in the nearby Swartvlei lake littoral, which found that sparids dominated areas where aquatic macrophytes were extensive and that mugilids became more prevalent at those same sites when the macrophytes underwent complete senescence. The length-frequency distributions of some sparid and mugilid species differed considerably between eelgrass and bare sediment areas, whereas those of other species showed little or no difference between these two habitat types.  相似文献   

13.
Seagrass landscapes are coastal environments that support diverse and abundant faunal communities. This study investigated infaunal assemblage patterns in fragmented and continuous Zostera muelleri habitat in southeastern New Zealand. Intertidal macroinvertebrate assemblages were examined in fragmented seagrass habitat (containing discrete patches varying in size from 1 to 200 m2) and continuous meadows (>1000 m2), in a small and a large tidal inlet. Community indices differed between seagrass habitat types and the total number of taxa was significantly lower at fragmented seagrass sites in one of the inlets. The total number of individuals and diversity were significantly different between fragmented and continuous seagrass habitat in both inlets, but diversity values showed inconsistent patterns between inlets. Multivariate analysis confirmed that different seagrass habitat types support distinct macrofaunal assemblages in each inlet and position on the shore was identified as the single most important variable explaining dissimilarities in assemblage compositions. These findings confirm the influence of seagrass habitat size on infaunal assemblages and also highlight the importance of spatial position of seagrass habitat in intertidal areas.  相似文献   

14.
The littoral zone of Chesapeake Bay contains a mosaic of shallow vegetated and nonvegetated habitats with biotic components that are sensitive to changes in biological and physical driving factors. Static and dynamic modelling frameworks provide an integrative way to study complex hydrodynamic and biogeochemical processes in linked estuarine habitats. In this study we describe a spatial simulation model developed and calibrated relative to a specific littoral zone, estuarine ecosystem. The model consisted of four distinct habitats that contained phytoplankton, sediment microalgae, Zostera marina (eelgrass), and Spartina alterniflora. There was tidal exchange of phytoplankton, particulate and dissolved organic carbon and dissolved inorganic nitrogen between the littoral zone ecosystem and the offshore channel. Physical exchange and biogeochemical transformations within the habitats determined water column concentrations in each habitat. Predicted subtidal water column concentrations and Z. marina and S. alterniflora biomass were within the variability of validation data and the predicted annual rates of net primary production were similar to measured rates. Phytoplankton accounted for 17%, sediment microalgae 46%, the Z. marina community 24% and S. alterniflora 13% of the annual littoral zone primary production. The linked habitat model provided insights into producer, habitat and ecosystem carbon and nitrogen properties that might not have been evident with stand-alone models. Although it was an intra-ecosystem sink for particulate carbon, the seagrass habitat was a DOC source and responsible for over 30% of the littoral zone carbon and nitrogen primary production. The model predicted that the Goodwin Islands littoral zone was a sink of channel derived POC, but a source of DOC to the surrounding estuary. The framework created in this study of estuarine ecosystem dynamics is applicable to many different aquatic systems over a range of spatial and temporal scales.  相似文献   

15.
The faunal communities of four intertidal habitats namely sand, mud, seagrass (Zostera noltii) and seagrass patches (mixSM) of a temperate coastal lagoon, Ria Formosa (southern Portugal), were sampled. A total of 47 species were taken in 428 bottomless drop sampler samples, with the highest number of species and the more commonly occurring species belonging to the Mollusca phylum. The dominance of these gastropod species underlines the importance of the grazing food chain in these habitats. Bittium reticulatum was the most abundant species, being especially abundant in the seagrass habitat. The most frequent and highest biomass species in the community was Carcinus maenas, a predator that makes use of the available resources and that is adapted to the highly variable intertidal environment. Pomatoschistus microps was the most abundant fish species, with highest densities in the mud habitat, which demonstrates an ability to occupy a low depth area. The seagrass habitat had the highest diversity, abundance and biomass, followed by the mixSM habitat and was different from all the others. Assemblages were highly influenced by the presence of vegetation, providing forage and refuge from predation. A well defined summer group was identified in all habitats. These results highlight the importance of seagrass beds and the idea that their decrease implies the decrease of lagoon production through the impoverishment of the trophic structure of the lagoon.  相似文献   

16.
Epibenthic fishes were collected with daytime beam trawl tows (n = 1713) in three shallow (<10 m) habitats of submerged aquatic vegetation (SAV), Zostera marina (eelgrass), Laminaria longicruris (kelp), Phyllophora sp. (algae), and unvegetated sandy/mud areas. We divided the Maine coast into three broad zones based upon geological features and sampled over five consecutive years; during April–November 2000 in the mid coast, in 2001 and 2002 along the south coast and in 2003 and 2004 along the eastern Maine coast. We quantified habitat use by eight economically important fish species (Gadus morhua, Microgadus tomcod, Pollachius virens, Urophycis chuss, Urophycis tenuis, Osmerus mordax, Tautogolabrus adspersus, and Pseudopleuronectes americanus) and 10 other common epibenthic species (n = 18 571). We identified the physical and biological variables most important in discriminating between habitats with and without individual fish species. Logistic regression models based on nearshore habitat characteristics were developed to predict the distribution of these species along the three zones representing broad geological regions of the Maine coast. Logistic regression models correctly classified individual fish species 58.7–97.1% of the time based on the temporal and physical habitat variables (month, temperature, salinity, and depth) and the presence–absence of submerged aquatic vegetation (Zostera, Laminaria, or Phyllophora). Overall fish presence and economically important fish presence were correctly classified 61.1–79.8% and 66.0–73.6% of the time, respectively. The Maine shallow water fish community was composed primarily of young-of-the-year and juvenile fishes with all habitats functioning as facultative nursery areas. Presence of most fish species was positively associated with Zostera, Laminaria, and to a lesser extent, Phyllophora. This study provides direct evidence of shallow waters of the Gulf of Maine as critical facultative nursery habitat for juvenile G. morhua, M. tomcod, P. virens, U. tenuis, U. chuss, T. adspersus, O. mordax and P. americanus, and many ecologically important species.  相似文献   

17.
Seagrass beds have higher biomass, abundance, diversity and productivity of benthic organisms than unvegetated sediments. However, to date most studies have analysed only the macrofaunal component and ignored the abundant meiofauna present in seagrass meadows. This study was designed to test if meiobenthic communities, especially the free-living nematodes, differed between seagrass beds and unvegetated sediments. Sediment samples from beds of the eelgrass Zostera capricorni and nearby unvegetated sediments were collected in three estuaries along the coast of New South Wales, Australia. Results showed that sediments below the seagrass were finer, with a higher content of organic material and were less oxygenated than sediments without seagrass. Univariate measures of the fauna (i.e. abundance, diversity and taxa richness of total meiofauna and nematode assemblages) did not differ between vegetated and unvegetated sediments. However multivariate analysis of meiofaunal higher taxa showed significant differences between the two habitats, largely due to the presence and absence of certain taxa. Amphipods, tanaidacea, ostracods, hydrozoans and isopods occurred mainly in unvegetated sediments, while kinorhyncs, polychaetes, gastrotrichs and turbellarians were more abundant in vegetated sediments. Regarding the nematode assemblages, 32.4% of the species were restricted to Z. capricorni and 25% only occurred in unvegetated sediments, this suggests that each habitat is characterized by a particular suite of species. Epistrate feeding nematodes were more abundant in seagrass beds, and it is suggested that they graze on the microphytobenthos which accumulates underneath the seagrass. Most of the genera that characterized these estuarine unvegetated sediments are also commonly found on exposed sandy beaches. This may be explained by the fact that Australian estuaries have very little input of freshwater and experience marine conditions for most of the year. This study demonstrates that the seagrass and unvegetated sediments have discrete meiofaunal communities, with little overlap in species composition.  相似文献   

18.
The spatial variability of seagrass meadows in Arcachon Bay, was studied between 1988 and 2008 using a combination of mapping techniques based on aerial photographs for intertidal dwarf-grass (Zostera noltii) beds and acoustic sonar for permanently submerged eelgrass (Zostera marina) populations. The results show a severe decline over the period for both species, as well as an acceleration of the decline since 2005 for Z. noltii. The total surface regression over the studied period is estimated to be 22.8 km2 for Z. noltii and 2.7 km2 for Z. marina, which represent declines of 33 and 74% respectively.  相似文献   

19.
The Kaipara Harbour in New Zealand is one of the largest estuarine systems in the world, containing significant areas of subtidal seagrass habitat (Zostera muelleri). Light availability at the maximum depth limit for Z. muelleri was measured at 2.10 (0.19 SEM) and 4.91 (0.53 SEM) mol photons m?2 d?1 during the winter and summer monitoring periods, respectively. The primary drivers of benthic light availability were found to be surface light availability, the timing of the low tide and water clarity. Core sampling analysis suggested that biomass of seagrass growing at the maximum depth limit was low, indicative of light limitation. The results of this study suggest that the subtidal distribution of seagrass in the Kaipara Harbour is light-limited and that reductions in water clarity due to changes in land use are likely to result in significant reductions in the extent and productivity of subtidal seagrass habitat.  相似文献   

20.
To investigate a possible influence of submarine methane seepage on benthic foraminiferal communities, Rose Bengal stained (“live”) and empty tests of benthic foraminifera were studied from the sediment surface down to 15 cm sub-bottom depth of 12 sites at the Håkon Mosby mud volcano (HMMV). In addition, one reference site well away from the seep sites, but from similar water depths and the same general hydrographic setting was occupied for comparison. The HMMV is located at 1265 m water depth on the SW Barents Sea continental slope. Distinct living foraminiferal associations at the HMMV are linked to specific sedimentary, microbial, and macrofaunal habitats. In the center of the crater, and in crater areas completely covered by bacterial mats, Cassidulina reniforme is the only, albeit rare, living species. Below the top few millimeters, sediments are anoxic and devoid of living specimens. At the rim of the mud volcano, at sites densely populated by pogonophoran tube worms, three benthic foraminiferal associations are found; (i) a Fontbotia wuellerstorfi–Lobatula lobatula association living attached to the upper parts of pogonophoran tubes, which protrude into oxic water, (ii) a diverse Cassidulina neoteretis association populating dysoxic sediments of the surface centimeter, and (iii) a species-poor Bolivina pseudopunctata association colonizing the subsurface sediments down to four centimeters. Generally, we did not find endemic or seep indicative species or associations at the HMMV. However, the HMMV live faunas dominated by B. pseudopunctata are not found at the reference site nor are they described from comparable water depths and environments without gas seepages from the Norwegian-Greenland Seas.In the center and outer rim of the mud volcano, a C. neoteretis–Reophax guttifer dead association, similar to the one at the reference site, characterizes an assemblage of strongly corroded and partly displaced tests. At bacterial mat sites, a C. reniforme dead association corresponds to the living one. Thus both the living and the dead associations are indicative of a specific bacterial mat environment at the HMMV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号