共查询到20条相似文献,搜索用时 15 毫秒
1.
— Well temperature logs from 61 sites located in discontinuous and continuous permafrost regions of northern Canada are analyzed. The method of functional space inversion (FSI) is applied to the set of precise temperature logs from wells located between 60 ° and 82 °N. There is strong evidence of extensive ground surface temperature (GST) warming beginning in the late 18th century and lasting until the 20th century. This was preceded by a lengthy period of cooling. The approximate average increase of the surface temperature of Canadian Arctic, based on all individual GST histories, is > 1.3 °C for the last 200 years. Simultaneous inversion of all well temperature data suggests an even higher warming (approximately 2 °C). There has been no strong south-to-north gradient in the ground warming magnitude when northern Canadian data are compared with eastern and central Canadian data south of 60 °N which also shows warming close to 2 °C. In Alaska, warming of some 2 °C has been restricted mainly to the 20th century. In general, however, a high warming magnitude is common for most of Canada and Alaska for the previous century. The averaged GST history (GSTH) for the Canadian Arctic is calibrated with and compares visually with a variety of recently published regional and hemispheric proxy climate reconstructions. These show that GST warming derived from well temperature logs is generally higher than one shown by other proxy (mainly tree-ring reconstructions).Received April, 2003 相似文献
2.
Čermák Vladimír Šafanda Jan Krešl Milan Dědeček Petr Bodri Louise 《Studia Geophysica et Geodaetica》2000,44(3):430-441
Long-term (1961 – 1996) meteorological air temperature series together with the reconstructed ground surface temperature histories, obtained by inverting borehole temperature-depth profiles, were used to project regional patterns of the recent (climate) warming rate on the territory of the Czech Republic. The characteristic magnitude of the warming rate of 0.02 –0.03 K/yr was confirmed by the results of several years of monitoring the temperature in two experimental boreholes. The monitoring of shallow temperatures at depths of about 30 –40 m, i.e. below the reach of the seasonal surface temperature variations, can serve as an alternative tool of direct quantitative assessment of the present warming rate. The data also seem to sustain a potential man-made component contributing to the more pronounced recent warming rate observed in the areas of large agglomeration. 相似文献
3.
Ribera P. Gallego D. Gimeno L. Perez-Campos J.F. García-Herrera R. Hernández E. de la Torre L. Nieto R. Calvo N. 《Studia Geophysica et Geodaetica》2004,48(2):459-468
Equivalent temperature based in the NCEP/NCAR reanalysis database has been used as a simultaneous measure of temperature and humidity. Its variations during the 1958-1998 added to the effect of the inclusion of satellite data during the late seventies have been analyzed. An increase of the globally averaged equivalent temperature has been detected, the trend has been considerably greater during the first half of the study period and significant differences can be found between continental and oceanic areas. The relation of the trend with four of the main modes of climate variability has been assessed. The North Atlantic Oscillation and the Artic Oscillations are closely related to the equivalent temperature over the North Atlantic basin, extending toward Northern Asia in the second case. El Niño/Southern Oscillation and the Antarctic Oscillation seem to have a more global effect. 相似文献
4.
Ivana Nemešová Jaroslava Kalová Martin Dubrovský 《Studia Geophysica et Geodaetica》1999,43(2):201-222
Three-dimensional general circulation models (GCMs) are 'state-of-the-art' tools for projecting possible changes in climate. Scenarios constructed for the Czech Republic are based on daily outputs of the ECHAM-GCM in the central European region. Essential findings, derived from validating, procedures are summarized and changes in variables between the control and perturbed experiments are examined. The resulting findings have been used in selecting the most proper methods of generating climate change projections for assessing possible hydrological and agricultural impacts of climate change in selected exposure units. The following weather variables have been studied: Daily extreme temperatures, daily mean temperature, daily sum of global solar radiation, and daily precipitation amounts. Due to some discrepancies revealed, the temperature series for changed climate conditions (2×CO
2
) have been created with the help of temperature differences between the control and perturbed runs, and the precipitation series have been derived from an incremental scenario based on an intercomparison of the GCMs' precipitation performance in the region. Solar radiation simulated by the ECHAM was not available and, therefore, it was generated using regression techniques relating monthly means of daily extreme temperatures and global radiation sums. The scenarios published in the paper consist of monthly means of all temperatures, their standard deviations, and monthly means of solar radiation and precipitation amounts. Daily weather series, the necessary input to impact models, are created (i) by the additive or multiplicative modification of observed weather daily series or (ii) by generating synthetic time series with the help of a weather generator whose parameters have been modified in accord with the suggested climate change scenarios. 相似文献
5.
6.
Jacek A. Majorowicz 《Pure and Applied Geophysics》1993,140(4):655-666
High quality temperature measurements have been made to depths of 30 to 220 m at 42 sites in 62 observational hydrogeological wells in Alberta. The temperature profiles commonly show near-surface inversions with a minimum temperature at depths of 30 to 50 m. Thermal modelling suggests a surface temperature history with warming reaching 2°C over the past 30 to 60 years. Recent climate warming evident from the analysis of the air temperature data in the region seems to provide at least a partial explanation of the increased ground temperatures. A sudden increase of the surface ground temperature caused by land clearing may be the other explanation, although modelling of such a sudden increase can only explain the observed temperature-depth data if the onset of such warming is 20–30 years old, which is in disagreement with the history of land development in the studied area. The effect of near-surface inversions of the temperature profiles also has been observed in the forested areas. The above support the climate based effect. The superposition of the climatic effect and man-made activity effect upon the ground warming is a very complicated process calling for considerably more research. 相似文献
7.
8.
Sabine Roedelsperger Michael Kuhn Oleg Makarynskyy Carl Gerstenecker 《Pure and Applied Geophysics》2008,165(6):1131-1151
It is sometimes assumed that steric sea-level variations do not produce a gravity signal as no net mass change, thus no change
of ocean bottom pressure is associated with it. Analyzing the output of two CO2 emission scenarios over a period of 2000 years in terms of steric sea-level changes, we try to quantify the gravitational
effect of steric sea-level variations. The first scenario, computed with version 2.6 of the Earth System Climate Model developed
at the University of Victoria, Canada (UVic ESCM), is implemented with a linear CO2 increase of 1% of the initial concentration of 365 ppm and shows a globally averaged steric effect of 5.2 m after 2000 years.
In the second scenario, computed with UVic ESCM version 2.7, the CO2 concentration increases quasi-exponentially to a level of 3011 ppm and is hold fixed afterwards. The corresponding globally
averaged steric effect in the first 2000 years is 2.3 m. We show, due to the (vertical) redistribution of ocean water masses
(expansion or contraction), the steric effect results also in a small change in the Earth’s gravity field compared to usually
larger changes associated with net mass changes. Maximum effects for computation points located on the initial ocean surface
can be found in scenario 1, with the effect on gravitational attraction and potential ranging from 0.0 to −0.7·10−5 m s−2 and −3·10−3 to 6·10−3 m2 s−2, respectively. As expected, the effect is not zero but negligible for practical applications. 相似文献
9.
气候变化对沅江流域径流影响研究 总被引:1,自引:0,他引:1
温室气体排放量增加造成气候变化,对全球资源环境产生重要影响.本文在水量平衡基础上,建立考虑气象要素和地形变化的月水文模型,利用实测径流资料对模型在时空尺度上进行验证.利用全球气候模型(GCMs)预测的未来气候变化情形,对处于湿润区的沅江流域径流过程进行预测.分析结果表明,该区域径流过程对降雨和气温变化十分敏感.根据英国Hadcm2模型对本世纪中叶气候变化预测结果,沅江流域未来年降雨量减少0.43%气温升高1.55℃,丰水期降雨增加,而枯水期将有较大幅度减少.年径流量相应减少6.8%,丰水期径流量增大11%,枯水期径流减少47%,不利于防洪和水资源开发利用. 相似文献
10.
We apply an integrated hydrology‐stream temperature modeling system, DHSVM‐RBM, to examine the response of the temperature of the major streams draining to Puget Sound to land cover and climate change. We first show that the model construct is able to reconstruct observed historic streamflow and stream temperature variations at a range of time scales. We then explore the relative effect of projected future climate and land cover change, including riparian vegetation, on streamflow and stream temperature. Streamflow in summer is likely to decrease as the climate warms especially in snowmelt‐dominated and transient river basins despite increased streamflow in their lower reaches associated with urbanization. Changes in streamflow also result from changes in land cover, and changes in stream shading result from changes in riparian vegetation, both of which influence stream temperature. However, we find that the effect of riparian vegetation changes on stream temperature is much greater than land cover change over the entire basin especially during summer low flow periods. Furthermore, while future projected precipitation change will have relatively modest effects on stream temperature, projected future air temperature increases will result in substantial increases in stream temperature especially in summer. These summer stream temperature increases will be associated both with increasing air temperature, and projected decreases in low flows. We find that restoration of riparian vegetation could mitigate much of the projected summer stream temperature increases. We also explore the contribution of riverine thermal loadings to the heat balance of Puget Sound, and find that the riverine contribution is greatest in winter, when streams account for up to 1/8 of total thermal inputs (averaged from December through February), with larger effects in some sub‐basins. We project that the riverine impact on thermal inputs to Puget Sound will become greater with both urbanization and climate change in winter but become smaller in summer due to climate change. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
11.
V. Čermák J. Šafanda L. Bodri M. Yamano E. Gordeev 《Studia Geophysica et Geodaetica》2006,50(4):675-695
To reconstruct the recent climate history in Kamchatka, a series of repeated precise temperature logs were performed in a
number of boreholes located in a broad east-west strip (between 52 and 54°N) in the central part of Kamchatka west of Petropavlovsk-Kamchatski.
Within three years more than 30 temperature logs were performed in 10 holes (one up to six logs per hole) to the depth of
up to 400 metres. Measured temperature gradients varied in a broad interval 0 to 60 mK/m and in some holes a sizeable variation
in the subsurface temperatures due to advective heat transport by underground water was observed. Measured data were compared
with older temperature profiles obtained in the early eighties by Sugrobov and Yanovsky (1993). Even when older data are of
poorer precision (accuracy of about 0.1 K), they presented valuable information of the subsurface temperature conditions existing
20–25 years ago. Borehole observations and the inverted ground surface temperature histories (GSTHs) used for the paleoclimate
reconstruction were complemented with a detailed survey of meteorological data. Namely, the long-term surface air temperature
(SAT) and precipitation records from Petropavlovsk station (in operation since 1890) were used together with similar data
from a number of local subsidiary meteo-stations operating in Central Kamchatka since 1950. Regardless of extreme complexity
of the local meteorological/climate conditions, diversity of borehole sites and calibration of measuring devices used during
the whole campaign, the results of the climate reconstruction supported a general warming of about 1 K characteristic for
the 20th century, which followed an inexpressive cooler period typical for the most of the 19th century. In the last three
to four decades the warming rate has been locally increasing up to 0.02 K/year. It was also shown that the snow cover played
a dominant role in the penetration of the climate “signal” to depth and could considerably smooth down the subsurface response
to the changes occurred on the surface. 相似文献
12.
13.
Climate effects on soil erodibility 总被引:3,自引:0,他引:3
14.
On the basis of the mean air temperature, precipitation, sunshine duration and pan evaporation at 23 meteorological stations in the headwater catchment of the Yellow River basin from 1960 to 2001, the long‐term monotonic trend and abrupt changes for major climate variables have been investigated. The plausible monotonic trend of annual climatic time series are detected using a non‐parametric method. The abrupt changes have been investigated in terms of a 5 year moving averaged annual series, using the moving t‐test (MTT) method, Yamamoto method and Mann–Kendall method. The results showed that the annual air temperature has increased by 0·80 °C in the headwater catchment of the Yellow River basin during the past 42 years. One obvious cold period and one warm period were detected. The warmest centre was located in the northern part of the basin. The long‐term trend for annual precipitation was not significant during the same period, but a dry tendency was detected. According to the Kendall slope values, the declining centre for annual precipitation was located in the eastern part and the centre of the study area. The long‐term monotonic trend for annual sunshine duration and pan evaporation were negative. The average Kendall slopes are ? 29·96 h/10 yr and ? 39·63 mm/10 yr, respectively. The tests for abrupt changes using MTT and Yamamoto methods show similar results. Abrupt changes occurred in the mid 1980s for temperature, in the late 1980s for precipitation and in the early 1980s for sunshine duration and pan evaporation. It can be seen that the abrupt changes really happened in the 1980s for the climate variables. Different results are shown using the Mann–Kendall method. Both the abrupt changes of temperature and precipitation took place in the early 1990s, and that of pan evaporation occurred in the 1960s. The only abrupt change in sunshine duration happened during the similar period (in the 1980s) with the results detected by the MTT and Yamamoto methods. The abrupt changes which occurred in the 1990s and 1960s are not detectable using the MTT and Yamamoto methods because of the data limitation. However, the results tested by the MTT and Yamamoto methods exhibited great consistency. Some of the reasons may be due to the similar principles for these two methods. Different methods testing the abrupt climatic changes have their own merits and limitations and should be compared based on their own assumption and applicable conditions when they are used. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
15.
16.
John L. Campbell Scott V. Ollinger Gerald N. Flerchinger Haley Wicklein Katharine Hayhoe Amey S. Bailey 《水文研究》2010,24(17):2465-2480
Long‐term data from the Hubbard Brook Experimental Forest in New Hampshire show that air temperature has increased by about 1 °C over the last half century. The warmer climate has caused significant declines in snow depth, snow water equivalent and snow cover duration. Paradoxically, it has been suggested that warmer air temperatures may result in colder soils and more soil frost, as warming leads to a reduction in snow cover insulating soils during winter. Hubbard Brook has one of the longest records of direct field measurements of soil frost in the United States. Historical records show no long‐term trends in maximum annual frost depth, which is possibly confounded by high interannual variability and infrequency of major soil frost events. As a complement to field measurements, soil frost can be modelled reliably using knowledge of the physics of energy and water transfer. We simulated soil freezing and thawing to the year 2100 using a soil energy and water balance model driven by statistically downscaled climate change projections from three atmosphere‐ocean general circulation models under two emission scenarios. Results indicated no major changes in maximum annual frost depth and only a slight increase in number of freeze–thaw events. The most important change suggested by the model is a decline in the number of days with soil frost, stemming from a concurrent decline in the number of snow‐covered days. This shortening of the frost‐covered period has important implications for forest ecosystem processes such as tree phenology and growth, hydrological flowpaths during winter, and biogeochemical processes in soil. Published in 2010 by John Wiley & Sons, Ltd. 相似文献
17.
《水文科学杂志》2013,58(4):676-689
Abstract Global climate change is affecting Africa, as it is every other continent and region of the world. The absolute poverty of a large proportion of the continent's people renders them highly vulnerable to changes in climate. Mitigation of climate change is a global imperative. However, numerous other changes continue apace, notably population growth, natural resource degradation, and rural—urban migration. Probably 50% or more of the continent's population rely on groundwater. This paper explores the relative impacts of changes in climate, demography and land use/cover on groundwater resources and demands. It concludes that the climate change impacts are likely to be significant, though uncertain in direction and magnitude, while the direct and indirect impacts of demographic change on both water resources and water demand are not only known with far greater certainty, but are also likely to be much larger. The combined effects of urban population growth, rising food demands and energy costs, and consequent demand for fresh water represent real cause for alarm, and these dwarf the likely impacts of climate change on groundwater resources, at least over the first half of the 21st century. 相似文献
18.
The Tibetan Plateau has one of the most complex climates in the world. Analysis of the climate in this region is important for understanding the climate change worldwide. In this study, climate patterns and trends in the Tibetan Plateau were analysed for the period from 1961 to 2001. Air temperature and precipitation were analysed on monthly and annual time scales using data collected from the National Meteorological Centre, China Meteorological Administration. Nonlinear slopes were estimated and analysed to investigate the spatial and temporal trends of air temperature and precipitation in the Tibetan Plateau using a Mann–Kendall method. Spatial analysis of air temperature and precipitation variability across the Tibetan Plateau was undertaken. While most trends are local in nature, there are general basinwide patterns. Temperature during the last several decades showed a long‐term warmer trend, especially the areas around Dingri and Zogong stations, which formed two increasing centres. Only one of the stations investigated exhibited decreasing trend, and this was not significant. Precipitation in the Tibetan Plateau has increased in most regions of the study area over the past several decades, especially in the eastern and central part, while the western Tibetan Region exhibited a decreased trend over the same period. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献
19.
The change in the air temperature recorded at the Genoa University observatory over 155 years followed the change in the wind direction. A warming occurred both from 1838 to 1869 and from 1890 to 1950. The latter warm period was followed by a cooling in the 1950s, when the lowest mean annual temperature occurred. Generally, a warm period corresponds to a growth in the southern components of the ground wind direction; the increase in the southerly circulation in the Mediterranean yields increased stability in dry weather. Temperature-depth data measured in a geothermal borehole reflect this climate change. A comparison between the measurements and a synthetic temperature profile, based on the air temperature history recorded at the observatory, indicates that the average temperature prior to the meteorological time series was about 0.6 K higher than the average of the decade 1973-1982. 相似文献
20.