共查询到20条相似文献,搜索用时 15 毫秒
1.
Compositional zonation in garnets in peridotite xenoliths 总被引:1,自引:0,他引:1
Garnets in 42 peridotite xenoliths, most from southern Africa, have been analyzed by electron probe to seek correlations between compositional zonation and rock history. Xenoliths have been placed into the following 6 groups, based primarily upon zonation in garnet: I (12 rocks)-zonation dominated by enrichment of Ti and other incompatible elements in garnet rims; II (10 rocks)-garnet nearly homogeneous; III (8 rocks)-rims depleted in Cr, with little or no related zonation of Ti; IV (3 rocks)-slight Ti zonation sympathetic to that of Cr; V (3 rocks)-garnet rims depleted or enriched in Cr, and chromite included in garnet; VI (6 rocks)-garnets with other characteristics. Element partitioning between olivine, pyroxene, and garnet rims generally is consistent with the assumption of equilibrium before eruption. Although one analyzed rock contains olivine and pyroxene that may have non-equilibrated oxygen isotopes, no corresponding departures from chemical equilibrium were noted. Causes of zoning include melt infiltration and changes in temperature and pressure. Zonation was caused or heavily influenced by melt infiltration in garnets of Group I. In Groups III, IV, and V, most compositional gradients in garnets are attributed to changes in temperature, pressure, or both, and gradients of Cr are characteristic. There are no simple relationships among wt% Cr2O3 in garnet, calculated temperature, and the presence of compositional gradients. Rather, garnets nearly homogeneous in Cr are present in rocks with calculated equilibration temperatures that span the range 800–1500 °C. Although the most prominent Cr gradients are found in relatively Cr-rich garnets of rocks for which calculated temperatures are below 1050 °C, gradients are well-defined in a Group IV rock with T1300 °C. The variety of Cr gradients in garnets erupted from a range of temperatures indicates that the zonations record diverse histories. Petrologic histories have been investigated by simulated cooling of model rock compositions in the system CaO–MgO–Al2O3–SiO2–Cr2O3. Proportions and compositions of pyroxene and garnet were calculated as functions of P and T. The most common pattern of zonation in Groups III and IV, a decrease of less than 1 wt% Cr2O3 core-to-rim, can be simulated by cooling of less than 200 °C or pressure decreases of less than 1 GPa. The preservation of growth zonation in garnets with calculated temperatures near 1300 °C implies that these garnets grew within a geologically short time before eruption, probably in response to fast cooling after crystallization of a small intrusion nearby. Progress in interpreting garnet zonations in part will depend upon determinations of diffusion rates for Cr. Zonation formed by diffusion within garnet cannot always be distinguished from that formed by growth, but Ca–Cr correlations unlike those typical of peridotite suite garnets may document diffusion. 相似文献
2.
Two diamond bearing xenoliths found at Finsch Mine are coarse garnet lherzolites, texturally and chemically similar to the dominant mantle xenoliths in that kimberlite. A total of 46 diamonds weighing 0.053 carats have been recovered from one and 53 diamonds weighing 0.332 carats from the other. The diamonds are less corroded than diamonds recovered from the kimberlite. Geothermobarometric calculations indicate that the xenoliths equilibrated at 1,130° C and pressures 50 kb which is within the diamond stability field; this corresponds to depths of 160 km and would place the rocks on a shield geotherm at slightly greater depths than most coarse garnet lherzolites from kimberlite. The primary minerals in the two rocks are very similar to each other but distinctly different to the majority of mineral inclusions in Finsch diamonds. This suggests a different origin for the diamonds in the kimberlite and the diamonds in the xenoliths although the equilibration conditions for both suites are approximately coincident and close to the wet peridotite solidus. 相似文献
3.
Garnet peridotite xenoliths in South African kimberlite pipes and their petrogenesis 总被引:1,自引:0,他引:1
Whole rock analyses are presented for nine garnet peridotite, two garnet pyroxenite, one garnet free peridotite and two highly altered garnet peridotite xenoliths from South African kimberlite pipes. Garnets from eight of these samples have also been chemically analysed, while olivine compositions in the twelve fresh samples have been estimated by X-ray diffraction. The chemistry and mineralogy of these specimens are compared with the results of previous studies, and the controversies concerning the petrogenesis of these xenoliths are discussed in detail. 相似文献
4.
Diamondiferous Group A eclogites constitute a minor portion of the mantle-derived xenoliths in the eastern Finland kimberlites. They have been derived from the depth interval 150–230 km where they are inferred to occur as thin layers or small pods within coarse-grained garnet peridotites. The chemical and isotopic composition of minerals suggest that they represent (Proterozoic?) mantle-derived melts or cumulates rather than subducted oceanic lithosphere. During magma ascent and emplacement of the kimberlites, the eclogite xenoliths were mechanically and chemically rounded judging from the types of surface markings. In addition, those octahedral crystal faces of diamonds that were partially exposed from the rounded eclogite xenolith became covered by trigons and overlain by microlamination due to their reaction with the kimberlite magma. The diamonds bear evidence of pervasive plastic deformation which is not, however, evident in the eclogite host. This suggests that annealing at ambient lithospheric temperatures has effectively recrystallised the silicates while the diamond has retained its lattice imperfections and thus still has the potential to yield information about ancient mantle deformation. One of our samples is estimated to contain approximately 90,000 ct/ton diamond implying that some diamonds occur within very high-grade pods or thin seams in the lithospheric mantle. To our knowledge, this is one of the most diamondiferous samples described. 相似文献
5.
The primary garnet (pyrope-almandine)-omphacite (Cpx 1, 6.5–7 wt% Na2O)-sulfide (Fe-Ni-Co mss) assemblage of the two diamondiferous eclogite xenoliths studied (U33/1 and UX/1) experienced two mantle metasomatic events. The metasomatic event I is recorded by the formation of platy phlogopite (~ 10 wt% K2O), prior to incorporation of the xenoliths in the kimberlite. The bulk of the metasomatic alteration, consisting of spongy-textured clinopyroxene (Cpx 2A, 1–3 wt% Na2O), coarser-grained clinopyroxene (Cpx 2B, 2–5 wt% Na2O), pargasitic amphibole (~ 0.8 wt% K2O; 3–3.5 wt% Na2O), kelyphite (Cpx 3, mostly <1 wt% Na2O; and zoned Mg-Fe-Al spinel), sodalite, calcite, K-feldspar, djerfisherite (K5.95Na0.02Fe18.72Ni2.36Co0.01Cu4.08S26Cl ) and a small amount of K-Ca-Fe-Mg glass, is ascribed to the metasomatic event II that occurred also in the upper mantle, but after the xenoliths were incorporated in the kimberlite. A pervasive chloritic alteration (mainly clinochlore + magnetite) that overprints earlier assemblages probably took place in the upper crustal environment. The diamonds are invariably associated with secondary clinopyroxene and chlorite, but the diamonds formed before the entrainment of the xenoliths in the Udachnaya kimberlite.Editorial Responsibility: T.L. Grove 相似文献
6.
C. M. Appleyard D. R. Bell A. P. le Roex 《Contributions to Mineralogy and Petrology》2007,154(3):309-333
Petrographic and geochemical features of a suite of eclogite xenoliths from the Rietfontein kimberlite that erupted through
probable Proterozoic crust west of the Kaapvaal Craton in the far Northern Cape region of South Africa, are described. Group
II eclogites dominate the suite both texturally and chemically, but can be subdivided into bimineralic, opx-bearing and kyanite-bearing
groups. Temperature estimates from different geothermometers range from 700 to 1,000°C, indicating derivation from relatively
shallow mantle depths. Orthopyroxene-bearing eclogites are inferred to originate from depths of 85 to 115 km and lie close
to the average cratonic thermal profile for southern Africa. These uppermost mantle temperatures during the late Cretaceous
provide evidence for equilibration of the off-craton lithosphere to craton-like thermal conditions following Namaqua-Natal
orogenesis. The kyanite eclogites are distinct from the remaining eclogites in terms of both major and trace element compositions
and their lesser degree of alteration. Garnets are richer in Ca, and are Cr-depleted relative to garnets from the bimineralic
and opx-bearing eclogites, which tend to be more magnesian. Clinopyroxenes from the kyanite eclogites are more sodic, with
higher Al2O3 and lower MgO contents than the bimineralic and opx-bearing eclogites. LREE-depletion, positive Sr and Eu anomalies, and
the Al-rich, Si-poor bulk composition suggest a plagioclase-rich, probably troctolitic protolith for the kyanite eclogites.
In contrast, the major and trace element bulk compositions of the high-MgO bimineralic and orthopyroxene-bearing eclogites
are consistent with gabbroic or pyroxenitic precursors, or high-pressure cumulates, rather than mafic to ultramafic lavas.
δ18O values for garnets do not deviate significantly from typical mantle values. The observations reported do not discriminate
unambiguously between continental and oceanic origins for the various eclogite components in the mantle lithosphere of this
region. 相似文献
7.
8.
Dislocation structures in naturally deformed olivine from garnet peridotite xenoliths from South African kimberlites have been studied by electron microscopy. The substructure consists mainly of straight subboundaries of dislocations with Burgers vectors [001]. Most of the dislocations have both edge and screw components, and the slip planes are mainly (100). The dislocation density between the subboundaries is low.The slip planes in olivine are discussed in relation to the olivine structure. The observed dislocation structures seem to indicate that the large difference in strain rate between natural and experimental deformation will produce a difference in the slip mechanisms.The nature of the deformation lamellae visible in optical microscope is discussed. 相似文献
9.
10.
Electron microprobe analyses sensitive to 20ppmw (2σ) were made for Na, P, K and Ti in garnet, pyroxenes and olivine from peridotite and eclogite xenoliths from African kimberlites and volcanic rocks in Tanzania. Average concentrations (ppmw) in peridotite (mostly garnet lherzolite) are: Na2O gt 340 ol 90 opx 1070 cpx 2.1 (wt.%); P2O5 gt 460 ol 130 opx 50 cpx 350; K2O gt <20 ol <20 opx 30 cpx 170; TiO2 gt 1470 ol 130 opx 480 cpx 1630. For eclogites and a cpx megacryst with gt inclusions: Na2O gt 610 cpx 4.3 (wt.%); P2O5 gt 530 cpx 300; K2O gt <20 cpx 370; TiO2 gt 1990 cpx 1980.In garnet, Na can be explained by coupled substitution with P and Ti, and there is no need to invoke six-coordinated silicon. The Na distribution between garnet and clinopyroxene correlates with the Fe/Mg distribution for both eclogites and peridotites, and for the peridotites correlates with estimates of pressure and temperature from pyroxene composition. When calibrated experimentally, the Na distribution may be a useful indicator of physical conditions at depths for which the Fe/Mg distribution is insensitive; furthermore the Na distribution may be less sensitive to oxidation state. 相似文献
11.
华北克拉通古老岩石圈地幔的多次地质事件:来自金伯利岩中橄榄岩捕虏体的启示 总被引:2,自引:0,他引:2
本文提供的两件蒙阴岩区金伯利岩中的蛇纹石化石榴石橄榄岩捕虏体,整体发育剪切-变形结构,其中的辉石有三种类型,代表了三次地质事件,他们是:(1)石榴石中的自形单斜辉石包裹体Py;(2)粗粒不规则形状的斜方辉石Py1;(3)具反应边及定向排列的斜方辉石Py2。 Py具有高Na2O和Al2O3,及低Mg#和CaO的特征,暗示所赋存的橄榄岩未遭受过明显的熔融作用。推测Py为早期阶段地幔"岩浆海"结晶时被石榴石包裹的矿物。在手标本及薄片中普遍见到Py2切过Py1,表明Py1形成早于Py2。Py1的 Cr(669×10-6~9503×10-6), Ni (1941×10-6~4750×10-6)含量和Mg#(0.91~0.94)比值较高, 而Py2中的Cr (725×10-6~1926×10-6) , Ni (902×10-6~2989×10-6) 和Mg# (0.88~0.90)值较低,说明Py1是早期经部分熔融的橄榄岩耐熔残余中的顽火辉石残留。相反,Py2可能是软流圈来源的熔体与耐熔橄榄岩反应的结果。剪切/变形 以及交代事件则发生于上述反应之后或者与之同时。依据主元素特征,较早的Py1的耐熔程度反而高于Py2,本文称之为地幔组成的"逆向演化"。 看来,这种逆向成分演化不仅发生在中新生代,而且也发生于古老地幔,甚至是贯穿于整个地幔演化的历史时期。与已发表的有关地幔形成年龄的资料对比,Py、Py1和 Py2的年龄估计分别是>3.8Ga, 2.5Ga/1.4~1.3Ga和0.9~0.7Ga 。另外1件碳酸盐化橄榄岩捕虏体,采自复县金伯利岩,具有明显的剪切-变形结构,最终形成时间可能与Py2接近。 相似文献
12.
《International Geology Review》2012,54(9):1101-1106
13.
Six kimberlite pipes of late Cretaceous or Tertiary age occur in Riley Co., east-central Kansas. Within the pipes xenoliths of local sedimentary and exotic igneous rocks are common, especially in the Stockdale pipe. Igneous rocks which occur as xenoliths include granite, gabbro, metagabbro, pyroxenite and eclogite. In the eclogites omphacitic clinopyroxene (approx. Di52Jd24mol%) and pyropic garnet (approx. Py47Al35Gr12mol%) are the predominant minerals with subordinate amounts of rutile and sulphides (pyrrotite-pentlandite (?)-chalcopyrite). Interstitial kaersutitic amphibole is a minor constituent. The eclogites are chemically equivalent to olivine-basalt. The texture, composition and mineralogy of the eclogites from Kansas are similar to those of eclogites from kimberlite pipes in South Africa and Siberia. Whereas the rocks from these latter localities display a range in composition, those examined to date from Kansas are of fairly restricted composition. Furthermore it seems probable that the eclogites from Stockdale formed under limited P-T conditions within the mantle. This is the first record of such eclogites on the North American continent. 相似文献
14.
Nature and origin of eclogite xenoliths from kimberlites 总被引:16,自引:0,他引:16
Eclogites from the Earth's mantle found in kimberlites provide important information on craton formation and ancient geodynamic processes because such eclogites are mostly Archean in age. They have equilibrated over a range of temperatures and pressures throughout the subcratonic mantle and some are diamond-bearing. Most mantle eclogites are bimineralic (omphacite and garnet) rarely with accessory rutiles. Contrary to their overall mineralogical simplicity, their broadly basaltic-picritic bulk compositions cover a large range and overlap with (but are not identical to) much younger lower grade eclogites from orogenic massifs. The majority of mantle eclogites have trace element geochemical features that require an origin from plagioclase-bearing protoliths and oxygen isotopic characteristics consistent with seawater alteration of oceanic crust. Therefore, most suites of eclogite xenoliths from kimberlites can be satisfactorily explained as samples of subducted oceanic crust. In contrast, eclogite xenoliths from Kuruman, South Africa and Koidu, Sierra Leone stem from protoliths that were picritic cumulates from intermediate pressures (1–2 Ga) and were subsequently transposed to higher pressures within the subcratonic mantle, consistent with craton growth via island arc collisions. None of the eclogite suites can be satisfactorily explained by an origin as high pressure cumulates from primary melts from garnet peridotite. 相似文献
15.
P. H. Nixon N. A. Chapman J. J. Gurney 《Contributions to Mineralogy and Petrology》1978,65(3):341-346
Xenoliths consisting of two thirds pyrope (Py73Alm14Gr13-Py15Alm18Gr31) and one third hercynite-bearing spinel with minor chromium, from Bellsbank and Jagersfontein kimberlites, South Africa, are compared with similar rocks, alkremites, from the Udachnaya pipe, U.S.S.R. From published experimental data and textural relationships these formed as early dense cumulates in aluminous mantle melts under restricted pressure conditions equivalent to about 75 km depth. At greater pressures very pyrope-rich garnets (Py80) are capable of being formed. The garnet spinel xenoliths are considered to have become separated from the magma prior to crystallisation of clinopyroxene, whereas complete uninterrupted fractionation and reaction would produce the more common griquaites (eclogites). 相似文献
16.
Some of the garnets in eclogites within the quartzo-feldspathic gneisses of Nordfjord, West Norway, are zoned with higher calcium, iron and manganese in the cores and more magnesium at the rims. The zoning is discussed in terms of the apparent distribution coefficients of Fe2+/Mg between garnet and clinopyroxene (which will be aberrantly high for the garnet cores) and in terms of the metamorphic evolution of the eclogites.Publication nr. 32 in The Norwegian geotraverse project. 相似文献
17.
Dislocations decorated by hematite and magnetite have been observed optically in the olivine grains of undeformed or highly annealed peridotite xenoliths from Hawaii and Baja California ( 5 × 105 cm–2). The observed structures include loops, low-angle boundaries, and structures produced by multiple cross-glide of [100] screws. Loops are almost invariably parallel to (001). Simple arrays of parallel dislocations lie predominantly in (100), (010) and (001) with dislocation lines subparallel to low-index directions. [100] screws pinned to (100) boundaries are frequently seen to bow out on (001). Preliminary electron petrography has confirmed that all dislocations are decorated. 相似文献
18.
Kevin Grant Jannick Ingrin Jean Pierre Lorand Paul Dumas 《Contributions to Mineralogy and Petrology》2007,154(1):15-34
The speciation and amount of water dissolved in nominally anhydrous silicates comprising eight different mantle xenoliths
has been quantified using synchrotron micro-FTIR spectroscopy. Samples studied are from six geographic localities and represent
a cross-section of the major upper mantle lithologies from a variety of tectonic settings. Clinopyroxene contains between
342 and 413 ppm H2O. Orthopyroxene, olivine and garnet contain 169–201, 3–54 and 0 to <3 ppm H2O, respectively. Pyroxenes water contents and the distribution of water between ortho- and clinopyroxene is identical regardless
of sample mineralogy (D
watercpx/opx = 2.1 ± 0.1). The total water contents of each xenolith are remarkably similar (113 ± 14 ppm H2O). High-resolution spectroscopic traverses show that the concentration and speciation of hydrous defects dissolved in each
phase are spatially homogeneous within individual crystals and identical in different crystals interspersed throughout the
xenolith. These results suggest that the amount of water dissolved in the silicate phases is in partial equilibrium with the
transporting melt. Other features indicate that xenoliths have also preserved OH signatures of equilibrium with the mantle
source region: Hydroxyl stretching modes in clinopyroxene show that garnet lherzolites re-equilibrated under more reducing
conditions than spinel lherzolites. The distribution of water between pyroxenes and olivine differs according to xenolith
mineralogy. The distribution of water between clinopyroxene and olivine from garnet peridotites (D
watercpx/oliv(gnt) = 22.2 ± 24.1) is a factor of four greater than mineral pairs from spinel-bearing xenoliths (D
watercpx/oliv(sp) = 88.1 ± 47.8). Such an increase in olivine water contents at the spinel to garnet transition is likely a global phenomenon
and this discontinuity could lead to a reduction of the upper mantle viscosity by 0.2–0.7 log units and a reduction of its
electrical resistivity by a factor of 0.5–0.8 log units. 相似文献
19.