首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The last 42,000 years of hydrological history of Lake Frome, a large playa located in the arid part of northern South Australia, which is hypersaline and most often dry today, is reconstructed using a combination of ostracod assemblages, other microfossil remains, and the trace elemental composition of the selected halobiont ostracod species of Diacypris and Reticypris.The Mg/Ca and Sr/Ca of ostracod valves from 2 cores relate to significant hydrological changes that affected the lake over time. The reconstruction of the Sr/Ca of the lake’s waters, based on the Sr/Ca of ostracod shells, shows that when the lake fills the waters originate mostly from runoff, not from hypersaline waters located below the lake or the surrounding aquifers. The Last Glacial Maximum saw gypsum deflation from the lake.Prior to 25K yBP, Frome had a stable hydrological regime, permanent water and low salinities, with occasional freshwater conditions between 42 and 33K yBP. From 25 to 20.3K yBP, salinities fluctuated and ephemeral conditions operated. After that, until ∼14.8K yBP, a brine pool was located below the lake and was therefore under a different hydrological regime. Between 13 and 11.2K yBP, wet conditions occurred, but such conditions were not seen again during the Holocene.  相似文献   

2.
The utility of ostracod-based palaeoenvironmental reconstruction was evaluated using instrumental data for Lake Qarun, Egypt. The euryhaline ostracod Cyprideis torosa was the only species found in the lake’s recent sediment record. This species is known to tolerate salinity levels and water solute compositions that may prevent colonisation by other species. Oxygen and carbon isotope ratios of ostracod carbonate from lake sediments covary with changes in instrumental values for lake level and salinity for the period 1890–1974. δ13C-values correlate negatively with lake water salinity (r 2 = 0.87) and δ18O-values correlate negatively with measured lake level changes (r 2 = 0.41). Other ostracod proxy data provide qualitative information on lake level trends. Fossil assemblage data (juvenile/adult and valve/carapace ratios and valve preservation) provide information on wave energy. Ecophenotypic variation of C. torosa valves provided some useful palaeolimnological information. Sr/Ca and Mg/Ca ratios in ostracods were not found to reflect water composition, due to the uncoupling of these ratios with salinity in Lake Qarun. Overall, our results highlight the need to calibrate ostracod proxy data in modern systems prior to their use for palaeoenvironmental reconstruction.  相似文献   

3.
Stable isotopes and trace elements in ostracod shells have been used widely in paleolimnological investigations of past lake hydrochemistry and climate because they provide insights into past water balance and solute evolution of lakes. Regional differences in lake characteristics and species-specific element fractionation, however, do not permit generalization of results from other regions or ostracod species to the southern Tibetan Plateau, in part because most common taxa from the southern Tibetan Plateau are endemic to the area. This study evaluated relations between present-day environmental conditions and the geochemical composition of modern ostracod shells from the southern Tibetan Plateau, to assess the suitability of using shell chemistry to infer hydrological conditions. We studied nine lakes and their catchments, located along a west–east transect in the south-central part of the Tibetan Plateau. Stable oxygen and carbon isotope values and trace element concentrations in recent shells from the four most abundant ostracod species (Leucocytherella sinensis, ?Leucocythere dorsotuberosa, Limnocythere inopinata, Tonnacypris gyirongensis) were measured, together with hydrochemical properties of host waters at the time of sampling. Results revealed significant between-species differences in stable isotope fractionation and trace element incorporation into shell calcite. Stable oxygen and carbon isotope values of ostracod shells were correlated significantly with the stable isotope composition of the respective water body \( \left( {\updelta^{18} {\text{O}}_{{{\text{H}}_{ 2} {\text{O}}}} \,{\text{and }}\updelta^{13} {\text{C}}_{{{\text{H}}_{ 2} {\text{O}}}} } \right) \), reflecting salinity and productivity, respectively. Offsets between δ18Oshell and δ13Cshell and inorganic calcite, the latter representing isotopic equilibrium, suggest shell formation of T. gyirongensis during spring melt. L. sinensis reproduces throughout the monsoon season until September and shows several consecutive generations, and L. inopinata molts to the adult stage after the monsoon season in August/September. The influence of pore water δ13C was displayed by L. inopinata, suggesting shell calcification within the sediment. Mg/Cashell is primarily influenced by water Mg/Ca ratios and salinity and confirms the use of this shell ratio as a proxy for precipitation-evaporation balance and lake level. In addition, Sr/Ca and Ba/Ca can be used to infer changes in salinity, at least in closed-basin lakes with calcite saturation. Observed effects of water Sr/Ca and salinity on Sr/Ca incorporation are biased by the presence of aragonite precipitation in the lakes, which removes bioavailable Sr from the host water, resulting in low Sr/Cashell values. Changes in carbonate mineralogy affect the bioavailability of trace elements, a process that should be considered in paleoclimate reconstructions. Oxygen isotopes and Mg/Cashell ratios were unaffected by water temperature. Positive correlations among Fe/Ca, Mn/Ca and U/Ca in ostracod shells, and their negative correlation with δ13C, which reflects organic matter decay, show the potential to infer changes in redox conditions that can be used to reconstruct past oxygen supply to bottom waters and thus past water-circulation changes within lakes. The intensity of microbial activity, associated with organic matter decomposition, can be inferred from U/Ca ratios in ostracod shells. These findings highlight the value of fossil ostracod records in lake deposits for inferring paleoenvironmental conditions on the southern Tibetan Plateau.  相似文献   

4.
To evaluate the effect of sample preparation on the trace element composition of ostracod shells, fossil shells subjected to various cleaning steps were analyzed by ICP-AES. The variations in ostracod Mg/Ca ratios reveal that fossil ostracod samples cleaned by ultrasonic methanol yield lower values than those by other methods, including increasingly rigorous reductive cleaning. In our sample sets, shell Mg/Ca decreases ∼ ∼1.5 mmol/mol during clay removal. Sample Sr/Ca results do not seem to vary significantly under the equivalent cleaning steps. For ostracod analysis, pre-treatment using multiple methanol ultrasonic cleaning is suggested to be used for gaining an appropriate result.  相似文献   

5.
The trace-element and stable-isotope geochemistry of non-marine ostracod valves is a valuable tool in palaeolimnology. However, the potential effects of early diagenesis on geochemical composition are poorly documented. In this study, the effect of partial dissolution on the trace-element (Sr and Mg) and isotopic (18O/16O and 13C/12C) composition of late Quaternary non-marine ostracod valves was investigated. Both unaltered and extremely degraded valves of the species Cypretta brevisaepta recovered from the same core level had trace-element and stable-isotope ratios that were drawn from the same statistical population, suggesting that the geochemical effects of early diagenesis are minimal. However, since the possibility remains that diagenesis could under certain circumstances alter valve chemistry, only valves in pristine condition should be used in palaeoenvironmental studies whenever feasible.  相似文献   

6.
Ostracods are small bivalved aquatic crustancean. They secrete shells of low-Mg calcite that are often preserved in lake sediments. Recent work has shown that the uptake of trace elements (especially Mg and Sr) into the shell may be a function of the salinity and temperature of the host water. Furthermore, ostracod shells are a source of carbonate for stable-isotope analysis. This paper reviews the application of ostracod shell chemistry to Quaternary palaeolimnology. Although such work has revealed the excellent potential of these techniques to provide quantitative palaeolimnological reconstructions, a number of problems have also emerged. These problems relate to (1) methods used for extraction of ostracod shells from sediment and their subsequent cleaning (2) post-mortem diagenesis and alteration of the shell (3) complications with the calcification mechanism (4) spatial and temporal variability in shell composition (5) the ecological tolerances of individual species and (6) the relationships between shell chemistry and palaeohydrology. To some extent, these problems are an inevitable outcome of the diversity of lacustrine systems: they may be overcome by developing a thorough understanding of the physiology, life-cycle and ecology of the species concerned, together with the modern limnology of the study site. Overall, these techniques have excellent potential in Quaternary palaeolimnology, especially when used with other palaeoenvironmental indicators.  相似文献   

7.
The aim of this study is to describe ostracods from freshwater habitats in the Siberian Arctic in order to estimate the present-day relationships between the environmental setting and the geochemical properties of ostracod calcite. A special focus is on the element ratios (Mg/Ca, Sr/Ca), and the stable isotope composition (δ18O, δ13C), in both ambient waters and ostracod calcite. The most common species are Fabaeformiscandona pedata and F. harmsworthi with the highest frequency in all studied waters. Average partition coefficients D(Sr) of F. pedata are 0.33 ± 0.06 (1σ) in females, and 0.32 ± 0.06 (1σ) in males. A near 1:1 relationship of δ18O was found, with a mean shift of Δmean = 2.2‰ ± 0.5 (1σ) to heavier values in ostracod calcite of F. pedata as compared to ambient waters. The shift is not dependent on δ18Owater, and is caused by metabolic (vital) and temperature effects. Temperature-dependence is reflected in the variations of this shift. For ostracod calcite of F. pedata a vital effect as compared to inorganic calcite in equilibrium was quantified with 1.4‰. Results of this study are valuable for the palaeoenvironmental interpretation of geochemical data of fossil ostracods from permafrost deposits.  相似文献   

8.
In a study of the minor element chemistry of ostracode shells, Wansard and Mezquita (2001) concluded that the Mg/Ca and Sr/Ca of the ambient water controlled the respective ratios in ostracode calcite. Contrary to their conclusion that minor element chemistry is not influenced by temperature, we find a very strong statistical correlation (r = 0.97) between temperature and shell chemistry in their data. This discrepancy apparently arises due to their use of a partition coefficient model of shell chemistry that masks a number of strong correlations in their data. We argue here that the partition coefficient model is not appropriate for this biologically-mediated carbonate, and that a broader range of possible controls on shell chemistry needs to be tested.  相似文献   

9.
Stable isotopes and trace-element content of calcite ostracod valves and aragonite mollusc shells from the Pliocene lacustrine succession of Villarroya allow depicting the geochemical record of environmental changes and to compare our data to the paleoenvironmental reconstruction obtained from other proxies. The lower sequences (A and B) are characterized by relatively high isotopic and Me/Ca values in the biogenic carbonates. The recorded large variations of δ18O in these carbonates mainly reflect variations in the δ18Ow due to precipitation–evaporation processes and, to a lesser extent, variations in temperature of calcification. The δ13C data inform about changes in DIC although they are probably biased by the vital effects of the studied taxa. Minor and trace element contents in ostracod (Mg/Ca, Sr/Ca) and mollusc shells (Sr/Ca) are mainly linked to the Me/Ca of the lake water (Me/Caw), and to a lesser extent to temperature and to uptake kinetic effects. Several possible mechanisms may make the Me/Caw to vary: long periods of Ca-carbonate (calcite, aragonite) deposition after charophyte development, and different inputs for Ca and Mg to the lake due to changes in drainage area configurations through time, including the changes in saline inputs (Na-Cl type) to the lake. The stable isotopes and the calculated Sr/Caw and Mg/Caw from sequence C display lower values than those from sequences A and B. The isotopic values from biogenic carbonates of unit C indicate isotopically diluted waters in a hydrologically open lacustrine environment. Distinct δ13C and δ18O plots for molluscs from unit C reflect the different biotopes and metabolism type. For several intervals of the Villarroya succession there is no direct relationships among: (i) salinity changes inferred from invertebrate paleoecology, (ii) paleoenvironmental slices based on isotopic signatures and Me/Caw calculations (from biogenic carbonate geochemistry) and (iii) climate in the hinterland deduced from pollen data. Lakes where geochemical behaviour is constrained by sporadic saline inputs and/or relative depletion in Ca due to long periods of Ca-carbonate precipitation or biomineralization, like the Pliocene Villarroya lake was, do not show clear correlation patterns between geochemical signals and climate proxies. In these lakes only major environmental trends display unambiguous geochemical signatures, and only some main shifts in the geochemical signature profiles may be correlated with significant global and/or regional environmental changes that have been reported from other paleoenvironmental records. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
Stable isotopes and trace-element contents of ostracod (Candona neglecta) valves mostly from the Holocene portion of two assembled cores from Petit Lac (Lake Geneva, Switzerland-France) were analysed in order to depict the geochemical record of post-glacial environmental changes of this lake. Additional stable isotope and trace element data from the gastropod Bithynia tentaculata (shells and opercula) from some intervals of these cores, as well as previous data from bulk carbonate from the lower part of the studied intervals were also considered. Mg/Ca and Sr/Ca molar ratios for the Holocene lake water have been estimated from evaluations of the partitioning coefficients for Mg and Sr for C. neglecta and B. tentaculata taking into account the modern-lake water composition. This study shows an overall gentle trend to higher δ18O values in C. neglecta valves from the Boreal interval (mean −8.44‰) to the upper part of the core (mean −8.11‰). This trend is superimposed to higher frequency oscillations of stable isotope values and trace element ratios, especially through the upper Older Atlantic and the Subboreal. The overall isotopic oxygen trend includes several shifts in δ18O of about 1‰. These shifts are interpreted as major regional-global climate changes that have also been observed in other coeval δ18O and pollen records which reflect the Holocene climate variability in other European basins. Especially well-defined peaks in some episodes like Older Atlantic (~8200 yr BP), Younger Atlantic – Subboreal transition (~5600 yr BP) and early Subatlantic (~ 2500 yr BP) correspond to well-recognized events in globally-distributed records. Some of these shifts are correlated with pulses in the lake-level curve of the Lake Geneva. An erratum to this article is available at .  相似文献   

11.
Many studies in continental areas have successfully used the oxygen isotope composition of fossil ostracod valves to reconstruct past hydrological conditions associated with large changes in climate. Yet, ostracods are known to crystallise their valves out of isotopic equilibrium for oxygen and they generally have higher 18O contents compared to inorganic calcite grown at equilibrium under the same conditions. A review of vital offsets determined for continental ostracods indicates that vital offsets might change from site to site, questioning a potential influence of environmental conditions on oxygen isotope fractionation in ostracods. Results from the literature suggest that pH has no influence on ostracod vital offset. A re-evaluation of results from Li and Liu (J Paleolimnol 43:111–120, 2010) suggests that salinity may influence oxygen isotope fractionation in ostracods, with lower vital offsets for higher salinities. Such a relationship was also observed for the vital offsets determined by Chivas et al. (The ostracoda—applications in quaternary research. American Geophysical Union, Washington, DC, 2002). Yet, when results of all studies are compiled, the correlation between vital offsets and salinity is low while the correlation between vital offsets and host water Mg/Ca is higher, suggesting that ionic composition of water and/or relative abundance of major ions may also control oxygen isotope fractionation in ostracods. Lack of data on host water ionic composition for the different studies precludes more detailed examination at this stage. Further studies such as natural or laboratory cultures done under strictly controlled conditions are needed to better understand the potential influence of varying environmental conditions on oxygen isotope compositions of ostracod valves.  相似文献   

12.
陈锋  冯金良 《地理科学进展》2018,37(10):1430-1441
湖泊的古水文及古水化学重建是湖泊研究领域最具挑战性的工作之一。在湖泊、河湖相及高湖面沉积物中,萝卜螺属壳体化石广泛分布;而且现生萝卜螺属亦广泛地分布于全球的湖泊及河流。这些生物碳酸盐(文石)壳体成为一种潜在的和高分辨率的环境信息记录载体。近年来,萝卜螺属的生境及其壳体的稳定碳氧同位素和元素已经逐步被用于了解青藏高原及其他地区的古水文、古水化学和古气候的信息。然而,在萝卜螺属壳体如何记录其宿生水体的古水文、古水化学等信息,以及如何基于萝卜螺属壳体化石重建古环境等方面,仍有许多科学问题有待探索。本文在前人研究的基础上,侧重在作为环境信息载体的萝卜螺属的分类体系、生境研究及其应用和壳体指标(δ13Cshell18Oshell,87Sr/86Sr,Sr/Ca和Mg/Ca)特征及其在环境重建中的应用等方面进行总结和展望。  相似文献   

13.
About 145 freshwater to hypersaline lakes of the eastern Tibetan Plateau were investigated to develop a transfer function for quantitative palaeoenvironmental reconstructions using ostracods. A total of 100 lakes provided sufficient numbers of ostracod shells. Multivariate statistical techniques were used to analyse the influence of a number of environmental variables on the distributions of surface sediment ostracod assemblages. Of 23 variables determined for each site, 19 were included in the statistical analysis. Lake water electrical conductivity (8.2%), Ca% (7.6%) and Fe% (4.8%, ion concentrations as % of the cations) explained the greatest amounts of variation in the distribution of ostracod taxa among the 100 lakes. Electrical conductivity optima and tolerances were calculated for abundant taxa. A transfer function, based on weighted averaging partial least squares regression (WA-PLS), was developed for electrical conductivity (r 2 = 0.71, root-mean-square-error of prediction [RMSEP] = 0.35 [12.4% of gradient length], maximum bias = 0.64 [22.4% of gradient length], as assessed by leave-one-out cross-validation) based on 96 lakes. Our results show that ostracods provide reliable estimates of electrical conductivity and can be used for quantitative palaeoenvironmental reconstructions similarly to more commonly used diatom, chironomid or pollen data.  相似文献   

14.
湖相介形虫古生态学在环境变化研究中的应用   总被引:10,自引:1,他引:10       下载免费PDF全文
李军  余俊清 《盐湖研究》2002,10(1):66-71
湖泊的水文状况和水化学条件 ,特别是盐度、离子组成、温度及深度等不仅对介形虫种属的分类、组合、丰度及分异度 ,而且对介形虫壳体的大小、形态、结构、壳饰及厚度也起着重要的控制作用。湖相介形虫的古生态学 ,可以提供重要的环境变化信息 ,近年来在环境变化研究中得到越来越广泛的应用。为了满足高分辨率环境变化 ,特别是定量研究的要求 ,必须了解介形虫的种属分类知识 ,掌握盐度和离子组成对介形虫种属变化的影响 ;必须了解介形虫种属的生命历史和生态消长的过程 ,积累介形虫种属的生态资料 ;通过定期收集野外介壳和水样分别进行种属鉴定和化学分析 ,了解湖水的盐度和温度对介壳生态特征的影响。  相似文献   

15.
The ostracod record from Kajemarum Oasis in the Sahel zone of Northeastern Nigeria covers the last c. 4000 cal. years of a 5500 cal. year lake-sediment sequence. The first appearance of ostracods, around 4000 cal. yr BP, reflects the switch from a very dilute lake during the mid-Holocene, to slightly oligosaline conditions that favoured the occurrence and preservation of ostracods. Between 3800 and 3100 cal. yr BP, the lake remained permanent and fresh or slightly oligosaline, with a Ca-Mg-HCO3 composition. A rise in salinity c. 3100 cal. yr BP, accompanied by a change to more variable conditions on a seasonal to interannual timescale, led to the influx of more-euryhaline taxa. Oligosaline conditions continued between 3100 and 1500 cal. yr BP. Around 1500 cal. yr BP, there was a sharp rise in salinity, probably accompanied by a shift to Na-CO3-type water, with marked seasonal and interannual variability. Salinity decreased after 900 cal. yr BP, although short-term variations were marked between 900 cal. yr BP and the top of the sequence, 95 cal. yr BP. Changes in the species assemblages and ostracod abundance were a response to climate-driven variations in the seasonal and interannual stability of the lake, together with changes in its salinity and solute composition, but there is no simple relationship between ostracod faunas and salinity. Within Kajemarum, there is no evidence of ostracod assemblages typical of deep, fresh water, nor of hypersaline Na-Cl waters. The sediments associated with the freshest waters at Kajemarum did not favour ostracod preservation, and the driest climatic conditions were associated with oligosaline to mesosaline water of Na-CO3-type. The species-poor assemblages reflect the short-term instability of the lake, coupled with the limited opportunities for the colonisation of this isolated basin.  相似文献   

16.
王建力  何潇  李清  李廷勇  王勇 《地理科学》2010,30(6):910-915
根据重庆新崖洞石笋XY6已有的碳氧同位素成果,进一步探讨微量元素指标(Mg/Ca,Sr/Ca,Ba/Ca及Mg/Sr)的气候及环境意义。认为Mg/Ca比值可以作为古降水的气候指标,极好地记录这4 500 a来的气候干湿变化,尤其对4 000 a B.P.左右的季风降水减少有明显的响应。此外,Mg/Ca与碳氧同位素记录反映的气候信息也基本一致。Sr/Ca和Ba/Ca与Mg/Ca比值的变化也有相似性,但其作为气候指标的稳定性较差,易受到地表植被、土壤微生物活动等众多因素的干扰。  相似文献   

17.
The geochemistry of ostracode shells and bulk carbonates in a 19-meter sediment core documents at century-scale resolution the evolution of water chemistry in Coldwater Lake, North Dakota, providing a continuous paleohydrologic record of Holocene climate change in the northern Great Plains. A combination of 18O, 13C, Mg/Ca and Sr/Ca in ostracode calcite aided by Sr/Ca in bulk carbonates are used to constrain the paleoclimatic reconstructions. A fresh-water phase in the early Holocene, indicated by the absence of Candona rawsoni and low concentrations of Sr/Ca in bulk carbonate, was followed by a sharp increase in salinity between 10800 and 8900 yr B.P. The climate was predominately dry during the late part of the early Holocene and most of the middle Holocene (8900–5000 yr B.P.), when the lake was very sensitive and recorded a series of dry and wet oscillations. Maximum salinity occurred around 5500 yr B.P. and was followed by a gradual decrease between 5000 and 2400 yr B.P. From 2400 yr B.P. the 18O, Mg/Ca, and Sr/Ca in the ostracodes indicate generally wet conditions interrupted by a series of lesser salinity and temperature oscillations lasting until 600 yr B.P. Ostracode geochemistry indicates that a warm and dry climate returned at about the time of the Little Ice Age (600–150 yr B.P.). Ostracode 13C shows a ong-term increasing trend during the Holocene, which suggests that lake productivity and atmospheric CO2 exchange made greater contributions to the hypolimnetic carbon pool as the lake became shallower with time.  相似文献   

18.
A calibration data set of 51 surface sediment samples from Lake Donggi Cona on the northeastern Tibetan Plateau was investigated to study the relationship between sub-fossil ostracod assemblages and water depth. Samples were collected over a depth range from 0.6 to 80 m. A total of 16 ostracod species was identified from the lake with about half of the species restricted to the Tibetan Plateau and its adjacent mountain ranges and poorly known in terms of ecological preferences, and the other half displaying a mainly Holarctic distribution. Living macrophytes and macroalgae were recorded in Lake Donggi Cona down to a depth of about 30 m, and bivalve (Pisidium cf. zugmayeri) and gastropod (Gyraulus, Radix) shells were found down to depths of 43 and 48 m, respectively. The ostracod-water-depth relationship was assessed by multivariate statistical analysis and ostracod-based transfer functions for water depth were constructed. Weighted averaging partial least squares (WA-PLS) regression provided the best model with a coefficient of determination r 2 of 0.91 between measured and ostracod-inferred water depth, a root mean square error of prediction of 8% and a maximum bias of 10.6% of the gradient length, as assessed by leave-one-out cross-validation. Our results show the potential of ostracods as palaeo-depth indicators in appropriate settings. However, transfer-function applications using fossil ostracod assemblages for palaeo-depth estimations require a thorough understanding of the palaeolimnological conditions of lakes and therefore detailed multi-proxy analysis to avoid misinterpretation of ostracod-based inferences.  相似文献   

19.
A 332-cm long lacustrine core was drilled in the Nam Co in the central-southern part of the Tibetan Plateau. From the core, 15 species of ostracods (Crustacea: Ostracoda), which belong to 6 genera have been identified. According to the variations of the ostracod assemblages and the ostracods ecological features, which are sensitive to the changing environment, three main stages can be distinguished as follows: Stage I was from 8400 to 6800 a BP, during which the climate was cold-humid, and the lake depth changed from shallow to deep. Stage II was from 6400 to 2500 a BP, during which the climate changed from warm-humid to cold-humid, and then to cold-dry. The lake depth gradually became deep. The shifting of climate, from wet-cold to dry-cold during this period, had constructed the basis of present environment in the Nam Co. Stage III was from 2500 a BP to the present, which showed a trait of lake depth increasing. At the earlier period of this stage, the climate kept as cold-dry as that in the former stage, but the salinity of the lake increased. At the later period of this stage, the degree of cold-dry was enhanced, and the activities of land surface runoff tended to be weakened. Our research also found that the peak values of ostracods with black shell was coherent with the maximum production of the ostracods, and agreed with the increasing sedimentary water dynamics. This indicated that the ostracods with black shell was simultaneous with the high prolificacy of ostracod, and transported from other places. The abundance of Candona juvenile shells reflected the high mortality of that kind of ostracods under an unfavorable condition. This was probably a result of the rapid change of water dynamics of sedimentary environment.  相似文献   

20.
A 332-cm long lacustrine core was drilled in the Nam Co in the central-southern part of the Tibetan Plateau. From the core, 15 species of ostracods (Crustacea: Ostracoda), which belong to 6 genera have been identified. According to the variations of the ostracod assem-blages and the ostracods ecological features, which are sensitive to the changing environ-ment, three main stages can be distinguished as follows: Stage I was from 8400 to 6800 a BP, during which the climate was cold-humid, and the lake depth changed from shallow to deep. Stage II was from 6400 to 2500 a BP, during which the climate changed from warm-humid to cold-humid, and then to cold-dry. The lake depth gradually became deep. The shifting of cli-mate, from wet-cold to dry-cold during this period, had constructed the basis of present en-vironment in the Nam Co. Stage III was from 2500 a BP to the present, which showed a trait of lake depth increasing. At the earlier period of this stage, the climate kept as cold-dry as that in the former stage, but the salinity of the lake increased. At the later period of this stage, the degree of cold-dry was enhanced, and the activities of land surface runoff tended to be weakened. Our research also found that the peak values of ostracods with black shell was coherent with the maximum production of the ostracods, and agreed with the increasing sedimentary water dynamics. This indicated that the ostracods with black shell was simulta-neous with the high prolificacy of ostracod, and transported from other places. The abun-dance of Candona juvenile shells reflected the high mortality of that kind of ostracods under an unfavorable condition. This was probably a result of the rapid change of water dynamics of sedimentary environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号