首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
L. Gaggero  L. Cortesogno 《Lithos》1997,40(2-4):105-131
The 117.38 m of gabbroic core drilled during the Ocean Drilling Program (ODP) Leg 153 at Sites 921 to 924 in the Mid-Atlantic Ridge (MAR) between 23 °N and the Kane Fracture Zone, exhibits a remarkable primary compositional heterogeneity, such as magmatic layering, intrusive contacts and late magmatic veining, which express a succession of magmatic events. Textural indicators suggest that the cooling of the crystal mush occurred in a dynamic environment, with infiltration of progressively evolved liquids. Magmatic features include random shape fabric and magmatic lamination; the subsequent deformational overprint occurred in subsolidus conditions. The ductile deformation, generally concentrated in discrete domains of the gabbro, is associated with continuous re-equilibration of the metamorphic assemblages of (1) olivine + clinopyroxene + orthopyroxene + plagioclase + ilmenite + Ti-magnetite, (2) olivine + clinopyroxene + plagioclase + ilmenite + Ti-magnetite + red hornblende. At lower temperatures brittle deformation prevails and subsequent fractures control the development of metamorphic assemblages: (3) clinopyroxene + plagioclase + red brown hornblende + Ti-magnetite + magnetite (?) + ilmenite, (4) plagioclase + brown hornblende + Ti-magnetite + magnetite + hematite + titanite ± Ti-oxide, (5) plagioclase + green hornblende + magnetite + titanite, (6) plagioclase + actinolite + chlorite + titanite + magnetite, (7) albite + actinolite + chlorite + prehnite ± epidote ± titanite and (8) albite + prehnite + chlorite ± smectite. Assemblages 1 to 8 express increasing water/rock ratios and decreasing degrees of recrystallization.

During the ductile phase, red hornblende is stable and its abundance increases with deformation intensity, possibly as an effect of the introduction of hydrous fluids. During the brittle phase, water diffusion controls the development of the fracture-filling mineral assemblages and re-equilibration of the adjacent rock; temperatures decrease further, as demonstrated by mineral zoning and incompletely re-equilibrated assemblages. The lowest temperatures correspond to the development of hydrothermal assemblages.

Compared with oceanic gabbros from fast-spreading transform environments, high-temperature ductile phases (granulite and amphibolite) are well developed, whereas brittle phases are widespread, as microcracks, prevalent on fracturing associated with discrete veins.  相似文献   


2.
In the Pulur complex, NE Turkey, a heterogeneous rock sequence ranging from quartz-rich mesocratic gneisses to silica- and alkali-deficient, Fe-, Mg- and Al-rich melanocratic rocks is characterized by granulite-facies assemblages involving garnet, cordierite, sillimanite, ilmenite, ±spinel, ±plagioclase, ±quartz, ±biotite, ±corundum, rutile and monazite. Textural evidence for partial melting in the aluminous granulites, particularly leucosomes, is largely absent or strongly obliterated by a late-stage hydrothermal overprint. However, inclusion relations, high peak PT conditions, the refractory modes, bulk and biotite compositions of the melanocratic rocks strongly support a model of partial melting. The melt was almost completely removed from the melanocratic rocks and crystallised within the adjacent mesocratic gneisses which are silica-rich, bear evidence of former feldspar and show a large range in major element concentrations as well as a negative correlation of most elements with SiO2. Peak conditions are estimated to be ≥800 °C and 0.7–0.8 GPa. Subsequent near-isothermal decompression to 0.4–0.5 GPa at 800–730 °C is suggested by the formation of cordierite coronas and cordierite–spinel symplectites around garnet and in the matrix. Sm–Nd, Rb–Sr and 40Ar/39Ar isotope data indicate peak conditions at 330 Ma and cooling below 300 °C at 310 Ma.  相似文献   

3.
Recognition of partial melting in metamorphic rocks is a difficult task, as leucosomes can have a variety of origins. By comparing the observed values of the solid-solid dihedral angles with the known equilibrium values, and close examination of the shapes and compositions of feldspar grains, it is possible to unequivocally identify melt textures. Textural relations in a series of meta-arkose samples from the contact aureole of the Ballachulish Igneous Complex in the Scottish Highlands demonstrate that, when former melt pockets are not highly deformed, their presence can be recognized petrographically, by detailed examination of textures on the grain scale. Identification of melt textures and their distribution in the Ballachulish aureole has led to appreciation of the fundamental role of magmatically derived H2O in producing the partial melting. It has also allowed calculation of the H2O flux involved, and recognition that fractures were the major fluid pathways during metamorphism.  相似文献   

4.
Ordovician metasedimentary rocks are the oldest and most extensive sedimentary sequence in the Chinese Altai. They experienced two major episodes of deformation (D1 and D2) resulting in the formation of juxtaposed Barrovian‐type and migmatite domains. D1 is characterized by a penetrative sub‐horizontal fabric (S1), and D2 is marked by upright folds (F2) with NW–SE‐trending axial planes in shallow crustal levels and by sub‐vertical transposition foliations (S2) in the high‐grade cores of large‐scale F2 antiforms. In the Barrovian‐type domain, successive growth of biotite, garnet and staurolite is observed in the S1 fabric. Kyanite included in garnet and plagioclase in the migmatite domain is interpreted to have formed also in S1. In the biotite and garnet zones, the spaced S2 cleavage is marked by biotite and muscovite, and in the staurolite and kyanite zones, the penetrative S2 fabric is characterized by sillimanite, locally with late cordierite. Phase equilibria modelling indicates that the S1 fabric was associated with an increase in pressure and temperature under Barrovian‐type conditions in both domains. The S2 fabric was related to decompression, in which rocks in the biotite and garnet zones well preserve the peak assemblage, and the higher grade rocks in the staurolite and kyanite zones re‐equilibrated to different degrees under high‐temperature/low‐pressure (HT/LP) conditions. The D1 metamorphic history is attributed to the progressive burial related to Early–Middle Palaeozoic crustal thickening and the metamorphism associated with D2 is interpreted to result from exhumation by vertical extrusion. The extrusion of hot rocks was contemporaneous with the formation of gneiss domes accompanied by the intrusion of juvenile magmas at middle crustal levels during the Middle Palaeozoic. Consequently, there is a genetic link between the Barrovian‐type and migmatite domains related to continuous transition of the Barrovian‐type fabric into the HT/LP one during development of domal structures in the southern Altai orogenic belt. This study has a broad impact on the understanding of the thermo‐mechanical behaviour of accretionary orogenic systems worldwide. The lower crustal flow and doming of hot crust, so far reported only in continental collisional settings, seems to be also an integral mechanism responsible for both horizontal and vertical redistribution of accreted material prior to continental collision.  相似文献   

5.
The Southern Brittany Migmatite Belt (SBMB), which evolved through the metamorphic peak between c. 400 Ma and c. . 370 Ma ago, consists of a heterogeneous suite of high-grade gneisses and anatectic migmatites, both metatexites and diatexites. Rare garnet-cordierite gneiss layers record evidence of an early prograde P-T path. In these rocks, growth-zoned garnet cores and a sequence of included mineral assemblages in garnet, from core to rim, of Qtz + Ilm + Ky, Pl + Ky + St + Rt + Bt and Pl + Sil + St + Rt + Bt constrain a prograde evolution during which the reactions Ilm + Ky + Qtz→ Aim + Rt, Ms + Chl→ St + Bt + Qtz + V and St + Qtz→ Grt + Sil + V were crossed. Parts of this prograde evolution are preserved as inclusion assemblages in garnet in all other rock types. In all rock types, garnet has reverse zoned rims, and garnet replacement by cordierite and/or biotite and plagioclase suggests the following reactions have occurred: Grt + Sil + Qtz→ Crd → Hc ± Ilm, Bt + Sil + Qtz → Crd ± Hc → Ilm → Kfs + V and (Na + Ca + K + Ti) + Grt → Bt + Pl + Qtz. Microstructural analysis of reaction textures in conjunction with a petrogenetic grid has enabled the construction of a tightly constrained 'clockwise' P–T path for the SBMB. The high-temperature part of the path has a steep dT/dP slope characteristic of near isothermal decompression. It is proposed that the P-T path followed by the SBMB is the result of the inversion, by overthrusting, of a back-arc basin and that such a tectonic setting may be applicable to other high-temperature migmatite terranes. The near isothermal decompression is at least partly driven by the upward (diapiric) movement of the diatexite/anatectic granite core of the SBMB.  相似文献   

6.
Zircons from an eclogite and a diamond-bearing metapelite near the Kimi village (north-eastern Rhodope Metamorphic Complex, Greece) have been investigated by Micro Raman Spectroscopy, SEM, SHRIMP and LA-ICPMS to define their inclusion mineralogy, ages and trace element contents. In addition, the host rocks metamorphic evolution was reconstructed and linked to the zircon growth domains.

The eclogite contains relicts of a high pressure stage (ca. 700 °C and > 17.5 kbar) characterised by matrix omphacite with Jd40–35. This assemblage was overprinted by a lower pressure, higher temperature metamorphic event (ca. 820 °C and 15.5–17.5 kbar), as indicated by the presence of clinopyroxene (Jd35–20) and plagioclase. Biotite and pargasitic amphibole represent a later stage, probably related to an influx of fluids. Zircons separated from the eclogite contain magmatic relicts indicating Permian crystallization of a quartz-bearing gabbroic protolith. Inclusions diagnostic of the high temperature, post-eclogitic overprint are found in metamorphic zircon domain Z2 which ages spread over a long period (160 – 95 Ma). Based on zircon textures, zoning and chemistry, we suggest that the high-temperature peak occurred at or before ca. 160 Ma and the zircons were disturbed by a later event possibly at around 115 Ma. Small metamorphic zircon overgrowths with a different composition yield an age of 79 ± 3 Ma, which is related to a distinct amphibolite-facies metamorphic event.

The metapelitic host rock consists of a mesosome with garnet, mica and kyanite, and a quartz- and plagioclase-bearing leucosome, which formed at granulite-facies conditions. Based on previously reported micro-diamond inclusions in garnet, the mesosome is assumed to have experienced UHP conditions. Nevertheless, (U)HP mineral inclusions were not found in the zircons separated from the diamond-bearing metapelite. Inclusions of melt, kyanite and high-Ti biotite in a first metamorphic zircon domain suggest that zircon formation occurred during pervasive granulite-facies metamorphism. An age of 171 ± 1 Ma measured on this zircon domain constrains the high-temperature metamorphic event. A second, inclusion-free metamorphic domain yielded an age of 160 ± 1 Ma that is related to decompression and melt crystallization.

The similar age data obtained from the samples indicate that both rock types recorded a high-T metamorphic overprint at granulite-facies conditions at ca. 170 – 160 Ma. This age implies that any high pressure or even ultra-high pressure metamorphism in the Kimi Complex occurred before that time. Our findings define new constraints for the geodynamic evolution for the Alpine orogenic cycle within the northernmost Greek part of the Rhodope Metamorphic Complex. It is proposed that the rocks of the Kimi Complex belong to a suture zone squeezed between two continental blocks and result from a Paleo-ocean basin, which should be located further north of the Jurassic Vardar Ocean.  相似文献   


7.
A sequence of prograde isograds is recognized within the Dalradian Inzie Head gneisses where pelitic compositions have undergone variable degrees of partial melting via incongruent melting reactions consuming biotite. Three leucosome types are identified. At the lowest grades, granitic leucosomes containing porphyroblasts of cordierite (CRD‐melt) are abundant. At intermediate grades, CRD‐melt mingles with garnetiferous leucosomes (GT‐melt). At the highest grades, CRD‐melt coexists with orthopyroxene‐bearing leucosomes (OPX‐melt), while garnet is conspicuously absent. The prograde metamorphic field gradient is constrained to pressures of 2–3 kbar below the CRD‐melt isograd, and no greater than 4.5 kbar at the highest grade around Inzie Head. A petrogenetic grid, calculated using thermocalc , is presented for the K2O–FeO–MgO–Al2O3–SiO2–H2O (KFMASH) system for the phases orthopyroxene, garnet, cordierite, biotite, sillimanite, H2O and melt with quartz and K‐feldspar in excess. For the implied field gradient, the reaction sequence predicted by the grid is consistent with the successive prograde development of each leucosome type. Compatibility diagrams suggest that, as anatexis proceeded, bulk compositions may have been displaced towards higher MgO content by the removal of (relatively) ferroan granitic leucosome. An isobaric (P = 4 kbar) TaH2O diagram shows that premigmatization fluids must have been water‐rich (aH2O > 0.85) and suggests that, following the formation of small volumes of CRD‐melt, the system became fluid‐absent and melting reactions buffered aH2O to lower values as temperatures rose. GT‐ and OPX‐melt formed by fluid‐absent melting reactions, but a maximum of 7–11% CRD‐melt fraction can be generated under fluid‐absent conditions, much less than the large volumes observed in the field. There is strong evidence that the CRD‐melt leucosomes could not have been derived by buoyantly aided upwards migration from levels beneath the migmatites. Their formation therefore required a significant influx of H2O‐rich fluid, but in a quantity insufficient to have exhausted the buffering capacity of the solid assemblage plus melt. Fluid : rock ratios cannot have exceeded 1 : 30. The fluid was channelled through a regionally extensive shear zone network following melt‐induced failure. Such an influx of fluid at such depths has obvious consequences for localized crustal magma production and possibly for cordierite‐bearing granitoids in general.  相似文献   

8.
Metagabbros and amphibolites exposed in the Bou-Maïza area of the Edough massif (northeast Algeria) are described in detail. Field and petro-structural observations point to the syn-sedimentary emplacement of gabbros as clasts, blocks and lenses of polymictic gabbroic breccias. Associated amphibolites display fine-scale parallel sedimentary bedding and represent mafic epiclastites, litharenites and mafic greywackes. The mafic beds and lenses are intercalated with aluminous pelitic schists of continental origin, quartzite and marble. It is concluded that all mafic rocks from this locality derive from the erosion of an oceanic plutono-volcanic complex of MORB affinity that was reworked in a block matrix mélange and emplaced as turbidites and debris flows during the Mesozoic. We propose a convergent plate margin setting for these formations connected with the subducted Calabrian branch of the Tethyan slab.  相似文献   

9.
苏鲁仰口超高压岩石SHRIMP锆石U/Pb定年与部分熔融时限   总被引:1,自引:4,他引:1  
在大型碰撞造山带中,在陆壳物质深俯冲或快速折返早期,在超高压-高压条件下,易熔组分可能发生水致或脱水部分熔融,形成花岗质熔体。在超高压-高压条件下,苏鲁超高压岩石发生过部分熔融作用,形成长英质多晶体包裹体和不同尺度的花岗质岩石, 导致可观的地球化学效应。为确定苏鲁超高压岩石部分熔融的时限,对山东仰口超高压副片麻岩和其中平行片麻理的同构造钾质花岗岩脉进行了SHRIMP锆石U/Pb地质年代学、全岩地球化学和锆石内矿物包裹体的研究。副片麻岩的锆石具有典型的核-幔-边结构。核部锆石为碎屑锆石,206Pb/238U年龄大于282Ma,可能反映了副片麻岩的原岩包含不同成因的物质;幔部和边部的Th/U比都小于0.1,分别给出233±3Ma和214±4Ma的206Pb/238U 年龄,分别对应于超高压变质和角闪岩相退变质年龄。同构造花岗岩脉是富钾过铝质花岗岩(A/CNK=1.2),锆石也具有核-幔-边结构;核部锆石年龄与副片麻岩的核部锆石年龄相当,反映了该花岗岩脉的源区可能是变沉积岩;除幔部锆石的一个点具有206Pb/238U年龄为234.6±3.9Ma之外,其它幔部锆石位于谐和线附近,给出206Pb/238U年龄为220.8±2.9Ma, 该年龄代表着该花岗岩脉的形成年龄。上述数据表明,在仰口地区,超高压岩石的部分熔融作用早于角闪岩相退变质作用。  相似文献   

10.
We report two new eclogite localities (at Kanayamadani and Shinadani) in the high‐P (HP) metamorphic rocks of the Omi area in the western most region of Niigata Prefecture, Japan, which form part of the Hida Gaien Belt, and determine metamorphic conditions and pressure–temperature (PT) paths. The metamorphic evolution of the eclogites is characterized by a tight hairpin‐shaped PT path from prograde epidote–blueschist facies to peak eclogite facies and then retrograde blueschist facies. The prograde metamorphic stage is characterized by various amphibole (winchite, barroisite, glaucophane) inclusions in garnet, whereas the peak eclogite facies assemblage is characterized by omphacite, garnet, phengite and rutile. Peak PT conditions of the eclogites were estimated to be ~600°C and up to 2.0 GPa by conventional cation‐exchange thermobarometry, Ti‐in‐zircon thermometry and quartz inclusion Raman barometry respectively. However, the Raman spectra of carbonaceous material thermometry of metapelites associated with the eclogites gave lower peak temperatures, possibly due to metamorphism at different conditions before being brought together during exhumation. The blueschist facies overprint following the peak of metamorphism is recognized by the abundance of glaucophane in the matrix. Zircon grains in blueschist facies metasedimentary samples from two localities adjacent to the eclogites have distinct oscillatory‐zoned cores and overgrowth rims. Laser ablation inductively coupled plasma mass spectrometry U–Pb ages of the detrital cores yield a wide range between 3,200 and 400 Ma, with a peak at 600–400 Ma. In the early Palaeozoic, proto‐Japan was located along the continental margin of the South China craton, providing the source of the older population of detrital zircon grains (3,200–600 Ma) deposited in the trench‐fill sediments. In addition, subduction‐related magmatism c. 500–400 Ma is recorded in the crust below proto‐Japan, which might have been the source for the younger detrital zircon grains. The peak metamorphic age was constrained by SHRIMP dating of the overgrowth rims, yielding Tournaisian ages of 347 ± 4 Ma, suggesting subduction in the early Carboniferous. Our results provide clear constraints on the initiation of subduction, accretion and the development of an arc‐trench system along the active continental margin of the South China craton and help to unravel the Palaeozoic tectonic history of proto‐Japan.  相似文献   

11.
The Xilingol Complex comprises biotite gneisses and amphibolite interlayers with extensive migmatization. Four representative samples were documented and found to record either two or three metamorphic stages. Phase modelling using thermocalc suggests that the observed assemblages represent the final stages that underwent cooling from temperature peaks, and are consistent with a fluid‐absent solidus in P–T pseudosections. Their P–T conditions are further constrained to be 5–6 kbar/680–725°C and 4–5 kbar/650–680°C for two garnet‐bearing gneiss samples, 4–5 kbar/660–730°C for a cordierite‐bearing gneiss sample, and 4–5 kbar/680–710°C for an amphibolite sample based on mineral composition isopleths, involving measured Mg content in biotite, anorthite in plagioclase, grossular and pyrope in garnet and Ti content in amphibole. The peak temperature conditions recovered are 760–790°C or >760°C at 5–6 kbar based on the composition isopleths of plagioclase, biotite, garnet and especially the comparison of melt contents between the calculated and observed. A pre‐peak heating process with slight decompression can be suggested for some samples on the basis of the core–rim increase in the plagioclase anorthite, and the stability of ilmenite. Zircon U–Pb dating using the LA‐ICP‐MS method provides systemic constraints on the metamorphic ages of the Xilingol Complex to be 348–305 Ma, interpreted to represent the post‐peak cooling stages. Moreover, metagabbroic dykes that intruded into the Xilingol Complex yield 317 ± 3 Ma from magmatic zircon, and are considered to have played a significant role for heat advection triggering the high‐T and low‐P metamorphism. Thus, the clockwise P–T paths involving pre‐peak heating, peak and post‐peak cooling recovered for the Xilingol Complex are consistent with an extensional setting in the Carboniferous that developed on a previous orogen in response to addition of mantle‐derived materials probably together with upwelling of the asthenospheric mantle.  相似文献   

12.
The geochemistry of carbonate fault rocks has been examined in two areas of the Arava Fault segment, which forms the major branch of the Dead Sea Transform between the Dead Sea and the Gulf of Aquaba. The role of fluids in faulting deformation in the selected fault segment is remarkably different from observations at other major fault zones. Our data suggest reduced fluid rock interactions in both areas and limited fluid flow. The fault did not act as an important fluid conduit. There are no indications that hydrothermal reactions (cementation, dissolution) did change the strength and behavior of the fault zone, although the two areas show considerable differences with respect to fluid sources and fluid flow. In one area, the investigated calcite mineralization reveals an open fluid system with fluids originating from a variety of sources. Stable isotopes (13C, 18O), strontium isotopes, and trace elements indicate both infiltration of descending (meteoric and/or sea water) and ascending hydrothermal fluids. In the other area, all geochemical data indicate only local (small scale) fluid redistribution. These fluids were derived from the adjacent limestones under nearly closed-system conditions.  相似文献   

13.
Abstract The hydrothermal metamorphism of a sequence of Pliocene-aged seamount extrusive and volcanoclastic rocks on La Palma includes a relatively complete low-P-T facies series encompassing the zeolite, prehnite-pumpellyite, and greenschist facies. The observed mineral zonations imply metamorphic gradients of 200–300° C km-1. The transition from smectite to chlorite in the La Palma seamount series is characterized by discontinuous steps between discrete smectite, corrensite and chlorite, which occur ubiquitously as vesicles and, to a much lesser extent, vein in-fillings. Trioctahedral smectites [(Mg/(Fe + Mg) = 0.4–0.75] occur with palagonite and Na-Ca zeolites such as analcime and a thompsonite/natrolite solid solution. Corrensite [(Mg/(Fe + Mg) = 0.5–0.65] first appears at stratigraphic depths closely corresponding to the disappearance of analcime and first appearance of pumpellyite. Discrete chlorite [(Mg/(Fe + Mg) = 0.4–0.6] becomes the dominant layer silicate mineral coincident with the appearance of epidote and andraditic garnet. Within the stratigraphic section there is some overlap in the distribution of the three discrete layer silicate phases, although random interstratifications of these phases have not been observed. Although smectite occurs as both low- and high-charge forms, the La Palma corrensite is a compositionally restricted, 1:1 mixture of low-charge, trioctahedral smectite and chlorite. Electron microprobe analyses of coarse-grained corrensite yield structural formulae close to ideal values based on 50 negative charge recalculations. Calcium (average 0.20 cations/formula unit) is the dominant interlayer cation, with lesser Mg, K and Na. The absence of randomly interlayered chlorite/smectite in the La Palma seamount series may reflect high, time-integrated fluid fluxes through the seamount sequence. This is consistent with the ubiquity of high-variance metamorphic mineral assemblages and the general absence of relict igneous minerals in these samples.  相似文献   

14.
Garnet granulite facies mid‐to lower crust in Fiordland, New Zealand, provides evidence for pulsed intrusion and deformation occurring in the mid‐to lower crust of magmatic arcs. 238U‐206Pb zircon ages constrain emplacement of the ~595 km2 Malaspina Pluton to 116–114 Ma. Nine Sm‐Nd garnet ages (multi‐point garnet‐rock isochrons) ranging from 115.6 ± 2.6 to 110.6 ± 2.0 Ma indicate that garnet granulite facies metamorphism was synchronous or near synchronous throughout the pluton. Hence, partial melting and garnet granulite facies metamorphism lasted <5 Ma and began within 5 Ma of pluton emplacement. Garnet granulite facies L‐S tectonites in the eastern part of the Malaspina Pluton record the onset of extensional strain and arc collapse. An Sm‐Nd garnet age and thermobarometric results for these rocks directly below the amphibolite facies Doubtful Sound shear zone provide the oldest known age for extension in Fiordland at ≥112.8 ± 2.2 Ma at ~920 °C and 14–15 kbar. Narrow high Ca rims in garnet from some of these suprasolidus rocks could reflect a ≤ 1.5 kbar pressure increase, but may be largely a result of temperature decrease based on the Ca content of garnet predicted from pseudosections. At peak metamorphic conditions >900 °C, garnet contained ~4000 ppm Ti; subsequently, rutile inclusions grew during declining temperature with limited pressure change. Garnet granulite metamorphism of the Malaspina Pluton is c. 10 Ma younger than similar metamorphism of the Pembroke Granulite in northern Fiordland; therefore, high‐P metamorphism and partial melting must have been diachronous for this >3000 km² area of mid‐to‐lower crust. Thus, two or more pulses of intrusion shortly followed by garnet granulite metamorphism and extensional strain occurred from north to south along the axis of the lower crustal root of the Cretaceous Gondwana arc.  相似文献   

15.
Abstract Declining temperatures during decay of a hydrothermal system, or during uplift and erosion, tend to result in veins involving progressive hydration reactions, e.g. veins with laumontite cutting prehnitepumpellyite facies rocks, and stilbite veins cutting laumontite veins. In contrast, examples are described of analcime replacement of heulandite along fractures in heulanditized vitric tuff, of replacement of analcime by albite along fractures in quartz-analcime rock, of joint-controlled replacement of heulandite in tuff by laumontite + quartz + (Na, K)-feldspars, of replacement of laumontite by prehnite + quartz along fractures in alumontitized vitric tuff, and of laumontitebearing feldspathic sandstones cut by vein assemblages of quartz and prehnite ° Calcite. The vein mineral assemblage, sometimes with pumpellyite and/or epidote in the prehnite-bearing veins, tends to spread as a zone of dehydration into the adjacent country rock. Except perhaps for albite replacement of analcime, and for laumontite replacement of heulandite, these open-system reactions involve cation activity ratios in the fluid. All involve dehydration. They are favoured by an increase in temperature, and except under certain situations where P-T equilibrium curves have negative slopes, are favoured by a fall in PH2O. Evidence indicates that in at least some cases the triggering mechanism was a drop in PH2O; this may be a widespread phenomenon associated with brittle fracture in the seismogenic upper crust. This may cause fluid pressure to drop from values approaching lithostatic to nearer hydrostatic, and equilibrium may be displaced to yield a less hydrous assemblage that appears as a dehydration vein and vein verge. The dehydration vein assemblage may be diagnostic of a higher grade mineral facies and adds to the mineral complexity attributable to varying permeabilities and fluid pressures in upper crustal strata. Mineral facies are likely to be more uniformly distributed in higher grade rocks from below the brittle-ductile transition zone. Reactions involving complex solid solutions are inappropriate as facies boundaries.  相似文献   

16.
A complex of gabbro (with metamorphic pyroxenite xenoliths)–gabbroic diorite–granodiorite was recently discovered in Tongxunlian, Xilinhot city, Inner Mongolia. Zircon U–Pb isotopic dating showed that the gabbro and the granodiorite were formed ca. 319 ± 1 Ma and ca. 318 ± 1 Ma respectively, indicating that emplacement of the composite rocks occurred in the late Carboniferous. Positive εHf(t) values of +12.0 to +14.1 and two‐stage model ages (TDM2) of 418 to 537 Ma of these rocks are similar to the age of formation of metamorphic pyroxenite (560 Ma, based on Sm–Nd isochron dating) and suggest that the rocks were derived from depleted lithospheric mantle (metamorphic pyroxenite). Our findings revealed that all of these calc‐alkaline and metaluminous intrusive rocks formed from the fractional crystallization of comagmatic evolution in an island‐arc setting. Moreover, the gabbro–gabbroic diorite in the study region was characterized by a low TiO2 content, a slight deficit of Nb, a surplus of Ta, and relatively low LREE/HREE ratios. Along with a relatively high Zr/Y ratio (4.0 to 5.6), these characteristics indicate that the rocks may have been formed by melting of the mantle wedge via metasomatism. Combination with other features of the rocks indicates a two‐episode tectonic model: we conclude that first, the fluid and Si‐rich melt metasomatism caused partial melting of the enriched lithospheric mantle, and these influences were then stored in the mantle; and second, slab breakoff resulted in upwelling of the upper mantle's soft fluid (stratum), which melted the enriched mantle of the lithosphere and formed the basaltic magma of the gabbro–gabbroic diorite. This study provides new geological evidence to support the Neoproterozoic subduction between the Paleo‐Asian Ocean plate and the Xilinhot microcontinent. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
Linking ages to metamorphic stages in rocks that have experienced low‐ to medium‐grade metamorphism can be particularly tricky due to the rarity of index minerals and the preservation of mineral or compositional relicts. The timing of metamorphism and the Mesozoic exhumation of the metasedimentary units and crystalline basement that form the internal part of the Longmen Shan (eastern Tibet, Sichuan, China), are, for these reasons, still largely unconstrained, but crucial for understanding the regional tectonic evolution of eastern Tibet. In situ core‐rim 40Ar/39Ar biotite and U–Th/Pb allanite data show that amphibolite facies conditions (~10–11 kbar, 530°C to 6–7 kbar, 580°C) were reached at 210–180 Ma and that biotite records crystallization, rather than cooling, ages. These conditions are mainly recorded in the metasedimentary cover. The 40Ar/39Ar ages obtained from matrix muscovite that partially re‐equilibrated during the post peak‐P metamorphic history comprise a mixture of ages between that of early prograde muscovite relicts and the timing of late muscovite recrystallization at c. 140–120 Ma. This event marks a previously poorly documented greenschist facies metamorphic overprint. This latest stage is also recorded in the crystalline basement, and defines the timing of the greenschist overprint (7 ± 1 kbar, 370 ± 35°C). Numerical models of Ar diffusion show that the difference between 40Ar/39Ar biotite and muscovite ages cannot be explained by a slow and protracted cooling in an open system. The model and petrological results rather suggest that biotite and muscovite experienced different Ar retention and resetting histories. The Ar record in mica of the studied low‐ to medium‐grade rocks seems to be mainly controlled by dissolution–reprecipitation processes rather than by diffusive loss, and by different microstructural positions in the sample. Together, our data show that the metasedimentary cover was thickened and cooled independently from the basement prior to c. 140 Ma (with a relatively fast cooling at 4.5 ± 0.5°C/Ma between 185 and 140 Ma). Since the Lower Cretaceous, the metasedimentary cover and the crystalline basement experienced a coherent history during which both were partially exhumed. The Mesozoic history of the Eastern border of the Tibetan plateau is therefore complex and polyphase, and the basement was actively involved at least since the Early Cretaceous, changing our perspective on the contribution of the Cenozoic geology.  相似文献   

18.
The evolution of incised valleys is an important area of research due to the invaluable data it provides on sea‐level variations and depositional environments. In this article the sedimentary evolution of the Ría de Ferrol (north‐west Spain) from the Last Glacial Maximum to the present is reconstructed using a multidisciplinary approach, combining seismic and sedimentary facies, and supported by radiocarbon data and geochemical proxies to distinguish the elements of sedimentary architecture within the ria infill. The main objectives are: (i) to analyse the ria environment as a type of incised valley to evaluate the response of the system to the different drivers; (ii) to investigate the major controlling factors; and (iii) to explore the differentiation between rias and estuaries. As a consequence of the sea‐level rise subsequent to the Last Glacial Maximum (ca 20 kyr bp ), an extensive basin, drained by a braided palaeoriver, evolved into a tide‐dominated estuary and finally into a ria environment. Late Pleistocene and Holocene high‐frequency sea‐level variations were major factors that modulated the type of depositional environments and their evolution. Another major modulating factor was the antecedent morphology of the ria, with a rock‐incised narrow channel in the middle of the basin (the Ferrol Strait), which influenced the evolution of the ria as it became flooded during Holocene transgression. The strait acted as a rock‐bounded ‘tidal inlet’ enhancing the tidal erosion and deposition at both ends, i.e. with an ebb‐tidal delta in the outer sector and tidal sandbanks in the inner sector. The final step in the evolution of the incised valley into the modern‐defined ria system was driven by the last relative sea‐level rise (after 4 kyr bp ) when the river mouths retreated landward and a single palaeoriver was converted into minor rivers and streams with scattered mouths in an extensive coastal area.  相似文献   

19.
Thin layers and lenses of granitic leucosome are widely distributed within amphibolites, paragneisses and orthogneisses of the Sulu UHP terrane. They are parallel to, or cross‐cut, foliations in the host rocks at different scales and show evidence of coalescence and migration to form centimetre‐ to decimetre‐scale segregations. Variously migmatized rocks extend at least 350 km from SW Sulu (Maobei) to NE Sulu (Weihai), in a band at least 50 km wide. A combined study of mineral inclusions, cathoduluminescence (CL) images, U–Pb LA‐ICP‐MS dates, and in‐situ trace element compositions of zircon provide clear evidence on the nature and timing of partial melting in these UHP rocks. Most zircon from the granitic leucosomes occurs as distinct overgrowths around inherited (igneous or metamorphic) cores or as new, euhedral crystals. The overgrowths and new crystals commonly show perfectly euhedral shapes, have pronounced oscillatory zoning and contain felsic mineral inclusions, such as Kfs + Pl + Qtz ± Ilm ± monazite (Mon). In contrast, the inherited igneous or metamorphic cores are rounded or irregular, contain low‐P or UHP mineral inclusions and show clear dissolution textures. These data suggest that the new zircon is anatectic in origin and that it grew during partial melting of the UHP rocks. The REE patterns of the anatectic zircon show steep slopes from the HREE to LREE with strongly to moderately negative Eu anomalies (Eu/Eu* = 0.31–0.72) and pronounced positive Ce anomalies (Ce/Ce* = 6.8–26.5). Abundant U–Pb spot analyses of the anatectic zircon reveal two discrete and meaningful ages of partial melting within the Sulu UHP terrane. Anatectic zircon from 12 granitic leucosomes within amphibolites, paragneisses, and orthogneisses from Sulu UHP slices II and III yields consistent mean U–Pb ages of 219.0 ± 1.2 to 218.3 ± 1.6 Ma, 218.8 ± 2.0 to 217.3 ± 1.7 Ma and 218.2 ± 1.4 to 215.0 ± 1.5 Ma, respectively. In contrast, anatectic zircon from six granitic leucosomes within paragneisses and orthogneisses from Sulu UHP slice III records younger mean U–Pb ages of 151.9 ± 1.3 to 151.1 ± 1.8 Ma and 155.9 ± 1.8 to 153.7 ± 1.7 Ma, respectively. These data imply that the Sulu UHP terrane experienced two Mesozoic partial melting events. The first partial melting event (219–215 Ma) was probably associated with a Late Triassic granulite facies stage of ‘hot’ exhumation, whereas the second (156–151 Ma) is interpreted as the result of Middle‐Late Jurassic extension and thinning of the previously thickened crust of the Sulu UHP terrane. Both partial melting events induced extensive retrograde metamorphism of the eclogites and their country rocks.  相似文献   

20.
Abstract Fluid inclusion studies of rocks from the late Archaean amphibolite-facies to granulite-facies transition zone of southern India provide support for the hypothesis that CO2,-rich H2O-poor fluids were a major factor in the origin of the high-grade terrain. Charnockites, closely associated leucogranites and quartzo-feldspathic veins contain vast numbers of large CO2-rich inclusions in planar arrays in quartz and feldspar, whereas amphibole-bearing gray gneisses of essentially the same compositions as adjacent charnockites in mixed-facies quarries contain no large fluid inclusions. Inclusions in the northernmost incipient charnockites, as at Kabbal, Karnataka, occasionally contain about 25 mol. % of immiscible H2O lining cavity walls, whereas inclusions from the charnockite massif terrane farther south do not have visibile H2O Microthermometry of CO2 inclusions shows that miscible CH4 and N2 must be small, probably less than 10mol.%combined. Densities of CO2 increase steadily from north to south across the transitional terrane. Entrapment pressures calculated from the CO2 equation of state range from 5 kbar in the north to 7.5 kbar in the south at the mineralogically inferred average metamorphic temperature of 750°C, in quantitative agreement with mineralogic geobarometry. This agreement leads to the inference that the fluid inclusions were trapped at or near peak metamorphic conditions. Calculations on the stability of the charnockite assemblage biotite-orthopyroxene-K-feldspar-quartz show that an associated fluid phase must have less than 0.35 H2O activity at the inferred P and T conditions, which agrees with the petrographic observations. High TiO2 content of biotite stabilizes it to lower H2O activities, and the steady increase of biotite TiO2 southward in the area suggests progressive decrease of aH2O with increasing grade. Oxygen fugacities calculated from orthopyroxene-magnetite-quartz are considerably higher than the graphite CO2-O2 buffer, which explains the absence of graphite in the charnockites. The present study quantifies the nature of the vapours in the southern India granulite metamorphism. It remains to be determined whether CO2-flushing of the crust can, by itself, create large terranes of largeion lithophile-depleted granulites, or whether removal of H2O-bearing anatectic melts is essential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号