首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A computational fluid dynamics (CFD) model was developed to simulate the turbulent flow and species transport of deep-sea high temperature hydrothermal plumes. The model solves numerically the density weighted unsteady Reynolds-averaged Navier–Stokes equations and energy equation and the species transport equation. Turbulent entrainment and mixing is modeled by a kε turbulence closure model. The CFD model explicitly considers realistic vent chimney geometry, vent exit fluid temperature and velocity, and background stratification. The model uses field measurements as model inputs and has been validated by field data. These measurements and data, including vent temperature and plume physical structure, were made in the ABE hydrothermal field of the Eastern Lau Spreading Center. A parametric sensitivity study based on this CFD model was conducted to determine the relative importance of vent exit velocity, background stratification, and chimney height on the mixing of vent fluid and seawater. The CFD model was also used to derive several important scalings that are relevant to understanding plume impact on the ocean. These scalings include maximum plume rise height, neutrally buoyant plume height, maximum plume induced turbulent diffusivity, and total plume vertically transported water mass flux. These scaling relationships can be used for constructing simplified 1-dimensional models of geochemistry and microbial activity in hydrothermal plumes. Simulation results show that the classical entrainment assumptions, typically invoked to describe hydrothermal plume transport, only apply up to the vertical level of ~0.6 times the maximum plume rise height. Below that level, the entrainment coefficient remains relatively constant (~0.15). Above that level, the plume flow consists of a pronounced lateral spreading flow, two branches of inward flow immediately above and below the lateral spreading, and recirculation flanking the plume cap region. Both turbulent kinetic energy and turbulence dissipation rate reach their maximum near the vent; however, turbulent viscosity attains its maximum near the plume top, indicating strong turbulent mixing in that region. The parametric study shows that near vent physical conditions, including chimney height and fluid exit velocity, influence plume mixing from the vent orifice to a distance of ~10 times the vent orifice diameter. Thus, physical parameters place a strong kinetic constraint on the chemical reactions occurring in the initial particle-forming zone of hydrothermal plumes.  相似文献   

2.
Quantitative visualization of acoustic images is used to compare the properties and behavior of high temperature hydrothermal plumes at two sites with different source configurations, increasing our understanding of how plume behavior reflects source configuration. Acoustic imaging experiments were conducted at the Clam Acres area of the Southwest Vent Field, 21°N East Pacific Rise and at Monolith Vent, North Cleft segment, Juan de Fuca Ridge. At Clam Acres, black smokers discharge from two adjacent chimneys which act as point sources, whereas multiple vents at Monolith Vent define a distributed elliptical source. Both plumes exhibit consistent dilution patterns, reasonable fits to the expected power law increase in centerline dilution with height, and simple bending of plume centerlines in response to ambient currents. Our data suggest that point source vents are associated with ordered plume structure, normal entrainment rates, and initial expansion of isosurfaces while distributed source vents are associated with disorganized plume structure, variable entrainment rates, and initial contraction of isosurfaces.  相似文献   

3.
In this study, the short-term offshore extension of Brahmaputra-Ganges(BG) and Irrawaddy freshwater plumes to the central northern Bay of Bengal(BoB) was investigated based on in situ and satellite observations. In the summer and winter of 2015, two significant freshening events with periods of weeks were observed from a moored buoy at 15°N, 90°E in the BoB. Soil Moisture Active Passive(SMAP) satellite sea surface salinity compares well with the in situ data and shows that these freshening events are directly related to the short-term offshore extension of the BG and Irrawaddy freshwater, respectively. These data combined with the altimeter sea level anomaly data show that the offshore extending plumes result from freshwater modulated by eddies. During summer, the BG freshwater is modulated by a combination of three closely located eddies: a large anticyclonic eddy(ACE) off the northwestern BoB coast and two cyclonic eddies in the northern BoB. Consequently, the freshwater extends offshore from the river mouth and forms a long and narrow tongue-shaped plume extending southwestward to the central BoB. During winter, the Irrawaddy freshwater is modulated by two continuous ACEs evolved from Rossby wave propagating westward from the Irrawaddy Delta off Myanmar, forming a tongueshaped plume extending to the central BoB. Strong salinity fronts are formed along the boundaries of these tongue-shaped plumes. These findings confirm good capability of the SMAP data to investigate the short-term offshore extension of the BG and Irrawaddy freshwater. This study provides direct evidences of the pathways of the offshore extension of the BG and Irrawaddy freshwater and highlights the role of eddies in the northern BoB freshwater plume variability.  相似文献   

4.
Event plumes form as episodic discharges of large volumes of hydrothermal solutions in response to magmatic diking/eruptive events. In consequence, event plumes represent the sudden injection of exploitable reduced chemical substrates, as well as inhibitory constituents, and likely induce successional changes in the microbial community structure and activity within event plume waters. In response to a major seismic event detected beginning 28 February 1996 at the northern Gorda Ridge, a series of three rapid response and follow-up cruises (GREAT 1, 2 and 3) were mounted over a period of three months. This report focuses on time-series measurements of manganese geomicrobial parameters in the two event plumes found in association with this seismic event.Scanning transmission electron microscopy, elemental microanalysis, and radioisotope (54Mn) uptake experiments were employed on samples collected from vertical and tow-yo casts from the three cruises. Numbers of bacteria and ratios of metal precipitating capsuled bacteria to total bacteria were greatest in the youngest (days old) plume, EP96A, found during GREAT 1; however, when normalized to the hydrothermal temperature anomaly, the greatest values were found in a second event plume, EP96B, discovered during GREAT 2 (up to 1 month old). Early capsule bacteria and particulate Mn distributions may have been influenced by entrainment of resuspended sediment, while those of the oldest (2–3 months) plume sample may have been subjected to preferential aggregation and particle settling.  相似文献   

5.
When a bubble plume exists beneath a free surface, such as after a subsea gas well blowout, a generally horizontal flow occurs in the vicinity of the surface and this flow is influenced by the fact that the surface is free. Two very different theories for such surface flows have been developed in the past and the bases of these theories are reviewed here. The results of measurements of surface flows above plumes of relatively large scale are given. These are compared with both of the existing theories. One theory is found to be accurate at small radii from the plume centre and the other theory is found to be accurate at large radii. The needed boundary condition for the theory that is accurate at large radii is supplied by the results of the theory that is accurate at small radii.  相似文献   

6.
本文通过旋转平台实验室实验的方法,探讨了双河口情况下两个羽流将如何发生相互作用。在研究中,提出了一种新颖的技术对河口羽流的各切面流场进行测量,来获得河口羽流多个平面的速度场及涡度场,并基于此模拟了双河口羽流系统的准三维结构。通过对不同入流速度下的双河口羽流流场演变过程和内部结构进行了一系列对比研究,以期揭示上游河流的入流如何影响下游河口涡旋的形成及在羽流相互作用情形下各个羽流的演变。实验结果表明:随着上游入流流量的增加,上游羽流形成的沿岸流对下游河口涡旋沿岸迁移的促进和离岸输运的抑制作用将更加显著。特别是在上游入流流量等于或大于下游入流流量的情况下,下游羽流河口涡旋的体积增长明显较单一河口情况放缓。在上游入流流量较大的情况下,下游原有河口涡旋被推向更下游位置,在远离河口的位置形成另一个河口涡旋。在垂直方向上,我们可以观察到高上游入流流量条件下的下游河口涡旋的深度较小,更有利于形成三层流体的情况。本研究对多河口近海流域的营养盐及污染物的输运情况等社会和生态问题的研究有着重要的意义。  相似文献   

7.
 Ice-sheet drainage of glacial detritus into the sea involves size fractionation by ice-margin winnowing on a giant scale caused by the lower density of meltwater entering cold seawater. Despite its load of suspended sediment, the fresh water rises to or stays at the sea surface forming turbid surface plumes, whereas the coarse-grained sediment forms bed load. On the Labrador Slope south of the Hudson Strait turbid plumes were supplied by meltwater from the Pleistocene ice sheet (LIS). Sediments with the seismic characteristics of plume deposits occur in a 200-km-long slope sector up to 130 km seawards from the strait. The widespread distribution of these deposits is attributed to entrainment of the surface plumes by the south-flowing Labrador Current and suppressed flocculation due to the high detrital carbonate-content of the suspended sediment. Deposits with typical characteristics of surface plume deposits have been recovered within 20 km from former ice margin south of or in front of outlets, but not north of outlets. They consist of 1 to 2-cm-thick alternations of fine sandy silt/coarse silt layers with finer-grained clayey silt/silty clay, and for brevity are called plumites. Received: 6 August 1996/Revision received: 21 January 1997  相似文献   

8.
Eddies with diameters of 4–40 km are formed near headlands running out into the sea in bays of the Shantar Archipelago. Such eddies play an important part in the dispersion of ice and plankton. The formation of these eddies is studied based on satellite and marine observations. To construct velocity vectors, images from the Aqua and Terra satellites were used (the data of channel 1 of the MODIS radiometer with a spatial resolution of 250 m). The measurements of currents were made by sequential satellite images with an interval of about 100 min. Large ice floes were chosen to determine currents by satellite data. Vectors of ice displacement were constructed and their velocities were calculated for each pair of images. The flow convergence is estimated using these data. The marine observations include direct observations of currents and CTD data. The observations of currents were obtained with electromagnetic meters mounted on anchored buoys. The results of direct observations point to tidal currents as the main mechanism for the formation of short-lived but regular convergence regions associated with headland eddies.  相似文献   

9.
The distribution of dissolved (soluble and total) and particulate (leachable and total) aluminum was examined in the Columbia River and estuary, in near-field and far-field river plumes, and in adjacent coastal waters of Washington and Oregon during the River Influence on Shelf Ecosystems (RISE) cruise of May/June 2006. Dissolved and particulate aluminum (Al) concentrations were significantly greater in the river than in the coastal waters that mixed to form the plume. Dissolved Al concentrations in the Columbia River (∼80 nM) were low relative to other major rivers. Leachable and total particulate Al concentrations within the river reached concentrations greater than 1000 nM and 18,000 nM, respectively. Dissolved Al within the Columbia River estuary showed a significant removal (∼60%) at salinities between 0 and 10 with salt-induced flocculation of colloidal Al complexes and enhanced particle scavenging being probable explanations for aluminum removal. Dissolved and particulate Al concentrations were significantly greater in near-field plumes relative to surrounding coastal waters. As the plume advected from near-field to far-field away from the river mouth, dilution of the plume with lower dissolved Al surface waters as well as particle scavenging along the flow path appeared to be controlling dissolved Al distributions. Particle settling as well as dilution with lower particle-load waters led to observed decreases in particulate Al as the plume moved from near-field to far-field. However, the percent-leachable particulate aluminum in both near-field and far-field plumes was remarkably constant at ∼7%. Dissolved and particulate Al in a far-field plume over 100 km southwest of the Columbia River mouth were over an order-of-magnitude greater than surrounding waters, illustrating the importance of the Columbia River plume as a mechanism for transporting Al offshore. Aluminum could be used to trace the input of biologically-required elements such as iron into waters off the shelf.  相似文献   

10.
The behavior of two plumes ejected into a thin water tank is investigated experimentally. As the time elapses, the plume axes deflect towards each other. Time evolution of this two-dimensional, dual forced plume is found to be similar to that of a two-dimensional, single plume ejected near a vertical wall. The symmetric plane of the two plumes in the former case plays the role of the vertical wall. The time required for the dual plume to attain a quasi-steady state is shorter than that for the single plume. The deflection angles of the plume axes are smaller for the dual plume, and the plume water remains near the free water surface in a quasi-steady state. Water circulation in a triangular region surrounded by the free water surface, the side of the plume and the symmetric plane (or the vertical wall for the single plume case) may account for this difference; the circulation is much more pronounced in the single plume case.  相似文献   

11.
This study characterized stormwater plume development and associated phytoplankton dynamics in a coastal marine ecosystem through shipboard monitoring. We focused on plumes within Santa Monica Bay, California (USA), a coastal system that is subject to rapid pulses of untreated runoff from the urbanized watershed of Los Angeles during the winter rainy season. The physical, chemical, and biological signatures of stormwater plumes were tracked over time after each of 4 precipitation events ranging in magnitude from 1.5 cm to 9 cm. Low salinity surface plumes persisted in Santa Monica Bay for at least 2 to 5 days over spatial scales of up to 15 km. This is consistent with a 6-day residence time for surface water plume parcels, which was estimated from a drifter trajectory in the bay. Shipboard sampling and salinity measurements in the surf zone showed that plumes often persisted even longer nearshore. Plume waters were generally characterized by higher concentrations of dissolved nitrogen, colored dissolved organic matter, and higher light attenuation than non-plume waters. The magnitude of the effect of stormwater runoff on phytoplankton dynamics was dependent on the size of each storm and subsequent residence time of runoff within the bay. Rain events led to increases in primary productivity, phytoplankton biomass, and specifically, increases in diatom biomass, as measured by concentrations of biogenic silica.  相似文献   

12.
We present evidence for strong hydrothermal activity in the eastern Manus Basin (depth: 1700–2100 m), the existence of large scale triple-layered buoyant plumes at depths of 1100 m (“shallow plume”), 1700 m (“deep plume”), and 1400 m (“middle plume” with less extent than the other two plumes) that were revealed from water column anomalies of CH4, Mn, Al and pH observed in November to December 1990. Judging from the horizontal distribution of these parameters, the deep plume seems to originate from two distinct hydrothermal sites (eastern and western sites) in the research area, the eastern site being visually ascertained with deep-tow observations at the same time. The CH4/Mn ratio (mol mol−1) of the deep plume (0.02–0.05) is the lowest yet observed in hydrothermal plumes. The order of magnitude difference of CH4/Mn ratios between the shallow plume and the deep plume suggests that different kinds of fluid-rock interaction occurred to make the hydrothermal end members for the deep and shallow plumes. The shallow plume, which had an areal extent of more than 50 km, may be an episodic “megaplume”, because it was not recognized in the previous CH4 profiles in 1986, and because it has a similar CH4/Mn ratio as the megaplume observed in the North Fiji Basin. We found that the eastern deep plume is characterized by enormously high aluminium concentrations (0.6– 1.5 μmol kg−1), pH anomalies (0.1) and high Al/Mn ratios (10–17). The endmember fluid for the eastern deep plume may have an unusually low pH value to dissolve this much aluminum during fluid-rock interaction, or this plume may originate from an eruption-influenced fluid.  相似文献   

13.
MultiBeam echosounder data were collected during a surface-ship survey of the 22/4b well site in the North Sea in September 2011 using a Teledyne-Reson 7125. Modern multibeam echosounders are instrumental in providing detection and accurate localization of weak to strong bubble plumes. Two survey profiles effectively insonified the bubble plumes rising from the main crater at the well site, providing snapshot data of bubble plume processes. Additionally, three profiles insonified bubble plumes rising from, in, and to the south of a secondary crater, 1.2 km southeast of the main crater. Data processing included a simple algorithm that muted mislocated echoes from incomplete sidelobe suppression. The data processing produced a Cartesian volume of echo intensity from the water column and seabed.Plume geometry was analyzed to investigate a number of important large-scale plume processes, including plume bubble detrainment due to currents and stratification, downwelling flows, sea surface interaction, plume heterogeneity, and other fluid transport processes. The data showed strong upwelling flows, with bubble vertical motions generally much faster than currents. One important finding was that megaplumes create intrusions above the general thermocline, in part because their extensive upwelling flow lifts the thermocline locally. As a result, the intrusion layer deposits dissolved gases in the upper wave-mixed layer of the water column where it is not isolated from the atmosphere, unlike dissolved gases in the lower water column.The analysis shows that high fidelity multibeam echosounder data can provide a wealth of remote sensing information on bubble plume characteristics and processes, with important applications, including blowout monitoring and response, better understanding of megaplumes such as used in lake destratification, and improved characterization of natural seep emission processes.  相似文献   

14.
This paper presents a computational model of simulating a deep-sea hydrothermal plume based on a Lagrangian particle random walk algorithm. This model achieves the efficient process to calculate a numerical plume developed in a fluid-advected environment with the characteristics such as significant filament intermittency and significant plume meander due to flow variation with both time and location. Especially, this model addresses both non-buoyant and buoyant features of a deep-sea hydrothermal plume in three dimensions, which significantly challenge a strategy for tracing the deep-sea hydrothermal plume and localizing its source. This paper also systematically discusses stochastic initial and boundary conditions that are critical to generate a proper numerical plume. The developed model is a powerful tool to evaluate and optimize strategies for the tracking of a deep-sea hydrothermal plume via an autonomous underwater vehicle (AUV).  相似文献   

15.
Canada׳s Department of Fisheries and Oceans (DFO) conducts annual surveys in the Labrador Sea along the repeat hydrography line AR7W. The occupation of the AR7W line in May 2013 was followed by the experiment aimed at resolving the imprint of melting drifting icebergs on the upper layer thermohaline characteristics in the Labrador Sea. We present high-resolution observations around two icebergs conducted with the towed undulating platform Moving Vessel Profiler (MVP). The first iceberg drifted in relatively warm water of Atlantic origin (~2.5–3.1 °C) off Greenland, while the second iceberg was on the Labrador shelf in cold water below 0 °C. Both icebergs had a lengthscale of O(100 m). In both cases surface buoyant plumes fed by melt water and attached to the iceberg were observed. The plumes were evident in the anomalous thermohaline characteristics of the seawater. Their density anomalies were sufficiently strong to produce visible frontal structures, which imply a development of the intrinsic dynamics associated with a plume. The first plume formed over a time interval of ~10 h, while the second plume formed over several days and extended for more than 1 km (tenfold the iceberg׳s size). Strong vertical displacements of the pycnocline were observed near the second iceberg. They are interpreted as the internal wave wake. This interpretation is based on the temporal scale of these oscillations (local buoyancy frequency), as well as on the spatial orientation of these waves with respect to the iceberg drift relative to the pycnocline. The observed internal waves partially overlapped with the plume and affected its structure. The saline seawater splashing by swell contributed to the surface melting of the icebergs. Scaling analysis of the second plume suggests that it could be in the “rotational” dynamic regime with recirculating anticyclonic flow.  相似文献   

16.
We sampled hydrothermal plumes over the N. Gorda Ridge four times between March and August 1996 to document Mn and Fe discharge resulting from a magmatic intrusion/seafloor eruption. Two separate event plumes, EP96A and B, and chronic hydrothermal emissions lasting 6 months were characterized. Shipboard time-series measurements of an event plume sample were used to calibrate an Fe phase clock useful for estimating sample age up to 6 days after fluid discharge. Samples collected from EP96A and B had Mn/heat (<0.15 nmol J-1) and Fe/Mn (>2 mol mol-1) ratios similar to historical event plume observations. We suggest these “signature” ratio values are generally characteristic of event plumes and hypothesize that Mn and Fe may be supplied to event plumes by different processes: Mn by entrainment of fluids from an extant shallow subseafloor reservoir, and Fe by short-lived, high-temperature water-rock reaction coincident with dike emplacement. Calculations based on the Fe phase clock indicate that the two event plumes were released more than a month apart. The largest event plume, EP96A (2.3×106 M Mn and 13×106 M Fe), formed 7 March soon after seismic activity began. The smaller EP96B (0.49×106 M Mn and 3.5×106 M Fe) was not discharged until 11 April, 3 weeks after the cessation of seismic activity detectable by SOSUS T-phase monitoring. We hypothesize that the subseafloor disturbance that triggered EP96B also resulted in the episodic flushing of a reservoir of chronic-plume-like fluids. Total event plume inventories of Mn and Fe at N. Gorda Ridge are much smaller than those associated with the 1986 event at N. Cleft segment of the Juan de Fuca Ridge, but comparable to event plume inventories at N. Cleft segment in 1987 and CoAxial segment in 1993. Mn/heat values for chronic plumes over the eruption site underlying EP96A evolved from moderate (0.25 oonmol J-1, reflecting probable admixture with event plume formation fluids) to high (0.7 nmol J-1, typical of chronic plumes) to low (0.1 nmol J-1, similar to diffuse vent fluid values), marking a complete episode of intrusion/eruption-induced hydrothermal discharge.  相似文献   

17.
Seafloor hydrothermal polymetallic sulfide deposits are a new type of resource, with great potential economic value and good prospect development. This paper discusses turbidity, oxidation–reduction potential, and temperature anomalies of hydrothermal plumes from the Zouyu-1 and Zouyu-2 hydrothermal fields on the southern Mid-Atlantic Ridge. We use the known location of these vent fields and plume data collected in multiple years (2009, 2011, 2013) to demonstrate how real-time plume exploration can be used to locate active vent fields, and thus associated sulfide deposits. Turbidity anomalies can be detected 10 s of km from an active source, but the location precision is no better than a few kilometers because fine-grained particles are quasi-conservative over periods of many days. Temperature and oxidation–reduction potential anomalies provide location precision of a few hundred meters. Temperature anomalies are generally weak and difficult to reliably detect, except by chance encounters of a buoyant plume. Oxidation–reduction potential is highly sensitive (nmol concentrations of reduced hydrothermal chemicals) to discharges of all temperatures and responds immediately to a plume encounter. Real-time surveys using continuous tows of turbidity and oxidation–reduction potential sensors offer the most efficient and precise surface ship exploration presently possible.  相似文献   

18.
Rainfall during winter storms produces extensive turbid, freshwater plumes in the coastal waters of the Southern California Bight. When the plumes result from urban runoff they contain toxic pollutants along with pathogenic bacteria and viruses, often resulting in closure of public beaches. We examined the spatial structure and evolution of stormwater plumes in Santa Monica Bay in 1996. The plumes resulted from freshwater discharge from the Ballona Creek and Malibu Creek watersheds which supply approximately 60% of the freshwater runoff to Santa Monica Bay. The spatial scales of the plumes were determined using shipboard measurements of water properties obtained from towyo transects and surface underway sampling. Salinity maps showed that the plumes typically extended 4-7 km offshore, consistent with scaling by the internal Rossby radius of deformation. Plumes extended along shore 10 km or more. Generally the plumes occupied the upper 10 m of the water column. The persistence time of a plume offshore of Ballona Creek was about three days based on a sequence of surveys in March 1996 following rainfall of about 21 mm. Limited comparison of plumes from Ballona Creek, which drains a developed watershed, and Malibu Creek, which drains a rural watershed, suggested that Malibu Creek required greater rainfall to produce an offshore plume. A stormwater plume offshore of Malibu Creek was observed on both sides of the creek mouth, possibly due to freshwater discharge from smaller surrounding watersheds or advection of freshwater discharges from the east and south. Plumes offshore of Ballona Creek mainly resulted from the creek itself and usually extended northward from the creek mouth, consistent with the wind forcing and the Coriolis acceleration.  相似文献   

19.
刘港慧  刘磊 《海洋工程》2023,41(5):150-160
深海采矿尾矿排放产生的细颗粒羽状流会对海底生态环境造成影响,预测尾矿排放羽状流行为及其对环境影响具有工程意义。基于欧拉多相流方法,采用欧拉双流体模型对深海采矿细颗粒羽状流开展数值模拟研究,分析近海底排放的羽状流演化和发展过程,探究羽状流初始排放质量浓度、排放速度对羽状流扩散过程的影响。结果表明:初始排放条件对羽状流演化性质有重要影响。主射流区被稀释的程度随着初始入射速度的增大而减小,随着入射质量浓度的增大而增大;初始羽状流入射速度和质量浓度越大,撞击海底后的水平方向流动速度越快,影响区域越广;水平速度的峰值随着初始入射速度的增大呈对数增长;当初始质量浓度和速度高于50 g/L和 0.5 m/s 时可能会导致颗粒在海底撞击点附近堆积成坡状,影响底流的后续发展。研究结果可以为深海采矿尾矿排放参数选择提供参考。  相似文献   

20.
River plumes have important effects on marine ecosystems. Variation in the extent and dispersal of river plumes is often associated with river discharge, wind characteristics and ocean circulation. The objectives of this study were to identify the Tokachi River plume by satellite, determine its relationship with river discharge and clarify its temporal and spatial dynamics. SeaWiFS multispectral satellite data (normalized water-leaving radiance: nLw) with 1.1 km spatial resolution were used to determine the spatial and temporal variability of the plume during 1998–2002. Supervised maximum likelihood classification using six channels of nLw at 412, 443, 490, 510, 555 and 670 nm with each band's spectral signature statistic was used to define classes of surface water and to estimate the plume area. Supervised maximum likelihood classification separated three to four classes of coastal water based on optical characteristics as a result of wind stress events. The satellite-observed plume area was correlated with the amount of river discharge from April to October. The plume distribution patterns were influenced by wind direction and magnitude, the occurrences of a near-shore eddy field and surface currents. Empirical orthogonal function (EOF) was used to express the spatial and temporal variability of the plume using anomalies of nLw(555) monthly averaged images. The first mode (44% of variance) showed the turbid plume distribution resulting from re-suspension by strong wind mixing along the coast during winter. This mode also showed the plume was distributed along-shelf direction in spring to early autumn. The second mode (17% of variance) showed spring pattern across-shelf direction. EOF analysis also explained the interannual variability of the plume signature, which might have been affected by the flow of the Oyashio Current and the occurrence of a near-shore eddy field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号