首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mafic inclusions present in the rhyolitic lavas of Narugo volcano,Japan, are vesiculated andesites with diktytaxitic texturesmainly composed of quenched acicular plagioclase, pyroxenes,and interstitial glass. When the mafic magma was incorporatedinto the silica-rich host magma, the cores of pyroxenes andplagioclase began to crystallize (>1000°C) in a boundarylayer between the mafic and felsic magmas. Phenocryst rim compositionsand interstitial glass compositions (average 78 wt % SiO2) inthe mafic inclusions are the same as those of the phenocrystsand groundmass glass in the host rhyolite. This suggests thatthe host felsic melt infiltrated into the incompletely solidifiedmafic inclusion, and that the interstitial melt compositionin the inclusions became close to that of the host melt (c.850°C). Infiltration was enhanced by the vesiculation ofthe mafic magma. Finally, hybridized and density-reduced portionsof the mafic magma floated up from the boundary layer into thehost rhyolite. We conclude that the ascent of mafic magma triggeredthe eruption of the host rhyolitic magma. KEY WORDS: mafic inclusion; stratified magma chamber; magma mixing; mingling; Narugo volcano; Japan  相似文献   

2.
Oxidized sulfur-rich mafic magma at Mount Pinatubo,Philippines   总被引:3,自引:2,他引:1  
Basaltic fragments enclosed in andesitic dome lavas and pyroclastic flows erupted during the early stages of the 1991 eruption of Mount Pinatubo, Philippines, contain amphiboles that crystallized during the injection of mafic magma into a dacitic magma body. The amphiboles contain abundant melt inclusions, which recorded the mixing of andesitic melt in the mafic magma and rhyolitic melt in the dacitic magma. The least evolved melt inclusions have high sulfur contents (up to 1,700 ppm) mostly as SO4 2–, which suggests an oxidized state of the magma (NNO+1.4). The intrinsically oxidized nature of the mafic magma is confirmed by spinel–olivine oxygen barometry. The value is comparable to that of the dacitic magma (NNO+1.6). Hence, models invoking mixing as a means of releasing sulfur from the melt are not applicable to Pinatubo. Instead, the oxidized state of the dacitic magma likely reflects that of parental mafic magma and the source region in the sub-arc mantle. Our results fit a model in which long-lived SO2 discharge from underplated mafic magma accumulated in the overlying dacitic magma and immiscible aqueous fluids. The fluids were the most likely source of sulfur that was released into the atmosphere during the cataclysmic eruption. The concurrence of highly oxidized basaltic magma and disproportionate sulfur output during the 1991 Mt. Pinatubo eruption suggests that oxidized mafic melt is an efficient medium for transferring sulfur from the mantle to shallow crustal levels and the atmosphere. As it can carry large amounts of sulfur, effectively scavenge sulfides from the source mantle and discharge SO2 during ascent, oxidized mafic magma forms arc volcanoes with high sulfur fluxes, and potentially contributes to the formation of metallic sulfide deposits.Editorial responsibility: J. Hoefs
J. C. M. de HoogEmail:
  相似文献   

3.
Silicate and sulfide melt inclusions from the andesitic Farallón Negro Volcanic Complex in NW Argentina were analyzed by laser ablation ICPMS to track the behavior of Cu and Au during magma evolution, and to identify the processes in the source of fluids responsible for porphyry-Cu-Au mineralization at the 600 Mt Bajo de la Alumbrera deposit. The combination of silicate and sulfide melt inclusion data with previously published geological and geochemical information indicates that the source of ore metals and water was a mantle-derived mafic magma that contained approximately 6 wt.% H2O and 200 ppm Cu. This magma and a rhyodacitic magma mixed in an upper-crustal magma chamber, feeding the volcanic systems and associated subvolcanic intrusions over 2.6 million years. Generation of the ore fluid from this magma occurred towards the end of this protracted evolution and probably involved six important steps: (1) Generation of a sulfide melt upon magma mixing in some parts of the magma chamber. (2) Partitioning of Cu and Au into the sulfide melt (enrichment factor of 10,000 for Cu) leading to Cu and Au concentrations of several wt.% or ppm, respectively. (3) A change in the tectonic regime from local extension to compression at the end of protracted volcanism. (4) Intrusion of a dacitic magma stock from the upper part of the layered magma chamber. (5) Volatile exsolution and resorption of the sulfide melt from the lower and more mafic parts of the magma chamber, generating a fluid with a Cu/Au ratio equal to that of the precursor sulfide. (6) Focused fluid transport and precipitation of the two metals in the porphyry, yielding an ore body containing Au and Cu in the proportions dictated by the magmatic fluid source. The Cu/S ratio in the sulfide melt inclusions requires that approximately 4,000 ppm sulfur is extracted from the andesitic magma upon mixing. This exceeds the solubility of sulfide or sulfate in either of the silicate melts and implies an additional source for S. The extra sulfur could be added in the form of anhydrite phenocrysts present in the rhyodacitic magma. It appears, thus, that unusually sulfur-rich, not Cu-rich magmas are the key to the formation of porphyry-type ore deposits. Our observations imply that dacitic intrusions hosting the porphyry–Cu–Au mineralization are not representative of the magma from which the ore-fluid exsolved. The source of the ore fluid is the underlying more mafic magma, and unaltered andesitic dikes emplaced immediately after ore formation are more likely to represent the magma from which the fluids were generated. At Alumbrera, these andesitic dikes carry relicts of the sulfide melt as inclusions in amphibole. Sulfide inclusions in similar dykes of other, less explored magmatic complexes may be used to predict the Au/Cu ratio of potential ore-forming fluids and the expected metal ratio in any undiscovered porphyry deposit.Editorial handling: B. Lehmann  相似文献   

4.
The latest eruption of Haruna volcano at Futatsudake took placein the middle of the sixth century, starting with a Plinianfall, followed by pyroclastic flows, and ending with lava domeformation. Gray pumices found in the first Plinian phase (lowerfall) and the dome lavas are the products of mixing betweenfelsic (andesitic) magma having 50 vol. % phenocrysts and maficmagma. The mafic magma was aphyric in the initial phase, whereasit was relatively phyric during the final phase. The aphyricmagma is chemically equivalent to the melt part of the phyricmafic magma and probably resulted from the separation of phenocrystsat their storage depth of 15 km. The major part of the felsicmagma erupted as white pumice, without mixing and heating priorto the eruption, after the mixed magma (gray pumice) and heatedfelsic magma (white pumice) of the lower fall deposit. Althoughthe mafic magma was injected into the felsic magma reservoir(at 7 km depth), part of the product (lower fall ejecta) precedederuption of the felsic reservoir magma, as a consequence ofupward dragging by the convecting reservoir of felsic magma.The mafic magma injection made the nearly rigid felsic magmaerupt, letting low-viscosity mixed and heated magmas open theconduit and vent. Indeed the lower fall white pumices preservea record of syneruptive slow ascent of magma to 2 km depth,probably associated with conduit formation. KEY WORDS: high-crystallinity felsic magma; magma plumbing system; multistage magma mixing; upward dragging of injected magma; vent opening by low-viscosity magma  相似文献   

5.
Lascar Volcano, Northern Chile; Evidence for Steady-State Disequilibrium   总被引:2,自引:0,他引:2  
Lascar Volcano, located in the Central Volcanic Zone of NorthernChile, is a medium-to high-K calc-alkaline stratovolcano. Threestages are recognized in the construction of the edifice, withactivity ranging from andesitic fissure eruptions to a large-volumedacitic pumice flow, the Soncor Flow. The eruption productsare predominantly two-pyroxene andesites and dacites, with somehornblende dacites occurring in the Soncor Flow. Disequilibriumtextures resulting from mixing between mafic and acid end-membersare recognized in all the eruption products, and geochemicalmodelling has been carried out to quantify the effects of magmamixing and fractional crystallization. A model is developedwhich explains the observed textures by the existence of a continuouslyfractionating magma chamber which receives periodic influxesof basaltic andesite. Primary anhydrite has been found in theSoncor pyroclastic flow. Anhydrite formation and sulphur dioxidedegassing are explained in terms of oxidation and quenchingof sulphide-rich mafic magma during mixing with the residentmore evolved magmas.  相似文献   

6.
Laser-ablation microanalysis of a large suite of silicate and sulfide melt inclusions from the deeply eroded, Cu-Au-mineralizing Farallón Negro Volcanic Complex (NW Argentina) shows that most phenocrysts in a given rock sample were not formed in equilibrium with each other. Phenocrysts in the andesitic volcano were brought together in dominantly andesitic—dacitic extrusive and intrusive rocks by intense magma mixing. This hybridization process is not apparent from macroscopic mingling textures, but is clearly recorded by systematically contrasting melt inclusions in different minerals from a given sample. Amphibole (and rare pyroxene) phenocrysts consistently contain inclusions of a mafic melt from which they crystallized before and during magma mixing. Most plagioclase and quartz phenocrysts contain melt inclusions of more felsic composition than the host rock. The endmember components of this mixing process are a rhyodacite magma with a likely crustal component, and a very mafic mantle-derived magma similar in composition to lamprophyre dykes emplaced early in the evolution of the complex. The resulting magmas are dominantly andesitic, in sharp contrast to the prominently bimodal distribution of mafic and felsic melts recorded by the inclusions. These results severely limit the use of mineral assemblages to derive information on the conditions of magma formation. Observed mineral associations are primarily the result of the mixing of partially crystallized magmas. The most mafic melt is trapped only in amphibole, suggesting pressures exceeding 350 MPa, temperatures of around 1,000 °C and water contents in excess on 6 wt%. Upon mixing, amphibole crystallized with plagioclase from andesitic magma in the source region of porphyry intrusions at 250 MPa, 950 °C and water contents of 5.5 wt%. During ascent of the extrusive magmas, pyroxene and plagioclase crystallized together, as a result of magma degassing at low pressures (150 MPa). Protracted extrusive activity built a large stratovolcano over the total lifetime of the magmatic complex (>3 m.y.). The mixing process probably triggered eruptions as a result of volatile exsolution.Electronic Supplementary Material Supplementary material (eTable 1and eFigure 1) is available for this article if you access the article at . A link in the frame on the left on that page takes you directly to the supplementary material.Editorial responsibility: T.L. Grove  相似文献   

7.
Clinopyroxenes from layered pyroxenites and from pyroxenite pods in felsic gneisses of the Lewisian granulite complex, NW Scotland, have distinctive chemistries suggestive of different origins. Clinopyroxenes in the layered pyroxenites crystallised from mafic melts in a magma chamber located in the middle to shallow crust, whereas clinopyroxenes in pods in the felsic gneisses crystallised from the tonalitic protolith to the felsic gneisses. In detail clinopyroxenes in the layered pyroxenites are variably enriched in the light REE. Inversion modelling shows that this is not a primary feature inherited from their parent magmas. Rather selective light rare earth element enrichment took place through reaction with a felsic melt generated by the localised partial melting of the hornblende pyroxenites during granulite facies metamorphism. Published isotopic evidence suggests that the light REE mobilisation took place at ca 2.7 Ga, about 200 Ma after the time of crust formation. This observation provides an explanation for the scattered pattern of whole-rock isochron ages from the Lewsian granulites.  相似文献   

8.
The paper reports the results of integrated geological, petrological, geochemical, and geochronological studies of the Tastau igneous ring complex in the Zaisan orogen of eastern Kazakhstan. Interaction between felsic and mafic magmas has been studied. Hybrid rocks are represented by gabbros and diorites injected into a granitic magma chamber. They occur as dikes and pillow-like and globular mafic bodies variously disintegrated and mixed with host granitoids. The age of synplutonic rocks is 242 ± 20 Ma (U/Pb zircon dating), which is, with regard to analytical error, substantially younger than it was presumed.Mechanisms of interaction between felsic and mafic magmas have been studied. They include mechanical (mingling) and chemical (mixing) interaction, which produce composite mixtures and hybrid rocks. The ratios of mafic to felsic components involved in the formation of intermediate rocks were calculated from major elements by regression analysis and tested with regard to rare and trace elements. The model for mingling includes rapid quenching of the mafic melt when it is injected into the granitic magma chamber, decomposition of crystalline fragments, dispersion of fragments and crystals in the magma chamber under conditions of rapid turbulent flow, and enrichment of felsic magma with femic components to produce monzonitic magmas.  相似文献   

9.
Abstract. Continental collisions are the place where granitic plutons result from the melting of crustal components. Granitic plutons are built up by successive input of magma with a variable composition and hence temperature and chemistry. The intrusion of a new magma batch has consequences on the element mobility in the melt. Diffusion in already formed crystals is limited, due to the short time interval between magma input, and because of the low values of element diffusivity in solids. Because the new magma is generally hotter than the magma chamber, the temperature in the contact zone is modified. It activates diffusion by and modifies its characteristic length for element mobility in the melt. A new intrusion also modifies the partition coefficients, decreasing compatibility and increasing the incompatibility. The change in temperature has also effects on fluid exsolution controlled by crystallization, or second boiling. The present paper examines the intrusion of magma (fel‐sic or mafic) into a felsic magma chamber with a time interval of 30 ky. The intrusion of magma with similar composition, hence low (±100d?C) temperature difference has few effects. The diffusion lengths for elements rarely exceed one order of magnitude. The fluids released by the cooling magma are balanced by their reincorporation into the warming magma. In contrast, the intrusion of mafic magma into felsic magma chamber results in temperature difference that can reach ±300d?C. It may change the diffusion length up to two orders of magnitude for elements having large activation energy. Partition coefficients also vary by more than one order of magnitude. The effect is enhanced in the warming felsic magma, and damped in the mafic magma. In consequence elements like As, Sn, Sr, W, Zr are driven from the mafic magma toward the felsic magma. The release of H2O and CO2 are balanced between the two magma types. However the mafic magma releases an important amount of S that cannot re‐dissolves into the felsic magma and remains in the fluid phase. This simple model also addresses processes acting during ore formation. In particular, it examines the behavior of ions with a four valences state, as Sn and W, which has implications on the incorporation of other elements sharing a similar structure. It points out the necessity of external factors (S, halogens content and redox conditions) for controlling ore formation.  相似文献   

10.
Ilmari Haapala  Sari Lukkari 《Lithos》2005,80(1-4):347-362
The 6×3 km Kymi monzogranite stock represents the apical part of an epizonal late-stage pluton that was emplaced within the 1.65 to 1.63 Ga Wiborg rapakivi batholith. The stock has a well-developed zonal structure, from the rim to the center: stockscheider pegmatite, equigranular topaz granite, porphyritic topaz granite. The contact between the two granites is usually gradational within a few centimeters, but local inclusions of the porphyritic granite in the equigranular granite indicate that the latter solidified later. Hydrothermal greisen and quartz veins, some of which contain genthelvite, beryl, wolframite, cassiterite, and sulfides, cut the granites of the stock and the surrounding country rocks. The equigranular granite contains 1 to 4 vol.% topaz, and its biotite is lithian siderophyllite; the porphyritic granite has 0 to 3 vol.% topaz, and the mica is siderophyllite. The equigranular granite is geochemically highly evolved with elevated Li, Rb, Ga, Ta, and F, and very low Ba, Sr, Ti, and Zr. The REE patterns show deep negative Eu anomalies and tetrad effects indicating extreme magmatic fractionation and aqueous fluid–rock interaction. The zonal structure of the stock is interpreted as a result of differentiation within the magma chamber. Internal convection in the crystallizing magma chamber and upward flow of residual melt as a boundary layer along sloping contacts resulted in accumulation of a layer of highly evolved, volatile-rich magma in the apical part of the chamber. Crystallization of this apical magma produced the stockscheider pegmatite and the equigranular granite; the underlying crystal mush solidified as the porphyritic granite. Much of the crystallization took place from volatile-saturated melt, and episodic voluminous degassing expelled fluids into opened fractures where they or their derivatives reacted with country rocks and caused alteration and mineralization.  相似文献   

11.
《International Geology Review》2012,54(10):1150-1162
Late Cretaceous calc-alkaline granites in the Gyeongsang Basin evolved through the mixing of mafic and felsic magmas. The host granites contain numerous mafic magmatic/microgranular enclaves of various shapes and sizes. New SHRIMP-RG zircon U–Pb ages of both granite and mafic magmatic/microgranular enclaves are 75.0?±?0.5 Ma and 74.9?±?0.6 Ma, respectively, suggesting that they crystallized contemporaneously after magma mixing. The time of injection of mafic melt into the felsic magma chamber can be recognized as approximately 75 Ma by field relations, petrographic features, geochemical evolution, and SHRIMP-RG zircon dating. This Late Cretaceous magma mixing event in the Korean Peninsula was probably related to the onset of subduction of the Izanagi (Kula)–Pacific ridge.  相似文献   

12.
The Ghansura Rhyolite Dome of the Bathani volcano-sedimentary sequence in eastern India originated from a subvolcanic felsic magma chamber that was intruded by volatile-rich basaltic magma during its evolution leading to the formation of a porphyritic andesite. The porphyritic andesite consists of rapakivi feldspars, which are characterized by phenocrysts of alkali feldspar mantled by plagioclase rims. Results presented in this work suggest that intimate mixing of the mafic and felsic magmas produced a homogeneous hybrid magma of intermediate composition. The mixing of the hot volatile-rich mafic magma with the relatively colder felsic magma halted undercooling in the subvolcanic felsic system and produced a hybrid magma rich in volatiles. Under such conditions, selective crystals in the hybrid magma underwent textural coarsening or Ostwald ripening. Rapid crystallization of anhydrous phases, like feldspars, increased the melt water content in the hybrid magma. Eventually, volatile saturation in the hybrid magma was reached that led to the sudden release of volatiles. The sudden release of volatiles or devolatilization event led to resorption of alkali feldspar phenocrysts and stabilizing plagioclase, some of which precipitated around the resorbed phenocrysts to produce rapakivi feldspars.  相似文献   

13.
Field and petrographic studies are carried out to characterize the interactions of mafic and felsic magmas from Pithora region of the northeastern part of the Bastar Craton. The MMEs, syn-plutonic mafic dykes, cuspate contacts, magmatic flow textures, mingling and hybridization suggest the coeval emplacement of end member magmas. Petrographic evidences such as disequilibrium assemblages, resorption textures, quartz ocelli, rapakivi and poikilitic textures suggest magma mingling and mixing phenomena. Such features of mingling and mixing of the felsic and mafic magma manifest the magma chamber processes. Introduction of mafic magmas into the felsic magmas before initiation of crystallization of the latter, results in hybrid magmas under the influence of thermal and chemical exchange. The mechanical exchange occurs between the coexisting magmas due to viscosity contrast, if the mafic magma enters slightly later into the magma chamber, then the felsic magma starts to crystallize. Blobs of mafic magma form as MMEs in the felsic magma and they scatter throughout the pluton due to convection. At a later stage, if mafic magma enters the system after partial crystallization of felsic phase, mechanical interaction between the magmas leads to the formation of fragmented dyke or syn-plutonic mafic dyke. All these features are well-documented in the study area. Field and petrographic evidences suggest that the textural variations from Pithora region of Bastar Craton are the outcome of magma mingling, mixing and hybridization processes.  相似文献   

14.
《International Geology Review》2012,54(12):1094-1116
Rhyolite, trachyte, pitchstone, and granophyre dikes are associated with mafic dolerite dikes and basaltic flows of the northwestern part of the Deccan flood basalt province in the Saurashtra Peninsula, India. Felsic dikes, exposed in the Rajula area of Saurashtra, are similar in age to the basaltic flows of neighboring Palitana. The ages of both the felsic and mafic rocks straddle the ~65 Ma Cretaceous-Tertiary boundary and correspond to the main Deccan flood basalt episode. Palitana is centered on an elongated gravity high whose major axis is NE-SW, and Rajula is located on its southwestern flank. Unlike the younger Bombay felsic rocks from the western coast of India, which have been explained as partial melts of gabbros in deep crustal sills or previously erupted basalts, the incompatible-element characteristics of the Rajula rocks indicate that the Rajula rhyolites, trachytes, and dacites may have been generated by an almost complete melting of upper crustal rocks at the southwestern flank of the Rajula-Palitana-Sihor magmatic body. High potential temperatures of the Deccan plume, quick migration of the hot basaltic parent magma through lithospheric weak trends, and collection and residence of magma in upper-crustal magma chambers before eruption may have produced the right conditions to melt the upper crust in the vicinity of the Rajula-Palitana-Sihor magma chamber. On the other hand, the andesite located northeast of the magmatic body possibly evolved by assimilation of upper-crustal wall rocks accompanied by 5-10% crystallization of a Rajula-type basalt near the wall of the magma chamber. The Sihor rhyolites may also have been derived from the Sihor basalts through fractional crystallization accompanied by crustal assimilation. The Rajula granophyres, however, do not show any involvement of the upper crust in their genesis. These may have a history similar to that of the Bombay rocks and may have erupted in response to rifting along the Cambay rift.  相似文献   

15.
贺电  李江海  刘守偈 《岩石学报》2009,25(3):659-666
火山岩油气藏已成为我国东部中、新生代陆内裂谷盆地内一种重要的油气藏类型。松辽盆地北部徐家围子断陷营城组火山岩中形成大规模气藏,不同火山岩相对油气的储集性差异很大,因此探究断陷内火山机构类型和喷发模式成为天然气勘探开发的基础。徐家围子断陷发育中酸性火山岩,识别出层状火山、熔岩穹隆、破火山口等3种主要火山机构赋存类型。受区域垂向和斜向两期拉张作用控制,在断裂上盘、下盘和断裂带,火山机构分别以不同形式展布:断裂下盘的掀斜肩部火山机构发育、断裂带火山机构串珠状叠置、断裂上盘火山爆发强烈并形成大型徐东破火山口。徐东破火山口的形成说明岩浆侵位于地壳底部,形成扁平状的岩浆房。岩浆垂直上升喷发或沿断裂喷发,形成徐家围子断陷中心式-裂隙式火山喷发模式。  相似文献   

16.
A flow-foliated felsic ignimbrite constitutes the uppermost lithological unit of the 1.58 Gyr anorogenic magmatic rocks in SW Finland. The ignimbrite is derived from an explosive eruption of hot (≅ 950 °C) phenocryst-bearing A-type (rapakivi-type granite magma.
The ignimbrite is close in composition to subvolcanic rapakivi granites that occur in the margins of the kand rapakivi batholith. The subvolcanic granites crystallized under a pressure of ≅ 1 kbar and at temperatures of about 650–700 °C. However, both major and rare earth elements show that the ignimbrite- forming magma was more fractionated than the magma forming the subvolcanic varieties.
Supported by evidence of mafic-felsic magma mingling, it is suggested that injection of hot mafic magma into a shallow magma chamber produced the high temperature of the ignimbrite-forming magma. This injection increased the magmatic and the volatile pressure that caused the eruption of the dry felsic magma.  相似文献   

17.
Crystallization experiments at 400 MPa, oxidized condition (logfO2= NNO + 1, where NNO is nickel–nickel oxide buffer) andover a range of temperatures (850–950°C) and fluidcomposition (XH2Oin = 0·3–1) have been carriedout to constrain the storage conditions of the sulphur-richmagma of the Huerto Andesite (an anhydrite, pyrrhotite, andS-rich apatite-bearing, post-Fish Canyon Tuff mafic lava). Theresults are used to evaluate the role of fluids released fromthe crystallization of magmas such as the Huerto Andesite onthe remobilization of the largely crystallized dacitic FishCanyon magma body. Experiments were performed using the naturalandesitic bulk composition with and without added sulphur. Thepresence of sulphur slightly affects the phase equilibria bychanging the phase proportions, stability fields of plagioclase,pyroxenes and ilmenite, and also affects the plagioclase composition.Phase equilibria and mineral composition data indicate thatthe magma may have contained 4·5 wt % water in the meltand that the pre-eruptive temperature was 875 ± 25°C.Assuming that the magma was in equilibrium with a fluid phase,the CO2 concentration of the melt is estimated to be in therange 2000–4000 ppm (at 400 MPa). Before eruption, theandesite had an oxidation state very close to, or slightly within,the co-stability field of anhydrite–pyrrhotite at NNO+ 1·1. At these conditions, the sulphur content in themelt is 500 ppm. Assuming open-system degassing resulting fromcontinuing crystallization at depth, most of the CO2 dissolvedin the andesitic melt should be released after the crystallizationof <10 vol. % of the magma, corresponding to a cooling from875 to 825–850°C. Thus, the fluids released owingto crystallization processes should be mainly composed of waterat temperatures below 825°C. KEY WORDS: experimental study; andesite; volatile; Fish Canyon Tuff; Huerto Andesite  相似文献   

18.
The Nimchak granite pluton (NGP) of Chotanagpur Granite Gneiss Complex (CGGC), Eastern India, provides ample evidence of magma interaction in a plutonic regime for the first time in this part of the Indian shield. A number of outcrop level magmatic structures reported from many mafic-felsic mixing and mingling zones worldwide, such as synplutonic dykes, mafic magmatic enclaves and hybrid rocks extensively occur in our study domain. From field observations it appears that the Nimchak pluton was a vertically zoned magma chamber that was intruded by a number of mafic dykes during the whole crystallization history of the magma chamber leading to magma mixing and mingling scenario. The lower part of the pluton is occupied by coarse-grained granodiorite (64.84–66.61?wt.% SiO2), while the upper part is occupied by fine-grained granite (69.80–70.57?wt.% SiO2). Field relationships along with textural and geochemical signatures of the pluton suggest that it is a well-exposed felsic magma chamber that was zoned due to fractional crystallization. The intruding mafic magma interacted differently with the upper and lower granitoids. The lower granodiorite is characterized by mafic feeder dykes and larger mafic magmatic enclaves, whereas the enclaves occurring in the upper granite are comparatively smaller and the feeder dykes could not be traced here, except two late-stage mafic dykes. The mafic enclaves occurring in the upper granite show higher degrees of hybridization with respect to those occurring in the lower granite. Furthermore, enclaves are widely distributed in the upper granite, whereas enclaves in the lower granite occur adjacent to the main feeder dykes.Geochemical signatures confirm that the intermediate rocks occurring in the Nimchak pluton are mixing products formed due to the mixing of mafic and felsic magmas. A number of important physical properties of magmas like temperature, viscosity, glass transition temperature and fragility have been used in magma mixing models to evaluate the process of magma mixing. A geodynamic model of pluton construction and evolution is presented that shows episodic replenishments of mafic magma into the crystallizing felsic magma chamber from below. Data are consistent with a model whereby mafic magma ponded at the crust-mantle boundary and melted the overlying crust to form felsic (granitic) magma. The mafic magma episodically rose, injected and interacted with an overlying felsic magma chamber that was undergoing fractional crystallization forming hybrid intermediate rocks. The intrusion of mafic magma continued after complete solidification of the magma chamber as indicated by the presence of two late-stage mafic dykes.  相似文献   

19.
In this paper we document widespread coeval felsic-mafic magma interaction and progressive hybridization near Gurgunta in the northern part of Eastern Dharwar Craton (EDC) where mafic magma pulses have injected into a 2.5 Ga granite pluton. The pluton contains voluminous pink porphyritic facies with minor equigranular grey facies. The mafic body shows compositional variation from diorite to meladiorite with hornblende as the chief mafic mineral with lesser clinopyroxene and biotite. The observed variation on binary diagrams suggests that granite was evolved by fractional crystallization. Chemical characteristics such as higher Al2O3 and moderate to high CaO, Mg#, Ni, Cr, Co and V are interpreted by slab-melting. Mafic bodies show lower SiO2, Na2O and K2O; but higher CaO, Mg#, FeO, Cr, Ni and V; higher LREE with moderate to higher HREE which suggest their derivation from mantle. A major active shear zone has played an important role at the time of synplutonic mafic injection and hybridization process. Field evidences suggest that the synplutonic mafic body has injected into the crystallizing felsic magma chamber in successive stages. The first stage injection has resulted in extensive mixing and hybridization due to the liquidus state of resident felsic magma to which hot mafic magma was injected. However, progressive mixing produced heterogeneity as the xenocrysts started mechanically dispersed into hybrid magma. The second stage injection, after a time gap, encountered colder and viscous hybrid magma in the magma chamber, which inhibited free injection. As a consequence, the mafic magma spread into magma chamber as flows, producing massive mafic bodies. However, with the continued mafic pulses and the heat gradient, the viscosity contrasts of mafic magma and felsic magma were again lowered resulting in second stage mixing. This episode was followed by mingling when the granite was almost crystallized, but still viscous enough to accommodate lamellar and ribbon like mafic penetrations to produce mingling. The successive mixing and mingling processes account for the observed heterogeneity in the granite pluton.  相似文献   

20.
The almandine-bearing biotite-cordierite-labradorite dacite of the Cerro del Hoyazo is part of the Neogene volcanic range in SE Spain, extending roughly from Cabo de Gata to Cartagena. About 1 vol. % of the lava consists of rock inclusions, measuring over 1 cm, made up of almandine-biotite-sillimanite gneiss, quartz-cordierite gneiss and spinel-cordierite rock. On the ground of their abundance, chemical composition, mineral content and structure, the first and the second type are interpreted as restite inclusions and the third type as recrystallized restite. These restites and the dacitic magma were derived syngenetically from a (semi-) pelitic rock sequence by means of anatexis: the (semi-)pelitic rocks separated into a granitoid melt and Al-rich restites. Euhedral almandine crystals found in the glass base of the dacite have a pre-magmatic origin, and may be compared directly to those in the restites. Another type of inclusion is represented by basic igneous rocks of varying grain size, comprising mainly basaltoid rocks and quartz-rich gabbros. These inclusions commonly bear some restite fragments of the kind mentioned above, and therefore are interpreted as representing basic magma of deeper origin that has absorbed some anatectic material. In part, the composite basic melt thus formed crystallized under plutonic conditions and fragments of the resulting quartz-rich gabbro were incorporated in a later stage in the dacitic melt. Another portion of the composite basic magma was incorporated in the dacitic melt (probably shortly before the eruption of the dacitic magma) as magma blebs (Ø ?1–20 cm) which subsequently crystallized in part, some of them showing a comparatively fine-grained border zone. Two possible hypotheses are suggested for the time relation between the anatexis of the (semi-) pelitic complex and the appearance of the basic magma: (a) the anatexis was of a regional nature, and was in progress when the basic magma entered the stage (and assumedly triggered the eruption of the granitoid magma); (b) the regional anatexis took place considerably earlier and the basic magma intruded an essentially solid migmatite complex, which was then melted down (contact anatexis) and subsequently erupted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号