首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Herbicide residues have been measured in the Great Barrier Reef lagoon at concentrations which have the potential to harm marine plant communities. Monitoring on the Great Barrier Reef lagoon following wet season discharge show that 80% of the time when herbicides are detected, more than one are present. These herbicides have been shown to act in an additive manner with regards to photosystem-II inhibition. In this study, the area of the Great Barrier Reef considered to be at risk from herbicides is compared when exposures are considered for each herbicide individually and also for herbicide mixtures. Two normalisation indices for herbicide mixtures were calculated based on current guidelines and PSII inhibition thresholds. The results show that the area of risk for most regions is greatly increased under the proposed additive PSII inhibition threshold and that the resilience of this important ecosystem could be reduced by exposure to these herbicides.  相似文献   

2.
Mangroves are sensitive to the root application of Photosystem II inhibiting herbicides and Avicennia marina is more sensitive than other mangroves tested. Seedlings of four mangrove species, including two salt-excreting species (A. marina and Aegiceras corniculatum) and two salt-excluding species (Rhizophora stylosa and Ceriops australis) were treated with a range of concentrations of the herbicides diuron, ametryn and atrazine. Assessment of responses required the separation of seedlings into two groups: those that had only their roots exposed to the herbicides through the water (A. marina and R. stylosa) and those that had both roots and leaves exposed to herbicides through the water (A. corniculatum and C. australis). Salt-excreting species in each group were more susceptible to all herbicide treatments than salt-excluding species, indicating that root physiology was a major factor in the uptake of toxic pollutants in mangroves. Submergence of leaves appeared to facilitate herbicide uptake, having serious implications for seedling recruitment in the field. Each herbicide was ranked by its toxicity to mangrove seedlings from most damaging to least effective, with diuron>ametryn>atrazine. The relative sensitivity of A. marina found in these pot trials was consistent with the observed sensitivity of this species in the field, notably where severe dieback had specifically affected A. marina in the Mackay region, north eastern Australia.  相似文献   

3.
This study examined the temporal variability in herbicide delivery to the Great Barrier Reef (GBR) lagoon (Australia) from one of the GBR catchment's major sugarcane growing regions. Annual loads of measured herbicides were consistently in the order of 200+kg. Atrazine, it's degradate desethylatrazine, and diuron contributed approximately 90% of annual herbicide load, with early 'first-flush' events accounting for the majority of herbicide loads leaving the catchment. Assessment of herbicide water-sediment partitioning in flood runoff highlighted the majority of herbicides were transported in predominantly dissolved form, although a considerable fraction of diuron was transported in particulate-bound form (ca. 33%). Diuron was also the herbicide demonstrating the highest concentrations and frequency of detection in sediments collected from catchment waterways and adjacent estuarine-marine environments, an outcome aligning with previous research. Herbicide physico-chemical properties appear to play a crucial role in partitioning between water column and sediment habitat types in GBR receiving ecosystems.  相似文献   

4.
The transport and potential toxicity of pesticides in Queensland (QLD) catchments from agricultural areas is a key concern for the Great Barrier Reef (GBR). In 2009, a pesticide monitoring program was established as part of the Australian and QLD Governments' Reef Plan (2009). Samples were collected at eight End of System sites (above the tidal zone) and three sub-catchment sites. At least two pesticides were detected at every site including insecticides, fungicides, herbicides, and the Reef Plan's (2009) five priority photosystem II (PSII) herbicides (diuron, atrazine, hexazinone, tebuthiuron and ametryn). Diuron, atrazine and metolachlor exceeded Australian and New Zealand water quality guideline trigger values (TVs) at eight sites. Accounting for PSII herbicide mixtures increased the estimated toxicity and led to larger exceedances of the TVs at more sites. This study demonstrates the widespread contamination of pesticides, particularly PSII herbicides, across the GBR catchment area which discharges to the GBR.  相似文献   

5.
Low concentrations of herbicides (up to 70 ng l(-1)), chiefly diuron (up to 50 ng l(-1)) were detected in surface waters associated with inter-tidal seagrass meadows of Zostera muelleri in Hervey Bay, south-east Queensland, Australia. Diuron and atrazine (up to 1.1 ng g(-1) dry weight of sediment) were detected in the sediments of these seagrass meadows. Concentration of the herbicides diuron, simazine and atrazine increased in surface waters associated with seagrass meadows during moderate river flow events indicating herbicides were washed from the catchment to the marine environment. Maximum herbicide concentration (sum of eight herbicides) in the Mary River during a moderate river flow event was 4260 ng l(-1). No photosynthetic stress was detected in seagrass in this study during low river flow. However, with moderate river flow events, nearshore seagrasses are at risk of being exposed to concentrations of herbicides that are known to inhibit photosynthesis.  相似文献   

6.
The behavior of the herbicides isoproturon (IPU) and chlortoluron (CTU) in ground water and shallow unsaturated zone sediments were evaluated at a site situated on the Chalk in southern England. Concentrations of IPU in ground water samples varied from < 0.05 to 0.23 microgram/L over a five-year period of monitoring, and were found to correlate with application of the pesticide. Concentrations of pesticides in ground water samples collected during periods of rising water table were significantly higher than pumped samples and suggest that rapidly infiltrating recharge water contains higher herbicide concentrations than the native ground water. Significant variations in herbicide concentrations were observed over a three-month period in ground water samples collected by an automated system, with concentrations of IPU ranging from 0.1 to 0.5 microgram/L, and concentrations of a recent application of CTU ranging from 0.2 to 0.8 microgram/L. Different extraction methods were used to assess pore water concentrations of herbicides in the unsaturated zone, and samples were analyzed by standard HPLC analysis and immunoassay (ELISA) methods. These data indicated highly variable concentrations of herbicide ranging from 4 to 200 g/ha for HPLC and 0.01 to 0.04 g/ha for ELISA, but indicate a general pattern of decreasing concentrations with depth. The results of this study indicate that transport of IPU and CTU through the unsaturated zone to shallow ground water occurs and that this transport increases immediately following herbicide application. Measured concentrations of herbicides are generally lower than specified by the European Union Drinking Water Directive, but are observed to spike above this limit. These results imply that, while delivery of pesticides to ground water can occur as a result of normal agricultural practices, the impact on potable supplies is likely to be negligible due to the potential for degradation during the relatively long travel time through the unsaturated zone and high degree of dilution that occurs within the aquifer. As a result of the wide variation in concentrations detected by different techniques, it is suggested that for future site investigations more than one sampling strategy be employed to characterize the occurrence of pesticide residues and elucidate the transport mechanisms.  相似文献   

7.
Photosystem II (PSII) herbicides have been shown to affect the photosynthesis of corals at low, environmentally relevant concentrations. The recent detection of the PSII herbicide Irgarol-1051 in coastal waters of Hong Kong at concentrations above the EC(50) for reduction of photosynthesis of corals prompted further investigation into the extent of PSII herbicide pollution in coral reefs of Hong Kong. Snap-shot and passive samples were taken from coral reef sites and evaluated via HPLC/MS-MS and a novel bioanalytical technique. Low concentrations (less than 10 ng L(-1)) of diuron and atrazine were found at all study sites. Extracts from these samples concentrated by a factor of 10 were found to reduce the photosynthetic yield of zooxanthellae. It appears unlikely that herbicide pollution is a key issue in isolation but may act synergistically with other stressors to reduce the viability of Hong Kong's coral reefs. The study has also demonstrated the feasibility of combining sample extraction techniques with a coral specific bioanalytical technique for a sensitive assessment of risks associated with herbicide exposure in corals.  相似文献   

8.
Since 1995, a network of municipal wells in Iowa, representing all major aquifer types (alluvial, bedrock/karst region, glacial drift, bedrock/nonkarst region), has been repeatedly sampled for a broad suite of herbicide compounds yielding one of the most comprehensive statewide databases of such compounds currently available in the United States. This dataset is ideal for documenting the insight that herbicide degradates provide to the spatial and temporal distribution of herbicides in ground water. During 2001, 86 municipal wells in Iowa were sampled and analyzed for 21 herbicide parent compounds and 24 herbicide degradates. The frequency of detection increased from 17% when only herbicide parent compounds were considered to 53% when both herbicide parents and degradates were considered. Thus, the transport of herbicide compounds to ground water is substantially underestimated when herbicide degradates are not considered. A significant difference in the results among the major aquifer types was apparent only when both herbicide parent compounds and their degradates were considered. In addition, including herbicide degradates greatly improved the statistical relation to the age of the water being sampled. When herbicide parent compounds are considered, only 40% of the wells lacking a herbicide detection could be explained by the age of the water predating herbicide use. However, when herbicide degradates were also considered, 80% of the ground water samples lacking a detection could be explained by the age of the water predating herbicide use. Finally, a temporal pattern in alachlor concentrations in ground water could only be identified when alachlor degradates were considered.  相似文献   

9.
Noxious weeds threaten the Sheyenne National Grassland (SNG) ecosystem and therefore herbicides have been used for control. To protect groundwater quality, the herbicide application is restricted to areas where the water table is less than 10 feet (3.05 m) below the ground surface in highly permeable soils, or less than 6 feet (1.83 m) below the ground surface in low permeable soils. A local MODFLOW model was extracted from a regional GFLOW analytic element model and used to develop depth‐to‐groundwater maps in the SNG that are representative for the particular time frame of herbicide applications. These maps are based on a modeled groundwater table and a digital elevation model (DEM). The accuracy of these depth‐to‐groundwater maps is enhanced by an artificial neural networks (ANNs) interpolation scheme that reduces residuals at 48 monitoring wells. The combination of groundwater modeling and ANN improved depth‐to‐groundwater maps, which in turn provided more informed decisions about where herbicides can or cannot be safely applied.  相似文献   

10.
1. In many countries of the tropical and sub-tropical regions, the water hyazinth has become a priority weed problem. The damage effects of the water hyazinth are very versatile and, therefore, control has proved to be absolutely necessary. This control may be realized mechanically, biologically and chemically, with chemical control being the most effective one so far. 2. The basis must be the determination of those quantities and concentrations of the active substances that will enable us to obtain the optimum herbicide efficiency in the control of water hyazinths with the minimum disturbance of the ecosystem. 3. Differences in the herbicide effect in the control of water hyazinths resulted from the different application procedures. There, the best possible effect of control was obtained by means of the spraying procedure having the greatest importance also in practical application. Due to their acute toxicity, the herbicides Gramoxone, Reglone and Azaplant-Kombi proved to be especially favourable. Azaplant had a lower and slower initial effect which could be improved in combination with Sys 67 Omnidel. In order to obtain an optimum phytotoxic effect with the simultaneously least disturbance of the ecosystem, converted 31 Gramoxone, 3 1 Reglone, 25 kg Azaplant-Kombi, 30 kg Azaplant and 20 kg Azaplant in combination with 25 kg Sys 67 Omnidel per hectare water surface proved to be favourable. 4. In the application via the water body, satisfying results could be obtained by means of Azaplant with an optimum concentration of 3.8 ppm and in combination with Sys 67 Omnidel (3.8 ppm + 6.7 ppm Sys 67 Omnidel). Application via the water body should only be realized where the spraying procedure cannot be used. 5. Compared with the necessary herbicide quantities established in literature for the control of aquatic plants, the optimum values determined here are in the range of minimum quantities and they thus result in the least indispensable contamination of the waters.  相似文献   

11.
《Marine pollution bulletin》2009,58(6-12):473-478
Photosystem II (PSII) herbicides have been shown to affect the photosynthesis of corals at low, environmentally relevant concentrations. The recent detection of the PSII herbicide Irgarol-1051 in coastal waters of Hong Kong at concentrations above the EC50 for reduction of photosynthesis of corals prompted further investigation into the extent of PSII herbicide pollution in coral reefs of Hong Kong. Snap-shot and passive samples were taken from coral reef sites and evaluated via HPLC/MS–MS and a novel bioanalytical technique. Low concentrations (less than 10 ng L−1) of diuron and atrazine were found at all study sites. Extracts from these samples concentrated by a factor of 10 were found to reduce the photosynthetic yield of zooxanthellae. It appears unlikely that herbicide pollution is a key issue in isolation but may act synergistically with other stressors to reduce the viability of Hong Kong’s coral reefs. The study has also demonstrated the feasibility of combining sample extraction techniques with a coral specific bioanalytical technique for a sensitive assessment of risks associated with herbicide exposure in corals.  相似文献   

12.
We began a study, in 1996, to compare ground water quality under irrigated and nonirrigated agriculture, sewered and nonsewered residential developments, industrial, and nondeveloped land uses. Twenty-three monitoring wells were completed in the upper meter of an unconfined sand aquifer. Between 1997 and 2000, sampling occurred quarterly for major ions, trace inorganic chemicals, volatile organic compounds (VOCs), herbicides, and herbicide degradates. On single occasions, we collected samples for polynuclear aromatic hydrocarbons (PAHs), perchlorate, and coliform bacteria. We observed significant differences in water chemistry beneath different land uses. Concentrations of several trace inorganic chemicals were greatest under sewered urban areas. VOC detection frequencies were 100% in commercial areas, 52% in sewered residential areas, and <10% for other land uses. Median nitrate concentrations were greatest under irrigated agriculture (15,350 microg/L) and nonsewered residential areas (6080 microg/L). Herbicides and degradates of acetanilide and triazine herbicides were detected in 86% of samples from irrigated agricultural areas, 68% of samples from nonirrigated areas, and <10% of samples from other land uses. Degradates accounted for 96% of the reported herbicide mass. We did not observe seasonal differences in water chemistry, but observed trends in water chemistry when land use changes occurred. Our results show land use is the dominant factor affecting shallow ground water quality. Trend monitoring programs should focus on areas where land use is changing, while resource managers and planners must consider potential impacts of land use changes on ground water quality.  相似文献   

13.
Photosystem II (PSII) herbicides are used in large quantities on agricultural lands adjoining the Great Barrier Reef (GBR). Routine monitoring at 14 sites in inshore waters of the GBR using passive sampling techniques detected diuron (32-94% of sampling periods) at maximum concentrations of 1.7-430ng L(-1) in the relatively pristine Cape York Region to the Mackay Whitsunday Region, respectively. A PSII herbicide equivalent (PSII-HEq) index developed as an indicator for reporting was dominated by diuron (average contribution 89%) and typically increased during the wet season. The maximum PSII-HEq indicates the potential for photosynthetic inhibition of diatoms, seagrass and coral-symbionts. PSII herbicides were significantly positively correlated with remotely sensed coloured dissolved organic matter, a proxy for freshwater extent. Combining these methods provides for the first time the potential to cost-effectively monitor improvements in water quality entering the GBR with respect to exposure to PSII herbicides.  相似文献   

14.
Glyphosate is globally a widely used herbicide, yet there is little information on their toxicity to marine fishes. Java medaka, a small tropical fish native to coastal areas in several Southeast Asian countries, is viewed as a suitable candidate for toxicity test and thus was used for this study. Java medaka adults were cultured in the laboratory and the fertilized eggs of the F2 generation were exposed to different concentrations of glyphosate-based herbicide (100, 200, 300, 400 and 500 ppm) until they hatched. The survival and hatching rates of the embryos, changes in the heart rate and morphological impairments were recorded. Generally, survival and hatching percentage decreased as glyphosate concentration increased. Absence of pectoral fin(s) and cornea, permanently bent tail, irregular shaped abdomen, and cell disruption in the fin, head and abdomen are among the common teratogenic effects observed. Furthermore, risk factor also increased with the increased in glyphosate concentrations.  相似文献   

15.
Natural waters often contain complex mixtures of unknown contaminants potentially posing a threat to marine communities through chemical interactions. Here, acute effects of the photosystem II-inhibiting herbicides diuron, tebuthiuron, atrazine, simazine, and hexazinone, herbicide breakdown products (desethyl-atrazine (DEA) and 3,4-dichloroaniline (3,4-DCA)) and binary mixtures, were investigated using three tropical benthic microalgae; Navicula sp. and Cylindrotheca closterium (Ochrophyta) and Nephroselmis pyriformis (Chlorophyta), and one standard test species, Phaeodactylum tricornutum (Ochrophyta), in a high-throughput Maxi-Imaging-PAM bioassay (Maxi-IPAM). The order of toxicity was; diuron > hexazinone > tebuthiuron > atrazine > simazine > DEA > 3,4-DCA for all species. The tropical green alga N. pyriformis was up to 10-fold more sensitive than the diatoms tested here and reported for coral symbionts, and is recommended as a standard tropical test species for future research. All binary mixtures exhibited additive toxicity, and the use of herbicide equivalents (HEq) is therefore recommended in order to incorporate total-maximum-load measures for environmental regulatory purposes.  相似文献   

16.
The rational use of pesticides generates an impact which is normally reversed and eliminated by the environment itself. However, the indiscriminate use of pesticides makes its natural degradation rhythm difficult, prolonging their presence in the soil for a great deal of time. Aiming towards a decrease in the environmental impact of pesticides, soil microorganisms capable of degrading pesticides, such as propanil, were investigated. An Enterobacter cloacae strain, isolated from rice field soil, was exposed to the herbicide propanil alone and in a mixture containing also bentazone, clomazone, quinclorac, and 2,4‐D. This bacterium was able to eliminate 100% of the applied propanil in 28 days. Propanil degradation in the 5‐herbicide mixture was much lower than that of individual pesticide degradation. The aeration of the system helped to degrade propanil and its subproduct 3,4‐dichloroaniline much faster. LC with UV detection was used to determine the remaining concentrations of the herbicides and their subproducts.  相似文献   

17.
The ecotoxicological effects of Photosystem II herbicides on corals   总被引:1,自引:0,他引:1  
The recent discovery of contamination of the tropical marine environment by Photosystem II (PSII) herbicides used in agriculture and antifouling paints has led to concerns regarding the effects on corals and their symbiotic dinoflagellate algae. In reviewing the ecotoxicological studies conducted so far, PSII herbicides appear able to readily penetrate the coral tissues and rapidly (within minutes) reduce the photochemical efficiency of the intracellular algal symbionts. The dinoflagellates appear at least as sensitive to PSII herbicides as other phototrophs tested so far, with photosynthesis being affected at exceptionally low concentrations (i.e. in the ngl(-1) range). At these levels and over short exposure periods, the effects can be fully reversible (i.e. when corals are returned to clean seawater) and vary according to type of herbicide; however, when exposed to higher concentrations in the light or over longer exposure periods, it results in a long-term sustained reduction of the photochemical efficiency of the algae (symptomatic of chronic photoinhibition). This can result in the dissociation of the symbiosis (bleaching) which is a common but nevertheless significant sub lethal stress response requiring many months to recover from. It is argued that the reliance of corals on an endosymbiotic photoautotrophic energy source, together with predilection for the symbiosis to dissociate when photosynthesis of the algae is affected, renders coral particularly susceptible to changes in environmental conditions-and especially phytotoxins such as PSII herbicides.  相似文献   

18.
A field tracer test performed under natural flow conditions at the Twin Lake test site, Chalk River Laboratories of the Atomic Energy of Canada Ltd. in Chalk River, Ontario, Canada, using tritium and three herbicides (Chlortoluron, Terbuthylazine, and Pendimethalin) was interpreted using the dispersion equation with a combined reaction model. The reaction model couples an instantaneous equilibrium reaction governed by a linear adsorption isotherm with a reversible or irreversible kinetic reaction of the first order, and decay. An improved interpretation method consists of a simultaneous fitting of theoretical concentration and mass-recovery curves to the experimental data, which leads to a more reliable determining of reaction models and improves the accuracy of fitting. Tritium served as the reference tracer to determine the flow velocity, dispersivity, and the recovery of the herbicides. Chlortoluron was slightly delayed by equilibrium exchange with strongly reduced concentration due to an irreversible kinetic reaction and/or decay. Terbuthilazine was slightly delayed by equilibrium exchange, with strongly reduced concentration due to a reversible kinetic reaction with some influence of decay. A strong equilibrium reaction and a strong reversible kinetic reaction without degradation governed the transport of Pendimethalin, reducing considerably its concentration. The results obtained show that simulations based only on Kd and decay constant, especially if these parameters are found in the laboratory, may considerably differ from those performed with reaction parameters determined in properly performed field tests. The dominant reaction types, and the values of parameters found in the study, supply useful information on the transport of the investigated herbicides in sandy aquifers under natural flow conditions.  相似文献   

19.
The 2010-2011 wet season was one of extreme weather for the State of Queensland, Australia. Major rivers adjacent to the Great Barrier Reef (GBR) were discharging at rates 1.5 to >3 times higher than their long term median. Exposure to photosystem II herbicides has been routinely monitored over a period of up to 5 years at 12 inshore GBR sites. The influence of this wet season on exposure to photosystem II herbicides was examined in the context of this long-term monitoring record and during flood plume events in specific regions. Median exposures expressed as diuron equivalent concentration were an average factor of 2.3 times higher but mostly not significantly different (p<0.05) to the median for the long-term monitoring record. The herbicides metolachlor and tebuthiuron were frequently detected in flood plume waters at concentrations that reached or exceeded relevant water quality guidelines (by up to 4.5 times).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号