首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
西边界流输运可以用Sverdrup理论推算出来.本文首先利用ECMWF再分析风场数据,计算了44年的月平均的风应力旋度及Sverdrup体积输运,在北太平洋3条纬度上对Sverdrup体积输运进行积分,得到Sverdrup体积输运的季节变化,从中发现,在向赤道流动的方向上,Sverdrup体积输运在冬季存在最大值,夏季存在最小值;同样利用ECMWF再分析波浪数据,计算了44a的月平均的Stokes体积输运,在相同纬度上对Stokes体积输运进行积分,得到Stokes体积输运的季节变化,从结果中发现,在向赤道流动的方向上,Stokes输运在冬季存在最大值,在夏季存在最小值.在本文中设定R=T_(st)/T_(sv)×100%,T_(st)为Stokes体积输运,T_(sv)为Sverdrup体积输运,发现Stokes输运和Sverdrup输运存在同位相的季节变化,并且(-R)冬季平均值在5%以上,年平均值在2%~3%左右,从而推断出波浪诱导的输运对Sverdrup输运,既对西边界流有不可忽视的贡献.  相似文献   

2.
Recent observations suggest that the annual mean southward transport of the East Sakhalin Current (ESC) is significantly larger than the annual mean Sverdrup transport. Motivated by this observational result, transport of a western boundary current has been investigated using a simple numerical model with a western slope. This transport is defined as the instantaneous barotropic transport integrated from the western boundary to the offshore point where the barotropic velocity vanishes. The model, forced by seasonally varying wind stress, exhibits an annual mean of the western boundary current transport that is larger than that of the Sverdrup transport, as observed. The southward transport from October to March in the model nearly equals the instantaneous Sverdrup transport, while the southward transport from April to September decreases slowly. Although the Sverdrup transport in July vanishes, the southward transport in summer nearly maintains the annual mean Sverdrup transport, because the barotropic Rossby wave cannot intrude on the western slope. This summer transport causes the larger annual mean. Although there are some uncertainties in the estimation of the Sverdrup transport in the Sea of Okhotsk, the seasonal variation of the southward transport in the model is qualitatively similar to the observations.  相似文献   

3.
基于Pedlosky(1987)的线性Muck边界层模型,引入一随纬向空间变化的侧摩擦系数AH(x),以探讨该参数对西边界流的强化结构的影响。结果发现,在风应力和内区解保持不变的情况下,适中线性变化的AH(x)会使西边界层内的向北急流和其靠内区一侧的逆流均得到加强。文中还给出摩擦应力、相对涡度及平均动能向涡动能的转化率在西边界层内的分布情况。  相似文献   

4.
Variations of the western boundary currents induced by a periodic change in wind stress are studied in a two-layer model with a continental slope along the western boundary. The variation of the total transport of the western boundary current over the continental slope shows a considerable phase lag with the wind stress and a decrease in amplitude compared with for the flat bottom ocean, though the interior barotropic response is to adjust almost instantaneously to the wind stress. The total transport variation of the western boundary current is well approximated by the upper layer transport variation. That is, almost complete separation of the upper- and lower-layer flows takes place over the slope, and only the upper layer flow contributes to the change in total transport of the western boundary current. Contributions of the interior barotropic and baroclinic responses to the upper layer transport variation depend on the forcing period. With decrease in the forcing period, the barotropic response becomes relatively important for determining the upper layer transport variation although the amplitude of the variation is smaller.  相似文献   

5.
北太平洋海表温度及各贡献因子的变化   总被引:2,自引:0,他引:2  
刘珊  王辉  姜华  金啟华 《海洋学报》2013,35(1):63-75
采用1958年1月至2007年12月SODA海洋上层温度的月平均资料,基于海温变化方程和统计分析方法,分析了北太平洋海表面温度(SST)异常特征及各局地因子贡献比例的变化。结果表明,伴随着1976/1977风场最强中心位置的南北移动,形成了两个北太平洋SST年际-年代际变化的异常中心:一个是位于30°N附近的副热带海盆内区,SST异常主要受风应力强度的主导;一个是位于40°N附近的副热带和副极地环流交汇区,SST异常主要受风应力旋度的位置即风场位置的影响。在副热带海盆内区,最强降温发生在1978-1982年,SST异常的主要局地贡献因子为海表热通量和经向平流,二者所占比例和约为50%~60%,均为同相增温或降温作用,余项所占比例约为20%~50%。在副热带和副极地环流交汇区,海盆内区和西部边界区的SST异常的跃变时间同为1975年,但是内区的垂直混合项的跃变时间早于西部5年左右。SST异常的主要贡献因子为海表热通量和经向平流,但在1983-1988年海温强降温期间,经向平流项贡献大于海表热通量项的贡献。两个区域的垂直混合项均为降温贡献,虽然量值小却显示出很强的年代际变化信号。平流项中经向平流最大,垂直平流最小。  相似文献   

6.
《Ocean Modelling》2010,31(4):310-322
A global spectral barotropic ocean model is introduced to describe the depth-averaged flow. The equations are based on vorticity and divergence (instead of horizontal momentum); continents exert a nearly infinite drag on the fluid. The coding follows that of spectral atmospheric general circulation models using triangular truncation and implicit time integration to provide a first step for seamless coupling to spectral atmospheric global circulation models and an efficient method for filtering of ocean wave dynamics. Five experiments demonstrate the model performance: (i) Bounded by an idealized basin geometry and driven by a zonally uniform wind stress, the ocean circulation shows close similarity with Munk’s analytical solution. (ii) With a real land–sea mask the model is capable of reproducing the spin-up, location and magnitudes of depth-averaged barotropic ocean currents. (iii) The ocean wave-dynamics of equatorial waves, excited by a height perturbation at the equator, shows wave dispersion and reflection at eastern and western coastal boundaries. (iv) The model reproduces propagation times of observed surface gravity waves in the Pacific with real bathymetry. (v) Advection of tracers can be simulated reasonably by the spectral method or a semi-Langrangian transport scheme. This spectral barotropic model may serve as a first step towards an intermediate complexity spectral atmosphere–ocean model for studying atmosphere–ocean interactions in idealized setups and long term climate variability beyond millennia.  相似文献   

7.
A reduced-gravity primitive equation eddy resolving model is used to study the interaction of a typhoon-induced eddy and a wind-driven general circulation. A typhoon-induced eddy is characterized by a core with a relative vorticity of the same order as the local Coriolis parameter. This eddy is neutrally stable relative to a disturbance induced by the westward advection of the eddy, due to the planetary β-effect. Hence, its evolution in the open ocean is similar to the classical frontal geostrophic eddy. Within the western boundary flow regime, the eddy is entrained northward by the mean circulation. This northward eddy advection and the mean-vorticity advection due to eddy flow induce another disturbance with a north-south asymmetry into the circular eddy. Together with the zonal asymmetric disturbance, associated with the planetary β-effect, the original circular eddy becomes unstable. The nonlinear eddy-flow interactions in the eastern flank of a western boundary current causes the eddy to deform quickly into an ellipse and lose its waters and energy into the mean circulation.  相似文献   

8.
The NSF-sponsored Coastal Ocean Processes Wind Events and Shelf Transport (WEST) experiment investigates the interplay between wind-driven transport and shelf productivity; while eastern boundary shelves are characterized by high productivity due to upward fluxes of nutrients into the euphotic zone, wind forcing also represents negative physical and biological controls via offshore transport and deep (light-limiting) mixing of primary producers. Although this interaction has been well documented for eastern boundary systems generally and for California specifically, one of the primary goals of WEST was to characterize more fully the interplay between positive and negative effects of wind stress, which result in the consistently elevated biological productivity in these shelf regions. During 3 month-long summer cruises (2000–2002) we observed extremes in upwelling/relaxation, using both in situ instrumentation and remotely sensed data. Relationships between optical and physical properties were examined, with emphasis on biogeochemical implications. During 2000, the WEST region was optically dominated by phytoplankton and covarying constituents. During 2001 and 2002, periods of more intense upwelling favorable winds, we observed a transition to optical properties dominated by detrital and inorganic materials. In all years, the continental shelf break provided a natural boundary between optically distinct shelf and open ocean waters. During 2002, we obtained discrete trace-metal measurements of particulate iron and aluminum; we develop a bio-optical proxy for acetic-acid leachable iron from backscatter and fluorescence, and demonstrate that particulate iron is not well correlated to traditional upwelling proxies such as macronutrients, temperature, and salinity. We conclude that the shelf break between ca. 100 and 200 m water depth serves as a natural break point between coastal and oceanic water masses in this region, and that the elevated biomass and productivity associated with this eastern boundary current regime is dominated by these iron rich, shallow shelf waters.  相似文献   

9.
ENSO variability and the eastern tropical Pacific: A review   总被引:3,自引:0,他引:3  
El Niño-Southern Oscillation (ENSO) encompasses variability in both the eastern and western tropical Pacific. During the warm phase of ENSO, the eastern tropical Pacific is characterized by equatorial positive sea surface temperature (SST) and negative sea level pressure (SLP) anomalies, while the western tropical Pacific is marked by off-equatorial negative SST and positive SLP anomalies. Corresponding to this distribution are equatorial westerly wind anomalies in the central Pacific and equatorial easterly wind anomalies in the far western Pacific. Occurrence of ENSO has been explained as either a self-sustained, naturally oscillatory mode of the coupled ocean–atmosphere system or a stable mode triggered by stochastic forcing. Whatever the case, ENSO involves the positive ocean–atmosphere feedback hypothesized by Bjerknes. After an El Niño reaches its mature phase, negative feedbacks are required to terminate growth of the mature El Niño anomalies in the central and eastern Pacific. Four requisite negative feedbacks have been proposed: reflected Kelvin waves at the ocean western boundary, a discharge process due to Sverdrup transport, western Pacific wind-forced Kelvin waves, and anomalous zonal advections. These negative feedbacks may work together for terminating El Niño, with their relative importance being time-dependent.ENSO variability is most pronounced along the equator and the coast of Ecuador and Peru. However, the eastern tropical Pacific also includes a warm pool north of the equator where important variability occurs. Seasonally, ocean advection seems to play an important role for SST variations of the eastern Pacific warm pool. Interannual variability in the eastern Pacific warm pool may be largely due to a direct oceanic connection with the ENSO variability at the equator. Variations in temperature, stratification, insolation, and productivity associated with ENSO have implications for phytoplankton productivity and for fish, birds, and other organisms in the region. Long-term changes in ENSO variability may be occurring and are briefly discussed. This paper is part of a comprehensive review of the oceanography of the eastern tropical Pacific.  相似文献   

10.
琉球群岛以东的西边界流与东海黑潮流量时空特征的研究   总被引:1,自引:1,他引:0  
通过最新的高分辨率再分析海洋数据资料,对于东海黑潮以及琉球群岛以东海域的海流进行了研究。结果表明琉球群岛以东西边界流最大流速出现在600~1200 m深度的地形坡度最大处,大小约为0.2 m/s。由于冲绳岛以南庆良间水道的水交换对于东海黑潮流量有重要的影响,东海黑潮的平均流量从南向北逐渐递增,平均流量为28×106~35×106m3/s;琉球群岛以东的西边界流流量则比东海黑潮小一个量级,平均值小于其变化的方差;由于受庆良间水道海流的影响,冲绳岛东侧的流量要远小于奄美大岛东侧的流量。同一纬度大洋中西传的Rossby波对琉球群岛以东的西边界流有较大影响,因此琉球群岛以东西边界流的流量有大约100 d的显著变化周期。庆良间水道以南的东海黑潮由于主要受台湾以东黑潮流量的控制,也有大约100 d的显著变化周期,庆良间水道以北的东海黑潮则没有该特征。  相似文献   

11.
The possible influences of the Emperor Seamounts (ESs) upon the subarctic gyre of the North Pacific (NPSAG) were investigated by a series of numerical experiments. In the experiments, a two-layer ocean with a meridional mountain ridge was forced by seasonally varying wind stress. We focused on how the return ratio, the ratio of the boundary transport along the eastern side of the ridge to the interior Sverdrup transport, changes with ridge height, width and density stratification. It was found that the return ratio can be large if the ridge width is greater than the width of the viscous boundary layer. In this case, the bottom pressure torque determines the return ratio; the return ratio is almost proportional to the ridge height when the ridge height is small and some contours of planetary potential vorticity pass over the ridge. However, the return ratio is independent of the ridge height and decreases with the stratification when the ridge height is large and all the contours of planetary potential vorticity are closed. These dependences of the return ratio were understood in terms of barotropic and baroclinic components of the bottom pressure torque. Implications for the bathymetric influences of ESs on the actual NPSAG are also discussed.  相似文献   

12.
The present study investigates the way an ocean filled with homogeneous warm water is cooled by prescribing cold water formation inside the ocean in the southern part of the southern hemisphere using multi-level numerical models. Cooling of the whole ocean starts with introduction of the cold water from the formation region into the deepest part of the ocean in the equatorial and eastern boundary regions by Kelvin wave-type density currents. The cold water along the eastern boundary extends westward as a Rossby wave-type density current setting up an interior poleward flow, and hits the western boundary to form a northward flowing boundary current in the northern hemisphere. Only then does the western boundary current cross the equator. Cooling of the rest of the ocean basin is accomplished by upwellings in the interior and also along the coasts. During this introduction the cold water is mixed with surrounding warm waters, and the thermocline, rather than forming just below the top level where heating is imposed, tends to spread down to deeper depths. Consequently the circulation at a steady state has a significant vertical structure such that the maximum upwelling in the interior occurs in the mid-depths, and only the deeper part of the deep ocean yields the Stommel and Arons circulation pattern. In the equatorial region higher vertical mode motions dominate, and a set of alternating zonal jets forms along the equator.  相似文献   

13.
Wind-stress products supplied by satellite scatterometers carried the European Remote-sensing Satellite (ERS) and QuikSCAT (QSCAT), together with numerical weather predictions from the European Centre for Medium Range Weather Forecasting (ECMWF) and the National Centre for Environmental Prediction (NCEP) were used to estimate wind-driven transports of the North Pacific subtropical gyre. At 30°N, we compared the wind-driven transports with geostrophic transports calculated from World Ocean Database 2005. The wind-driven transports for QSCAT and NCEP are in good agreement with the geostrophic transport within reasonable error, except for a regional difference in the eastern part of the section. The difference in the eastern part suggests an anti-cyclonic deviation of the geostrophic transport, resulting from an anti-cyclonic anomalous flow in the surface layer. It is suggested that this anomalous flow is the Eastern Gyral, produced by the thermohaline process associated with the formation of the Eastern Subtropical Mode Water. To investigate the validity of QSCAT and NCEP data, we examined whether or not the Sverdrup transports for these products are consistent with the transport of the western boundary current estimated by past studies. The net southward transport, given by the sum of the Sverdrup transport for QSCAT and NCEP and the thermohaline transport, agrees well with the net northward transport of the western boundary current. From this result, together with the fact that the wind-driven transports for these products are in good agreement with the geostrophic transport, we conclude that the Sverdrup balance can hold in the North Pacific subtropical gyre.  相似文献   

14.
综述了近20年来国内外学者在研究北太平洋西边界流的平均结构及NEC分叉动力机制、NM K流系平均输运的分配及变化、NM K流系季节及年际变化规律及其与EN SO之间的关系、NM K流系在热带和亚热带水交换中的作用以及水团的平均分布特征等方面所取得的主要成果。通过分析,发现东亚季风、R ossby波和K e lv in波等是影响北太平洋西边界流的主要因素;而缺乏长期直接的海流观测资料是深入研究北太平洋西边界流遇到的最大障碍。  相似文献   

15.
The common geostrophic estimation of ocean current velocity uses only water temperature and conductivity profiles. The geostrophic volume transport of a western boundary current, like the Taiwan Current (Kuroshio east of Taiwan), between the coast and its eastern boundary can be easily estimated based on hydrographic survey data. But the eastern boundary of the Taiwan Current is very uncertain due to extremely variable hydrographic conditions. This uncertainty is strongly correlated with the propagating mesoscale eddies originating from the interior of the western North Pacific Ocean. The uncertainty of estimated transport can be greatly reduced if eddy distribution is considered when determining the integration boundaries with the assistance of satellite altimeter measurements. Eight hydrographic surveys east of Taiwan between November 1992 and June 1996 are demonstrated in this study. The average geostrophic transport of the Taiwan Current with a reference set to 1000 dbar at 22°N between the east coast of Taiwan and 124°E is 22.9 ±14.2 Sv and changes to 22.1 ± 8.3 Sv, the uncertainty of which is nearly halved after taking account of the eddy distribution. The estimation uncertainty is insensitive to vertical displacements of the reference level within the depth range between 800 and 2000 dbar. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
The South China Sea (SCS) is a narrow semi-enclosed basin, ranging from 4°–6°N to 21°–22°N meridionally. It is forced by a strong annual cycle of monsoon-related wind stress. The Coriolis parameter f increases at least three times from the southern basin to the northern basin. As a result, the basin-cross time for the first baroclinic Rossby wave in the southern part of the basin is about 10-times faster than that in the northern part, which plays the most vitally important role in setting the circulation. At the northernmost edge of SCS, the first baroclinic Rossby wave takes slightly less than 1 year to move across the basin, however, it takes only 1–2 months in the southernmost part. Therefore, circulation properties for a station in the model ocean are not solely determined by the forcing at that time instance only; instead, they depend on the information over the past months. The combination of a strong annual cycle of wind forcing and large difference of basin-cross time for the first baroclinic Rossby wave leads to a strong seasonal cycle of the circulation in the SCS, hence, the circulation is dominated by the forced oscillations, rather than the quasi-steady state discussed in many textbooks.The circulation in the SCS is explored in detail by using a simple reduced gravity model forced by seasonally varying zonal wind stress. In particular, for a given time snap the western boundary current in the SCS cannot play the role of balancing mass transport across each latitude nor balancing mechanical energy and vorticity in the whole basin. In a departure from the steady wind-driven circulation discussed in many existing textbooks, the circulation in the SCS is characterized by the imbalance of mechanical energy and vorticity for the whole basin at any part of the seasonal cycle. In particular, the western boundary current in the SCS cannot balance the mass, mechanical energy, and vorticity in the seasonal cycle of the basin. Consequently, the circulation near the western boundary cannot be interpreted in terms of the wind stress and thermohaline forcing at the same time. Instead, circulation properties near the western boundary should be interpreted in terms of the contributions due to the delayed wind stress and the eastern boundary layer thickness. In fact, there is a clear annual cycle of net imbalance of mechanical energy and vorticity source/sink. Results from such a simple model may have important implications for our understanding of the complicated phenomena in the SCS, either from in-situ observations or numerical simulations.  相似文献   

17.
Seasonal variation in the wind-driven circulation in the Japan Sea is studied with reference to the branching of the Tsushima Current using a two-layer model with simplified bottom and coastal topography. The system is driven by wind stress, an inflow corresponding to the Tsushima Current and by the two outflows corresponding to the Tsugaru and Soya Currents.In the first phase, an annual mean wind stress is imposed and a quasi-stationary state is obtained. In the next phase, a seasonally varying wind stress is imposed. Seasonal variation in the wind stress plays an important role in the branching system of the Tsushima Current. In winter, an intensified western boundary current with a prominent inner circulation is formed as a result of a strong wind stress of winter monsoon with negative wind stress curl. In spring to summer, the western boundary current is weak, but the topographic branch along the Japanese coast is intensified. The weak western boundary current is caused by weak wind stress with positive wind stress curl, which induces cyclonic Sverdrup flow in the Japan Sea and causes its western boundary current to flow in the opposite direction to the prescribed northward boundary inflow current. The topographic branch is strongest in late spring and moves offshore in summer, in agreement with the central branch denoted by Kawabe (1982b). Some of the observational features of the Tsushima Current are successfully simulated.  相似文献   

18.
Numerical experiments with a multi-level general circulation model have been performed to investigate basic processes of westward propagation of Rossby waves excited by interannual wind stress forcing in an idealized western North Pacific model with ocean ridges. When the wind forcing with an oscillation period of 3 years is imposed around 180°E and 30°N, far from Japan, barotropic waves excited by the wind can hardly cross the ridges, such as the Izu-Ogasawara Ridge. On the other hand, a large part of the first-mode baroclinic waves are transmitted across the ridges, having net mass transport. The propagation speed of the first-mode baroclinic wave is accelerated (decelerated) when an anticyclonic (cyclonic) circulation is formed at the sea surface, due to a deeper (shallower) upper layer, and to southward (slightly northward) drift of the circulation. Thus, when the anticyclonic circulation is formed on the northern side of the cyclonic one, they propagate almost together. The second-mode baroclinic waves converted from the first-mode ones on the ridges arrive south of Japan, although their effects are small. The resulting volume transport variation of the western boundary current (the Kuroshio) reaches about 60% of the Sverdrup transport variability estimated from the wind stress. These characteristics are common for the interannual forcing case with a longer oscillation period. In the intraseasonal and seasonal forcing cases, on the other hand, the transport variation is much smaller than those in the interannual forcing cases. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
On the general ocean circulation forced by the asymmetric wind stress curl, the role of the eddies which are detached from the western boundary current is studied using an eddy-resolving two-layered quasi-geostrophic numerical model with free-slip boundary condition. An ideal sinusoidal function is used as the wind stress curl, and amplitude is assumed to be larger over the southern basin than over the northern one. In contrast with the antisymmetric wind forcing, in the asymmetric wind stress case, the subtropical western boundary current overshoots to the north from the zero wind stress curl line. As the asymmetricity of the wind forcing becomes larger, the separation point of the time mean field is located further north. The eddies generated in the region of the subtropical recirculation are advected northward by the western boundary current and they are detached from subtropical gyre. The release of these eddies to the north basin leads to weaken the subtropical recirculation system. From the analysis of the potential vorticity budgets, in the asymmetric case, it is shown that detached eddies play an important role in transporting the negative vorticity which is excessively inputted into the southern basin, to the northern basin, in addition to the terms which transport vorticity in the antisymmetric case, i.e., the vorticity transport by the meander of the jet. Under the free-slip boundary, more than a quarter of that excess vorticity is transported by those detached eddies in some cases.  相似文献   

20.
2006年夏季琼东、粤西沿岸上升流研究   总被引:3,自引:1,他引:2  
利用2006年夏季广东、海南、广西近海的海洋水文调查资料和卫星遥感QuikSCAT风场资料分析琼东、粤西沿岸上升流的空间结构特征, 探讨风场、风应力旋度对上升流的影响以及上升流区水温、海流、海平面对上升流的响应。结果表明:琼东、粤西沿岸上升流区并非相互独立, 从10 m层以下已经连成一片。琼东沿岸上升流主要由夏季西南季风驱动而产生, 风应力旋度也有一定贡献。琼东沿岸上升流的强度比粤西强。琼东沿岸海域的上层海水(18 m以浅)以离岸运动为主, 中下层海水以向岸运动为主。上层的离岸流速大于中下层的向岸流速。琼东沿岸的上升流现象是间歇性的, 与沿岸风速强弱有关。琼东沿岸海域海平面的升降与上升流的强弱有良好的关系, 上升流的强弱滞后于海平面的升降约1~2 d。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号