首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper we are concerned with incompressible MHD turbulence in a rotating system and have derived an equation for the rate of change of vorticity covariance of MHD turbulent flow. The result derived shows that the defining scalars (r,t), (r,t), and (r,t) for the rate of change of vorticity covariance solely depend on the defining scalars of the tensorsW ij, Pik,j, Fkj,i, Tik,j, andR kj,ialready defined in the text.  相似文献   

2.
The spectral tensor of turbulent motion in an infinite conductive incompressible medium is given in the case of a uniform magnetic field of any strenght affecting a homogeneous turbulence. With the help of BOCHNER 's theorem we make sure that the trace ui(x, t) ui(x, t) is non-negative. The presence of a weak magnetic field causes a damping of the turbulence, in some cases a strengthening. For strong magnetic fields the norms of the velocity vectors parallel and perpendicular to B approach one and the same value. Compared with the correlation length measured perpendicular to the magnetic field the correlation length measured along the magnetic field increases. Furthermore, our formulas have allowed to calculate the dependence of the α-effect on the magnetic field.  相似文献   

3.
In the present problem, acceleration covariance in MHD turbulent flow of dusty fluid with Coriolis force have been obtained.The obtained result shows that the defining scalars (r,t), (r, t), (r, t) of the acceleration covariance in the presence of Coriolis force depends on the defining scalars of tensorsQ ij, Hij, i,j,S ik,jandT ij,kalready defined in the text.  相似文献   

4.
We investigate the late-time dynamics of a four-dimensional universe based on modified scalar field gravity in which the standard Einstein-Hilbert action R is replaced by f(φ)R+f(R) where f(φ)=φ 2 and f(R)=AR 2+BR μν R μν,(A,B)∈ℝ. We discussed two independent cases: in the first model, the scalar field potential is quartic and for this special form it was shown that the universe is dominated by dark energy with equation of state parameter w≈−0.2 and is accelerated in time with a scale factor evolving like a(t)∝t 5/3 and B+3A≈0.036. When, B+3A→∞ which corresponds for the purely quadratic theory, the scale factor evolves like a(t)∝t 1/2 whereas when B+3A→0 which corresponds for the purely scalar tensor theory we found when a(t)∝t 1.98. In the second model, we choose an exponential potential and we conjecture that the scalar curvature and the Hubble parameter vary respectively like R=hH[(f)\dot]/f,h ? \mathbbRR=\eta H\dot{\phi}/\phi,\eta\in\mathbb{R} and H=g[(f)\dot]c,(g,c) ? \mathbbRH=\gamma\dot{\phi}^{\chi},(\gamma,\chi)\in\mathbb{R}. It was shown that for some special values of  χ, the universe is free from the initial singularity, accelerated in time, dominated by dark or phantom energy whereas the model is independent of the quadratic gravity corrections. Additional consequences are discussed.  相似文献   

5.
In this paper, we search the existence of Bianchi type I cosmological model in f(R,T) gravity, where the gravitational Lagrangian is given by an arbitrary function of the Ricci scalar R and of the trace of the stress-energy tensor T. We obtain the gravitational field equations in the metric formalism, and reconstruct the corresponding f(R,T) functions. Attention is attached to the special case, f(R,T)=f 1(R)+f 2(T) and two examples are assumed for this model. In the first example, we consider the unification of matter dominated and accelerated phases with f(R) gravity in anisotropic universe, and in the second instance, model of f(R,T) gravity with transition of matter dominated phase to the acceleration phase is obtained. In both cases, f(R,T) is proportional to a power of R with exponents depending on the input parameters.  相似文献   

6.
In this paper, we investigate spherically symmetric perfect fluid gravitational collapse in metric f(R) gravity. We take non-static spherically symmetric metric in the interior region and static spherically symmetric metric in the exterior region of a star. The junction conditions between interior and exterior spacetimes are derived. The field equations in f(R) theory are solved using the assumption of constant Ricci scalar. Inserting their solution into junction conditions, the gravitational mass is found. Further, the apparent horizons and their time of formation is discussed. We conclude that the constant scalar curvature term f(R 0) acts as a source of repulsive force and thus slows down the collapse of matter. The comparison with the corresponding results available in general relativity indicates that f(R 0) plays the role of the cosmological constant.  相似文献   

7.
Prentice (1978a) in his modern Laplacian theory of the origin of the solar system has established the scenario of the formation of the solar system on the basis of the usual laws of conservation of mass and angular momentum and the concept of supersonic turbulent convection that he has developed. In this, he finds the ratio of the orbital radii of successively disposed gaseous rings to be a constant - 1.69. This serves to provide a physical understanding of the Titius-Bode law of planetary distances. In an attempt to understand the law in an alternative way, Rawal (1984) starts with the concept of Roche limit. He assumes that during the collapse of the solar nebula, the halts at various radii are brought about by the supersonic turbulent convection developed by Prentice and arrives at the relation: R p= Rap, where R pare the radii of the solar nebula at various halts during the collapse, R the radius of the present Sun and a = 1.442. a is referred here as the Roche constant. In this context, it is shown here that Kepler's third law of planetary system assumes the form: T p = T 0(a3/2)p, where T p are the orbital periods at the radii R p, T 0 - 0.1216d - 3 h, and a the Roche constant. We are inclined to interpret T 0' to be the rotation period of the Sun at the time of its formation when it attained the present radius. It is also shown that the oribital periods T pcorresponding to the radii R psubmit themselves to the Laplace's resonance relation.  相似文献   

8.
“Regular solutions of EINSTEIN 's equations” mean very different things. In the case of the empty-space equations, Rik = 0, such solutions must be metrics gik(xl) without additionaly singular “field sources” (EINSTEIN 's “Particle problem”). – However the “phenomenological matter” is defined by the EINSTEIN equations Rik – 1/2gikR =–xTik itselves. Therefore if 10 regular functions gik(xl) are given (which the inequalities of LORENTZ -signature fulfil) then these gik define 10 functions Tik(xl) without singularities. But, the matter-tensor Tik must fulfil the two inequalities T ≥ 0, T ≥ 1/2 T only and therefore the EINSTEIN -equations with “phenomenological matter” mean the two inequalities R ≥ 0, R ≤ 0 which are incompatible with a permanently regular metric with LORENTZ -signature, generally.  相似文献   

9.
10.
The phase space of a cosmological model with a scalar field coupled to curvature is discussed in detail for any value of the coupling constant ξ and any power law (ϕ2n) potential. The results obtained generalize previous studies with minimal coupling (ξ = 0) and quadratic or quartic potentials to the entire parameter space (ξ, n). In many cases one finds global attractors and inflationary trajectories, with or without the correct Friedmannian limit. If the coupling constant is positive, a forbidden region cuts out a large part of the phase space, while, if it is negative, escaping regions may occur. Semi-classical instability of vacuum states and singularity-free trajectories are also discussed.  相似文献   

11.
The profiles of H and Ca ii K lines of a arch quiescent prominence on April 1, 1971 have been analyzed and the two-dimensional distributions of electron temperature T e , micro-turbulence velocity v t and the column number density of hydrogen along the line-of-sight N H have been obtained. T e , t , and N H are found to be 7500 K, 6 km s–1 and 2.2 × 1018 cm–2 on an average, respectively. The electron temperature at the central part of the prominence and along the two arcades are greater than that at the edges, while the distribution of the micro-turbulence velocity in these regions is opposite. There is no systematic variation in T e and v t , from the center to the periphery as described by Hirayama (1971). The column number density in the central region is lower than that at the two edges.The contour lines of T e , t , and N H are predominantly vertical rather than horizontal. This implies that the height-variation of physical parameters in filamentary structure is small. The arrangement of this structure in the prominence is likely to be arched and is probably in the direction of magnetic field lines.Operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation.  相似文献   

12.
The exact solutions of the field equations in respect of LRS Bianchi type-I space time filled with perfect fluid in the framework of f(R,T) gravity (Harko et al., arXiv: [gr-qc], 2011) are derived. The physical behavior of the model is studied. In fact, the possibility of reconstruction of the LRS Bianchi type-I cosmology with an appropriate choice of a function f(T) has been proved in f(R,T) gravity.  相似文献   

13.
We study the evolution of growth and decay laws for the magnetic field coherence length ξ, energy EM and magnetic helicity H in freely decaying 3D MHD turbulence. We show that with certain assumptions, self‐similarity of the magnetic power spectrum alone implies that ξt1/2. This in turn implies that magnetic helicity decays as Ht–2s, where s = (ξdiff/ξH)2, in terms of ξdiff, the diffusion length scale, and ξH, a length scale defined from the helicity power spectrum. The relative magnetic helicity remains constant, implying that the magnetic energy decays as EMt–1/2–2s. The parameter s is inversely proportional to the magnetic Reynolds number ReM, which is constant in the self‐similar regime. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
This investigation presents the orbital elements of a satellite moving in a circular ring potential. The ring is considered to be of infinitesimal thickness and of unit radius. The components of the perturbing accelerations due to the ring potential have been substituded into the Gauss form of Lagrange's planetary equations to yield the first-order approximations. The elements of the orbit have been expressed by means of Hansen coefficients. The results include the effects produced by the 2nd, 4th, 6th, and 8th spherical harmonics. Due to their importance we present separately the secular terms from the periodic ones. The general expressions for the orbital elements can be easily extended to include the effects produced by any other higher harmonic.List of Symbols semi-major axis - C jK n (u, ) cosine functions ofu and - e eccentricity of the orbit - f sin2 - inclination of the orbit - M mean anomaly - n mean motion - p semi-latus rectum of the orbit - R, S, andW components of the perturbing acceleration - r magnitude of position vector - S jK n (u, ) sine functions ofu and - T time of periapse passage - u argument of latitude - U gravitational potential - V perturbing potential - G(M r +m) (gravitational constant times the sum of the masses of ring and satellite) - n, k coefficients ofR component of disturbing acceleration (functions off) - n, k coefficients ofS andW components of disturbing acceleration (functions off) - mean anomaly at timet=0 - X 0 n, m zero-order Hansen coefficients - argument of periapse - longitude of the ascending node  相似文献   

15.
The present paper deals with the turbulent flow of an incompressible viscous fluid which is isotropic and spatially homogeneous. The expression for the rate of change of vorticity covariance is derived. The derived result shows that the defining scalars (r, t) and (r,t) of the rate of change of vorticity covariance solely depend upon the defining scalarQ of the two-point velocity correlation.  相似文献   

16.
In this paper, we have investigated Bianchi type VI h cosmological model filled with perfect fluid in the framework of f(R,T) gravity, where R is the Ricci scalar and T is the trace of the energy-momentum tensor proposed by Harko et al. (Phys. Rev. D 84:024020, 2011). We have obtained the cosmological models by solving the field equations. Some physical behaviors of the model are also studied.  相似文献   

17.
A spatially homogeneous and anisotropic Bianchi type-VI0 space-time filled with perfect fluid in general relativity and also in the framework of f(R,T) gravity proposed by Harko et al. (in arXiv:1104.2669 [gr-qc], 2011) has been studied with an appropriate choice of the function f(R,T). The field equations have been solved by using the anisotropy feature of the universe in Bianchi type-VI0 space time. Some important features of the models, thus obtained, have been discussed. We noticed that the involvement of new function f(R,T) doesn’t affect the geometry of the space-time but slightly changes the matter distribution.  相似文献   

18.
The kinematic turbulent dynamo equations are studied in the presence of a large-scale velocity field. The two length-scales approach is employed and solutions of the equations are found in the limit of small bulk motion and shear, and for large Reynolds numberR m . The regeneration term is calculated up to second-order in 1/R m using cyclonic convective turbulent velocity field.  相似文献   

19.
In an axially symmetric three-dimensional Riemann-spaceg ik(u 1,u 2)?u 3 represents the cyclic parameter-, a gravitational potential ?(u 1,u 2) is given. For all masspoints with equal total energy and equal angular momentum there exists a function Ψ(u 1,u 2) by means of which the equations of motion can be reduced to a simple ordinary second-order differential equation. The function ? can be interpreted as the velocity with which the masspoint moves in the two-dimensional spaceu 1,u 2. Of particular interest is the case where the spaceu 1,u 2,u 3 is Euclidean. Ifu 1,u 2 are Cartesian coordinates in a planeu 3=const., and if the tangent vector of the trajectoryu 1(t)u 2(t) has the components cosω, sinω it is shown that the triple integral $$\smallint \smallint \smallint \psi du^1 du^2 d\omega $$ is an invariant integral in Cartan's sense, in other words, if the integral is extended over a domain in a meridian plane at timet=0, it keeps its value at any time.  相似文献   

20.
Pioneer 11 magnetic field data at 20 AU are analysed by the computational method of Moussas, Quenby, and Webb (1975), Moussas and Quenby (1978), and Moussas, Quenby, and Valdes-Galicia (1982a, b) to obtain the parallel mean free path , and the diffusion coefficient parallel to the magnetic field line K . This method is the most appropriate for the mean free path calculation at large heliodistances since the alternative method which is based on fitting of energetic particle intensities cannot be easily and accurately be used because the association of energetic particles with their parent flares is not precise. The results show that the mean free path has values between 0.85 and 0.98 AU, linearly increasing with energy according to (Tkinetic) = + MT, where = 0.846 AU and M = 4.44 × 10 –5 AU MeV–1 for energies between 10 MeV and 3 GeV for protons. These values of the parallel mean free path are much larger than the values estimated by previous studies up to 6 AU. The diffusion coefficient dependence upon energy follows a relation which simply reflects an almost constant mean free path and a linear dependence on the velocity of the particle, so that at 20 AU heliodistance K (T kin) = K , 1 MeV(T kin)T kinetic , with = 1/2. The distance dependence of the parallel diffusion mean free path follows a power law, (R) = , 1 AU R , where is 1 ± 0.1. While the parallel diffusion coefficient obeys a power-law relation with heliodistance R, K (R, T kin) = K , 1 AU(T kin)R , with = 1 ± 0.1. The radial diffusion coefficient of cosmic rays is not expected to strongly depend upon the parallel diffusion coefficient because the nominal magnetic field at these large heliodistances (20 AU) is almost perpendicular to the radial direction and the contribution of the diffusion coefficient perpendicular to the magnetic field is expected to play a dominant role. However, the actual garden hose angle varies drastically and for long time periods and hence the contribution of the diffusion parallel to the field may continue to be important for the small scale structure of intensity gradients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号