首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper deals with the void with a volume of ~106 Mpc in the Universe. By using spherically-symmetric Einstein field equations the dynamics of void is studied. It seems to be possible that the void will decay in the radiation-dominated era so that the void will amplify and form in the matter-dominated era only.  相似文献   

2.
Information in the universe evolves according to a nonlinear law, which results from a combination of nonlinear dynamics and quantum theory. The Kolmogoroff-Sinai entropy rate of the Universe evolves in inverse proportion to the temperature. Since the evolution of temperature is known from standard cosmology, the time dependence of the universal entropy rate can be determined and the temporal evolution of the universal information content can be calculated. Information starts growing at the enormous rate of 1044 bits per second from an initial value of at least 2 (seven) bits at Planck time. However, it reaches its contemporary value only if one or more inflationary phases have been passed by the Universe in the course of its evolution.  相似文献   

3.
Pathria (1972) has shown, for a pressureless closed Universe, that it is inside a black (or white) hole. We show now, that the Universe with a cosmic pressure obeying Einstein’s field equations, can be inside a white-hole. In the closed case, a positive cosmological constant does the job; for the flat and open cases, the condition we find is not verified for the very early Universe, but with the growth of the scale-factor, the condition will be certainly fulfilled for a positive cosmological constant, after some time. We associate the absolute temperature of the Universe, with the temperature of the corresponding white-hole.  相似文献   

4.
It is shown that the singularity of space-time in Einstein-Friedmann's cosmology can be avoided, if one takes into account the strong interaction of the elementary particles in the earliest stage of the Universe. Under the additional assumption that there exists a maximum temperature of particles and radiation (T max?1.9×1012 K) in consequence of which the number of hadrons (nucleons) in the early Universe has been greater than today by a factor of about 107, the Friedmann equation is integrated numerically where the integration constant is fitted by the present values of the massdensity, the Hubble-constant and the temperature of the background radiation. The minimum radius of curvature of the Universe becomes 1.4×1011 km; the density in its neighbourhood remains within reasonable limits of the magnitude of the nuclear density. The early evolution of the Universe with time will be discussed in detail. Concerning the idea of an universal upper limit for the temperature we follow the considerations of Hagedorn, but in contrast to the existing investigations we take explicitly into account the negative potential energy of the strong interaction according to Yukawa's theory.  相似文献   

5.
In this letter, we have assumed that the Universe is filled in tachyonic field with potential, which gives the acceleration of the Universe. For certain choice of potential, we have found the exact solutions of the field equations. We have shown the decaying nature of potential. From recently developed statefinder parameters, we have investigated the role of tachyonic field in different stages of the evolution of the Universe.  相似文献   

6.
We propose a cosmological model of the Universe based on the Newtonian mechanics and classical field theory. The essential ingredient of this model is the existence of a special kind of physical field in the Universe whose source is the mass current. In the early Universe this field reached such large values that it produced matter from the vacuum fluctuation. The classical dynamical equations for the co-moving sphere in the presence of this field are enlarged by a new term which causes an inflation-like expansion. It accounts also for the hot initial stage of the early Universe and has several important cosmological consequences.  相似文献   

7.
The effect of time dependent bulk viscosity on the evolution of Friedmann models with zero curvature in Brans-Dicke theory is studied. The solutions of the field equations with ‘gamma-law’ equation of state p = (γ-1) ρ, where γ varies continuously as the Universe expands, are obtained by using the power-law relation φ = bR n , which lead to models with constant deceleration parameter. We obtain solutions for the inflationary period and radiation dominated era of the universe. The physical properties of cosmological solutions are also discussed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
Under the assumption of a power law (k·R n=C,C=const.) between the gravitational constantk and the radius of curvatureR of the Universe and forP=1/3 the exact solution is sought for the cosmological equations of Brans and Dicke. The solution turns out to be valid for closed space and the parameter of the scalar-tensor theory is necessarily negative. The radius of curvature increases linearly with respect to the age of the Universe while the gravitational constant grows with the square of the radius of curvature. It has been shown (Lessner, 1974) that in this case (KR 2) the spatial component of the field equations is independent of the remaining equations. However, our solution satisfies this independent equation. This solution for the radiation-dominated era corresponds to the solution for the matter-dominated era found by Dehnen and one of the authors (Dehnen and Obregón, 1971). Our solution, as is the solution previously obtained for the matter-dominated era, is in contradiction to Dirac's hypothesis in which the gravitational constant should decrease with time in an expanding Universe.  相似文献   

9.
We consider a collapsing sphere and discuss its evolution under the vanishing expansion scalar in the framework of f(R) gravity. The fluid is assumed to be locally anisotropic which evolves adiabatically. To study the dynamics of the collapsing fluid, Newtonian and post Newtonian regimes are taken into account. The field equations are investigated for a well-known f(R) model of the form R+δR 2 admitting Schwarzschild solution. The perturbation scheme is used on the dynamical equations to explore the instability conditions of expansionfree fluid evolution. We conclude that instability conditions depend upon pressure anisotropy, energy density and some constraints arising from this theory.  相似文献   

10.
The extragalactic background radiation produced by distant galaxies emitting in the far infrared limits the sensitivity of telescopes operating in this range due to confusion. We have constructed a model of the infrared background based on numerical simulations of the large-scale structure of the Universe and the evolution of dark matter halos. The predictions of this model agree well with the existing data on source counts. We have constructed maps of a sky field with an area of 1 deg2 directly from our simulated observations and measured the confusion limit. At wavelengths 100–300 μm the confusion limit for a 10-m telescope has been shown to be at least an order of magnitude lower than that for a 3.5-m one. A spectral analysis of the simulated infrared background maps clearly reveals the large-scale structure of the Universe. The two-dimensional power spectrum of these maps has turned out to be close to that measured by space observatories in the infrared. However, the fluctuations in the number of intensity peaks observed in the simulated field show no clear correlation with superclusters of galaxies; the large-scale structure has virtually no effect on the confusion limit.  相似文献   

11.
This paper focuses on the implications of a commutative formulation that integrates branch-cutting cosmology, the Wheeler–DeWitt equation, and Hořava–Lifshitz quantum gravity. Building on a mini-superspace structure, we explore the impact of an inflaton-type scalar field on the wave function of the Universe. Specifically analyzing the dynamical solutions of branch-cut gravity within a mini-superspace framework, we emphasize the scalar field's influence on the evolution of the evolution of the wave function of the Universe. Our research unveils a helix-like function that characterizes a topologically foliated spacetime structure. The starting point is the Hořava–Lifshitz action, which depends on the scalar curvature of the branched Universe and its derivatives, with running coupling constants denoted as g i $$ {g}_i $$ . The corresponding wave equations are derived and are resolved. The commutative quantum gravity approach preserves the diffeomorphism property of General Relativity, maintaining compatibility with the Arnowitt–Deser–Misner formalism. Additionally, we delve into a mini-superspace of variables, incorporating scalar-inflaton fields and exploring inflationary models, particularly chaotic and nonchaotic scenarios. We obtained solutions for the wave equations without recurring to numerical approximations.  相似文献   

12.
Plane symmetric cosmological models with perfect fluid and dark energy   总被引:1,自引:0,他引:1  
We consider a self-consistent system of Plane symmetric cosmology and binary mixture of perfect fluid and dark energy. The perfect fluid is taken to be one obeying the usual equation of state p=γρ with γ∈[0,1]. The dark energy is considered to be either the quintessence or Chaplygin gas. Exact solutions to the corresponding Einstein’s field equations are obtained as a quadrature. The cases of Zeldovich Universe, Dust Universe and Radiation Universe and models with power-law and exponential expansion have discussed in detail. For large t, the models tend to be isotropic.  相似文献   

13.
In the standard Friedmann cosmology the black-body radiation spectrum is usually taken (without explicit proof as far as we know) to have the same familiarT 4-form that it has in a flat space. With explicit use of the equation of motion of a quantized massless field propagating in a curved background Robertson-Walker metric we show (for the readily tractable scalar field case) that the assumption is in fact true for an open Universe. For a closed Universe, we find that there is an in principle modification to theT 4-law. Unfortunately, the correction turns out to be too small to be experimentally detectable. In passing, we also obtain a simple derivation for the cosmological red shift of frequencies.  相似文献   

14.
The abundance patterns of the most metal‐poor stars in the Galactic halo and small dwarf galaxies provide us with a wealth of information about the early Universe. In particular, these old survivors allow us to study the nature of the first stars and supernovae, the relevant nucleosynthesis processes responsible for the formation and evolution of the elements, early star‐ and galaxy formation processes, as well as the assembly process of the stellar halo from dwarf galaxies a long time ago. This review presents the current state of the field of “stellar archaeology” – the diverse use of metal‐poor stars to explore the high‐redshift Universe and its constituents. In particular, the conditions for early star formation are discussed, how these ultimately led to a chemical evolution, and what the role of the most iron‐poor stars is for learning about Population III supernovae yields. Rapid neutron‐capture signatures found in metal‐poor stars can be used to obtain stellar ages, but also to constrain this complex nucleosynthesis process with observational measurements. Moreover, chemical abundances of extremely metal‐poor stars in different types of dwarf galaxies can be used to infer details on the formation scenario of the halo and the role of dwarf galaxies as Galactic building blocks. I conclude with an outlook as to where this field may be heading within the next decade. A table of ~ 1000 metal‐poor stars and their abundances as collected from the literature is provided in electronic format (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
On the basis of the law of conservation of energy, the variations of radiation energy as a result of the variations of the dimensions of the Universe and of the increase in total energy of the hypothetical false vacuum, the author introduces an assumption that the Universe is an actual subsystem of the infinite whole of reality. Analyzing the consequences of introducing this assumption into the standard model of the Universe, he comes to the conclusion that the Universe, with respect to its evolution, represents an ultrastable system consisting of a dynamic system of the de Sitter evolution phase with the Planck values and of a dynamic system of Friedmann's phase of evolution into which the dynamics of its partial subsystems is incorporated.  相似文献   

16.
Various cosmological models in frames of F(T) gravity are considered. The general scheme of constructing effective dark energy models with various evolution is presented. It is showed that these models in principle are compatible with ΛCDM model. The dynamics of universe governed by F(T) gravity can mimics ΛCDM evolution in past but declines from it in a future. We also construct some dark energy models with the “real” (non-effective) equation-of-state parameter w such that w≤?1. It is showed that in F(T) gravity the Universe filled phantom field not necessarily ends its existence in singularity. There are two possible mechanisms permitting the final singularity. Firstly due to the nonlinear dependence between energy density and H 2 (H is the Hubble parameter) the universe can expands not so fast as in the general relativity and in fact Little Rip regime take place instead Big Rip. We also considered the models with possible bounce in future. In these models the universe expansion can mimics the dynamics with future singularity but due to bounce in future universe begin contracts.  相似文献   

17.
This paper is devoted to investigate the modified f(R) theory of gravity, where R represents the Ricci scalar respectively. For our current work, we consider the Friedmann-Robertson-Walker (FRW) space-time for finding solutions of field equations. Furthermore, some numerical solutions are examined by taking the Klein-Gordon Equation and using distinct values of the equation of state (EoS) parameter. In this way, we have discussed the solutions for acceleration expansion of the Universe, sub-relativistic Universe, radiation Universe, ultra-relativistic Universe, dust Universe, and stiff fluid Universe respectively. Moreover, their behaviours are examined by using power-law and exponential law techniques. The bouncing scenario is also discussed by choosing some particular values of the model parameters and observed the energy conditions, which are satisfied for a successful bouncing model. It is also concluded that some solution in f(R) theory of gravity supports the concept of exotic matter and accelerated expansion of the Universe due to a large amount of negative pressure.  相似文献   

18.
Dynamical and kinematic properties of Bianchi-II cosmological models with rotation and expansion are investigated. Exact solutions of Einstein field equations are obtained which describe the evolution of a rotating Universe. Exact solutions of null, timelike and spacelike geodesics are constructed. Two new cosmological tests for rotating universes are discussed: cosmological lens effect and cosmological mirror effect.  相似文献   

19.
The dark energy model with barotropic equation of state, which interacts with dark matter by gravitation and by other force, which causes the energy-momentum exchange between them, is considered. Both components are described in approximation of ideal fluid, which are parameterized by density, equation of state and effective sound speed parameters. The three types of interactions between dark components are considered: interaction independent from their densities, interaction proportional to energy density of dark energy, and interaction proportional to energy density of dark matter. The equations that describe the expansion dynamics of homogeneous and isotropic Universe and evolution of densities of both components for different values of interaction parameter are obtained on the bases of the general covariant conservation equations and Einstein’s ones. For three kinds of interactions, the existing of the range of values of parameters of dark energy for which the densities of dark components are negative was shown. The conditions of positivity of energy density of dark energy and dark matter were written for which the constraints on the value of parameter of interaction were derived. The dynamics of expansion of the Universe with these interactions of dark energy and dark matter is analyzed.  相似文献   

20.
We give a pedagogical introduction to two aspects of magnetic fields in the early Universe. We first focus on how to formulate electrodynamics in curved space time, defining appropriate magnetic and electric fields and writing Maxwell equations in terms of these fields. We then specialize to the case of magnetohydrodynamics in the expanding Universe. We emphasize the usefulness of tetrads in this context. We then review the generation of magnetic fields during the inflationary era, deriving in detail the predicted magnetic and electric spectra for some models. We discuss potential problems arising from back reaction effects and from the large variation of the coupling constants required for such field generation (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号