首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Observations of the thermospheric wind at a mid-latitude station have been made using a Fabry-Perot interferometer to measure the Doppler shift of the nighttime OI emission at 630 nm. The results from 12 summer nights show that the zonal wind has a distinct feature associated with magnetic activity. The zonal wind first reverses and becomes westward. The maximum strength of the westward wind, its duration, and the maximum strength of the subsequent eastward wind all increase with increasing magnetic activity. The meridional wind is less consistent in its behaviour. It is normally equatorward but during magnetic activity it can increase, decrease, or even reverse, although it is consistently equatorward and of increased strength after 02.00 L.T. The initial reversal of the zonal wind is consistent with changes in the wind expected as a result of convective electric fields penetrating to mid-latitudes indicating that these electric fields modify the mid-latitude wind pattern before effects due to auroral heating reach mid-latitudes. The reversal of the zonal wind back to eastward may also be the result of electric field effects. The large variability of the meridional wind, to the extent that it becomes poleward at times, indicates the importance of wind sources equatorward of the observatory.  相似文献   

2.
We trace the photospheric motions of 170 concentrations of magnetic flux tubes in and around the decaying active region No. 19824 (CMP 23 October 1986), using a series of magnetograms obtained at the Big Bear Solar Observatory. The magnetograms span an interval of just over five days and cover an area of about 4 × 5 arc min centered on the active region. We find a persistent large-scale flow pattern that is superposed on the small-scale random motions of both polarities. Correction for differential rotation unveils the systematic, large-scale flow surrounding the core region of the magnetic plage. The flow (with a mean velocity of 30 m s–1) is faster and more pronounced around the southern side of the core region than around the northern side, and it accelerates towards the western side of the active region. The northern and southern branches of the large-scale flow converge westward of the core region, dragging along the westernmost sunspot and some of the magnetic flux near it. The overall pattern of the large-scale flow resembles the flow of a river around a sand bar. The long-term evolution of the active region suggests that the flow persists for several months. We discuss the possible association of the large-scale flow with the torsional oscillation.We correct the observed motions of concentrations of flux tubes for the large-scale flow in order to study their random motions. The small-scale random motions (with a mean speed of 150 m s–1) can be characterized by a diffusion coefficient of 250 km2 s–1 for the area surrounding the core region of the magnetic plage. The diffusion coefficient characterizing the small-scale motions within the core region (mostly observed near its periphery and in areas of relatively low flux density) is only 110 km2 s–1. The lower diffusion coefficient in the core region appears to be caused mainly by a smaller step length rather than by a distinct difference in velocities.Visitor at the Lockheed Palo Alto Research Laboratories.  相似文献   

3.
The paper supplements an earlier one on the mean-field approach to spherical kinematic dynamo models (Rädler 1980a) by results of numerical investigations. A number of dynamo models working on the basis of the α2-mechanism are considered. Cases of pure α2-mechanism are studied, which includes only the simplest form of α-effect and no other induction effect, as well as cases with several additional effects due to fluctuating or mean motions. By the pure α2-mechanism axisymmetric and non-axisymmetric fields, can be excited and maintained with nearly equal ease. Part of the additional induction effects, however, clearly favour axisymmetric fields, and others non-axisymmetric fields. The non-axisymmetric fields are waves which travel in azimuthal direction, eastward or westward, depending on the models. For special dynamo models the transition from α2 to αω-mechanism and properties of the latter are investigated. The results support the presumption that the αω-mechanism is able to maintain only axisymmetric but never non-axisymmetric fields. Conditions for the occurrence of non-oscillatory or oscillatory fields are discussed, and again the influence of additional induction effects is studied. There are further presented a model with βω-mechanism maintaining an axisymmetric non-oscillatory field, and models with two kinds of δω-mechanisms allowing axisymmetric non-oscillatory and oscillatory fields. Some ideas concerning dynamo models for the Earth, the Sun and magnetic stars are discussed. It seems possible to construct dynamo models for the Earth, on the basis of the α2-mechanism which explain not only the presence of a magnetic field with a strong dipole part but also the inclination of the dipole axis against the axis of rotation, the occurrence of higher multipoles and the westward drift of the non-axisymmetric parts. Models with αω, βω or δω-mechanism, which have to be considered in the case of a strong differential rotation inside the core, provide an explanation at first only of the axisymmetric parts of the field, and the non-axisymmetric parts have then to be interpreted, for example, as MAC-waves. As far as dynamo models for the Sun are concerned, in addition to the possibility of an αω-mechanism also that of a βω or δω-mechanism is discussed, which, however, does not look not very promising. In the models developed so far, which work with the αω-mechanism, only a few of the induction effects of fluctuating motions have been included; it seems necessary to investigate also influences of other effects. The sectorial structure of the solar magnetic field can hardly be understood in terms of the traditional mean-field concept. The magnetic stars possess fields which strongly deviate from symmetry with respect to the axis of rotation. The occurrence of such fields seems understandable only if there is no noticeable differential rotation. They can be maintained by an α2-mechanism but hardly by αω, βω or δω-mechanisms.  相似文献   

4.
Using the sequence of 70-day continuum-band (751 nm) images from the Cassini Imaging Science System (ISS), we record over 500 compact oval spots and study their relation to the large-scale motions. The ∼100 spots whose vorticity could be measured—the large spots in most cases—were all anticyclonic. We exclude cyclonic features (chaotic regions) because they do not have a compact oval shape, but we do record their interactions with spots. We distinguish probable convective storms from other spots because they appear suddenly, grow rapidly, and are much brighter than their surroundings. The distribution of lifetimes for spots that appeared and disappeared during the 70-day period follows a decaying exponential with time constant (mean lifetime) of 3.5 days for probable convective storms and 16.8 days for all other spots. Extrapolating the exponential beyond 70 days seriously underestimates the number of spots that existed for the entire 70-day period. This and other evidences (size, shape, distribution in latitude) suggest that these long-lived spots with lifetime larger than 70 days are from a separate population. The zonal wind profile obtained manually by tracking individual features (this study) agrees with that obtained automatically by correlating brightness variations in narrow latitude bands (Porco et al., 2003). Some westward jets have developed more curvature and some have developed less curvature since Voyager times, but the number of westward jets that violate the barotropic stability criterion is about the same. In the northern hemisphere the number of spots is greatest at the latitudes of the westward jets, which are the most unstable regions according to the barotropic stability criterion. During the 70-day observation period the Great Red Spot (GRS) absorbed nine westward-moving spots that originated in the South Equatorial Belt (SEB), where most of the probable convective storms originate. Although the probable convective storms do not directly transform themselves into westward-moving spots, their common origin in the SEB suggests that moist convection and the westward jet compose a system that has maintained the GRS over its long lifetime.  相似文献   

5.
This paper presents a brief summary of an extensive correlative study of ATS-5 particle and magnetic field data with all-sky photographs from Great Whale River which is near the ‘foot’ of the field lines passing through the ATS-5 satellite. In particular, an effort is made to identify specific particle features with specific auroral displays during substorms, such as a westward travelling surge, poleward expansive motion and drifting patches. Some of the important findings are (i) in early evening hours, the first encounter of ATS-5 with hot plasma is associated with the equatorward shift of the diffuse aurora, but not necessarily with westward travelling surges (even when the satellite is embedded in the plasma sheet.) (ii) In the midnight sector, an injection corresponds very well to the initial brightening of an auroral arc. (iii) Specific features of morning sector auroras (for example, drifting patches) are difficult to correlate with specific particle features (gross features, but not specific).Comparing these results with particle data from low-latitude polar orbiting satellites, it is concluded that the plasma sheet near the earthward edge (consisting of plasmas injected during earlier substorms) is little affected during substorms.  相似文献   

6.
S. T. Suess 《Solar physics》1971,18(1):172-175
Some recent observations of the Sun suggest a class of wave-like motions moving both eastward and westward at a uniform velocity with respect to the mean solar angular velocity. It is suggested that these may be hydromagnetic planetary waves. An estimate of the mean toroidal magnetic field is made, based on a theoretical treatment of such waves already in the literature, and a slight correction to the mean rate of rotation of the Sun is inferred.  相似文献   

7.
I.O. Bohachevsky 《Icarus》1973,19(1):118-125
Described is a global circulation model for the Venus atmosphere that includes the effects of both polar cooling and diurnal temperature variation. It is based on a linearized Boussinesq approximation and boundary conditions derived from theoretical and empirical considerations. The time-dependent, three-dimensional flow field is deduced without any a priori assumptions about its configuration. Results show that the mean atmospheric motions are essentially zonal in a narrow belt near the equator and change to become meridional over most of the globe. The circulation pattern is not symmetrical and rotates about the polar axis of the planet with the period of the solar day.  相似文献   

8.
Observations demonstrate a nearly 22-year periodic zonal flow superimposed on general solar differential rotation (LaBonte and Howard, 1982) and some meridional motions (e.g., Tuominen, Tuominen, and Kyrolänen, 1983). Such flows can be excited by the magnetic wave generated by the dynamo in the solar convective zone.An approximate analytical solution for the zonal and meridional flows for a given magnetic wave is constructed. This approach is justified by the fact that the magnetic field is generated by differential rotation and mean helicity, and the magnetic field in the time interval under consideration does not affect much this main flow; it can, however, strongly influence the perturbations of this flow.The density gradient in the convective zone is taken into account as an essential point in the solution construction. The solution agreed well with observational features and, in particular, it gives a phase shift between the rotational (zonal) wave and solar activity. A polar branch of the rotational wave can be described as an effect created by a poleward moving dynamo wave.Secular variations in the symmetrical part of the differential rotation and in the asymmetry between the north and south hemispheres are predicted.The alternative approaches to the explanation of the origin of the observed large-scale flows are discussed.  相似文献   

9.
B. Vršnak 《Solar physics》1984,94(2):289-297
Oscillatory motions of a loop prominence observed on July 17, 1981 are analysed. The oscillations were mainly horizontal, with a period of 8 min. Restoring force was a result of magnetic tension, and assuming a simplified magnetic field configuration the expression for frequencies of oscillations is derived and compared with the observations. Taking the observed period, the strength of the magnetic field permeating the prominence is estimated as 45 G. Finally, the stability of the prominence is discussed.  相似文献   

10.
Many previous researchers have shown that convection in the magnetosphere is reflected in the ionosphere by an eastward electrojet in the evening sector and a westward electrojet in the post-midnight sector. In this paper we shall demonstrate the existence of eastward electrojet flow in the dawn sector in the latitude regime normally occupied by the westward convection electrojet. It will be shown that the convection westward electrojet near dawn may co-exist with the eastward electrojet while lying poleward of it. It is suggested that this eastward electrojet consists of Pedersen current flow driven by an eastward electric field and it is shown that the field lines which penetrate the eastward electrojet are populated by energetic electrons normally associated with the plasma sheet as well as high energy electrons normally associated with the trapped particle population. The high conductivity channel is generated by processes associated with the precipitation of high energy (E > 20 keV) electrons drifting eastwards from midnight in the trapping region. It is further shown that antiparallel current sheets may flow on the magnetic lines of force penetrating the electrojet, and that this flow is closed in the ionosphere by Hall currents flowing equatorward in the high conductivity channel.  相似文献   

11.
Hydromagnetic planetary-gravity waves propagating on a β-plane through a zonal flow and transverse magnetic field are examined for instability. Such instabilities may be related to same physical phenomena in the atmospheres of the Sun and planets and in the Earth's core. It is found that the onset of instability depends on the directions of the vertical and transverse wave-numbers and the zonal flow. It is also shown that as the magnetic field intensity is kept uniform instability can onset provided that the zonal flow strength does not exceed a certain factor, which depends on the parameters of the medium, and then the zonal wavenumbers that can become unstable are limited to a given range. If the basic Alfvén wave speed is allowed to vary whereas the zonal flow is kept uniform the zonal wavenumbers that can exhibit instability are again limited but the basic Alfvén wave speed can assume any value.  相似文献   

12.
In the companion paper (Lam and Rostoker, 1978) we have shown that Pc 5 micropulsations are intimately related to the behaviour and character of the westward auroral electrojet in the morning sector. In this paper we show that Pc 5 micropulsations can be regarded as LC-oscillations of a three-dimensional current loop involving downward field-aligned current flow near noon, which diverges in part to form the ionospheric westward electrojet and returns back along magnetic field lines into the magnetosphere in the vicinity of the ionosphere conductivity discontinuity at the dawn meridian. The current system is driven through the extraction of energy from the magnetospheric plasma drifting sunwards past the flanks of the magnetosphere in a manner discussed by Rostoker and Boström (1976). The polarization characteristics of the pulsations on the ground can be understood in terms of the effects of displacement currents of significant intensity which flow near the F-region peak in the ionosphere and induced currents which flow in the earth. These currents significantly influence the magnetic perturbation pattern at the Earth's surface. Model current system calculations show that the relative phase of the pulsations along a constant meridian can be explained by the composite effect of oscillations of the borders of the electrojet and variations in the intensity of current flow in the electrojet.  相似文献   

13.
Non-axisymmetric motions of the outer core of the Earth are important for the dynamo problem and the excitation of the decade variations of the polar motion. The components of the vector of a rigid rotation of the outer core about an inclined axis were estimated by a first-order approximation of the frozen- field theory of the geomagnetic secular variation from 1903.5 to 1975.5. The trends and quasi-periodic constituents of these quantities were computed. It was shown that the position and time behaviour of the rotational pole of the outer core differ considerably from the well-know co-ordinates of the dipole axis. Some periods of the equatorial components of the rotational vector are comparable with those of the axial component previously derived for a pure axial rotation. Additionally, the time behaviour of the pole path shows events like the well-known Markowitz wobble but naturally with other extent. These and other results suggested that the investigations are worth to be continued in future by some physical interpretations.  相似文献   

14.
We have studied the stability of the electrostatic electron cyclotron wave in a plasma composed of hydrogen, oxygen and electrons. To conform to satellite observations in the low latitude boundary layer we model both the ionic components as drifting perpendicular to the magnetic field. Expressions for the frequency and the growth rate of the wave have been derived. We find that the plasma can support electron cyclotron waves with a frequency slightly greater than the electron cyclotron frequency ω ce ; these waves can be driven unstable when the drift velocities of both the ions are greater than the phase velocity of the wave. We thus introduce another source of instability for these waves namely multiple ion beams drifting perpendicular to the magnetic field.  相似文献   

15.
Stratospheric dust layers photographically observed in the altitude range 16–28 km from a balloon gondola floating at 36.6 km altitude on 3 May 1982 over southern France are identified as originating from the 4 April eruption of the Mexican El Chichon volcano. The identification is compatible with the zonal air motions leading to lidar detections over Japan, United States and Italy. The observations confirm the eastward motion of part of the injected material below 20 km altitude and the westward motion above this altitude. They imply a northward component of the meridional motion of the order of 20° (from 17°N to 37°N) in one turn around the Earth. The observation of scattered sunlight in blue and red light allows to deduce some optical properties of the aerosol, mainly those implied by the wavelength dependence of the scattering efficiency being highly variable, particularly above the Junge layer.  相似文献   

16.
A Sánchez-Lavega  R Hueso  J.F Rojas 《Icarus》2004,170(2):519-523
Analyses of Hubble Space Telescope (HST) images of Saturn obtained from August 2003 to March 2004, with extensive support from ground-based telescopes, have been used to characterize the cloud morphology and motions in its atmosphere few months before the Cassini encounter. We present data on the major meteorological features as potential targets for Cassini observations. We extend our previous measurements of the zonal winds during the 1996-2002 period (A. Sánchez-Lavega et al., 2003, Nature, 423, 623-625), confirming the strong change in the equatorial jet, and the high hemispheric symmetry of the zonal wind pattern.  相似文献   

17.
We combined data from the Two-Micron All Sky Survey (2MASS) and USNO-A2.0 catalogues in order to derive the absolute proper motions of about 280 million stars distributed all over the sky excluding a small region near the Galactic Centre, in the magnitude range  12 < B < 19 mag  . The proper motions were derived from the 2MASS Point Sources and USNO-A2.0 catalogue positions with a mean epoch difference of about 45 years for the Northern hemisphere and about 17 years for the Southern one. The zero-point of the absolute proper motion frame (the 'absolute calibration') was specified with the use of about 1.45 million galaxies from 2MASS. Most of the systematic zonal errors inherent in the USNO-A2.0 catalogue were eliminated before the calculation of proper motions. The mean formal error of absolute calibration is less than 1 mas yr−1. The XPM Catalogue will be available via CDS in Strasbourg during 2010. The generated catalogue contains the International Celestial Reference System positions of stars for the J2000 epoch, original absolute proper motions, as well as   B , R , J , H   and K magnitudes. A comparison of the proper motions obtained in this work with the data of other recent catalogues of quasars was fulfilled.  相似文献   

18.
An automated cloud tracking algorithm is applied to Cassini Imaging Science Subsystem high-resolution apoapsis images of Saturn from 2005 and 2007 and moderate resolution images from 2011 and 2012 to define the near-global distribution of zonal winds and eddy momentum fluxes at the middle troposphere cloud level and in the upper troposphere haze. Improvements in the tracking algorithm combined with the greater feature contrast in the northern hemisphere during the approach to spring equinox allow for better rejection of erroneous wind vectors, a more objective assessment at any latitude of the quality of the mean zonal wind, and a population of winds comparable in size to that available for the much higher contrast atmosphere of Jupiter. Zonal winds at cloud level changed little between 2005 and 2007 at all latitudes sampled. Upper troposphere zonal winds derived from methane band images are ~10 m s?1 weaker than cloud level winds in the cores of eastward jets and ~5 m s?1 stronger on either side of the jet core, i.e., eastward jets appear to broaden with increasing altitude. In westward jet regions winds are approximately the same at both altitudes. Lateral eddy momentum fluxes are directed into eastward jet cores, including the strong equatorial jet, and away from westward jet cores and weaken with increasing altitude on the flanks of the eastward jets, consistent with the upward broadening of these jets. The conversion rate of eddy to mean zonal kinetic energy at the visible cloud level is larger in eastward jet regions (5.2 × 10?5 m2 s?3) and smaller in westward jet regions (1.6 × 10?5 m2 s?3) than the global mean value (4.1 × 10?5 m2 s?3). Overall the results are consistent with theories that suggest that the jets and the overturning meridional circulation at cloud level on Saturn are maintained at least in part by eddies due to instabilities of the large-scale flow near and/or below the cloud level.  相似文献   

19.
The dissipation of turbulent gas motions is one of the likely mechanisms that has been proposed to heat the intracluster medium (ICM) in the cores of clusters and groups of galaxies. We consider the impact of gas motions on the width of the most prominent X-ray emission lines. For heavy elements (like iron), the expected linewidth is much larger than the width due to pure thermal broadening, and the contribution due to turbulent gas motions should be easily detected with the new generation of X-ray microcalorimeters, such as the Spektr-RG calorimeter (SXC). For instance, in the Perseus cluster the turbulent velocity required to balance radiative cooling (as derived by Rebusco et al.) would imply a width of the 6.7 keV Fe line of 10–20 eV, while the pure thermal broadening is ∼4 eV. The radial dependence of the linewidth is sensitive to (i) the radial dependence of the velocity amplitude and (ii) the 'directionality' of the stochastic motions (e.g. isotropic turbulence or predominantly radial gas motions). If the width of several lines, characteristic for different gas temperatures, can be measured, then it should be possible to probe both the 'directionality' and the amplitude of the gas motions. Moreover, a measurement of the width would put a lower limit on the amount of the kinetic energy available for dissipation, giving a constraint on the ICM models.  相似文献   

20.
Magnetic field and plasma data from the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft on the outbound portions of the first (M1) and second (M2) flybys of Mercury reveal a region of depressed magnetic field magnitude and enhanced proton fluxes adjacent to but within the magnetopause, which we denote as a dayside boundary layer. The layer was present during both encounters despite the contrasting dayside magnetic reconnection, which was minimal during M1 and strong during M2. The overall width of the layer is estimated to be between 1000 and 1400 km, spanning most of the distance from the dayside planetary surface to the magnetopause in the mid-morning. During both flybys the magnetic pressure decrease was ∼1.6 nPa, and the width of the inner edge was comparable to proton gyro-kinetic scales. The maximum variance in the magnetic field across the inner edge was aligned with the magnetic field vector, and the magnetic field direction did not change markedly, indicating that the change in field intensity was consistent with an outward plasma-pressure gradient perpendicular to the magnetic field. Proton pressures in the layer inferred from reduced distribution observations were 0.4 nPa during M1 and 1.0 nPa during M2, indicating either that the proton pressure estimates are low or that heavy ions contribute substantially to the boundary-layer plasma pressure. If the layer is formed by protons drifting westward from the cusp, there should be a strong morning–afternoon asymmetry that is independent of the interplanetary magnetic field (IMF) direction. Conversely, if heavy ions play a major role, the layer should be strong in the morning (afternoon) for northward (southward) IMF. Future MESSENGER observations from orbit about Mercury should distinguish between these two possibilities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号