首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract— This paper addresses several current issues related to use of craters in interpreting planetary surface histories. The primary goal is to test the widely adopted hypothesis of multiple populations of impactors at different times or places in the Solar System. New data presented here revise a “lunar highland” crater diameter distribution that has been widely used as evidence of an early distinct population of impactors. This curve, which has a depression of the size distribution at mid-sizes, does not, in fact, represent the lunar highlands generally. I show that it is associated with regions of intercrater plains. The more extensive the obliteration by intercrater plains, the deeper the depression. Modeling indicates that the depression of the curve is caused by the obliteration process itself. The oldest, most cratered regions of lunar highlands do not show the depression. These findings call into question earlier interpretations of multiple populations of impactors in the Solar System and of a distinctive primordial population. The present work is consistent, instead, with (1) a relatively uniform size distribution of interplanetary impactors, of mixed origins, back to 4 Ga ago and throughout the sampled Solar System; (2) fragmentation as the process that produced that size distribution; (3) saturation equilibrium on the most heavily cratered surfaces; and (4) differences in structure in the size distribution caused not by distinct impactor populations but by episodes of endogenic obliteration. If accepted, these results would modify some studies of solar system evolution, including assertions of two to five distinct populations of impactors, assumptions of lack of saturation equilibrium, and identifications of specific heliocentric or planetocentric sources for impactors within outer planet satellite systems.  相似文献   

2.
3.
Physical and Mechanical Properties of Lunar and Planetary Soils   总被引:3,自引:0,他引:3  
Earth, Moon, and Planets -  相似文献   

4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
类地行星(月球)自转监测望远镜的科学目标是在行星(月球)表面现场测量行星(月球)自转并研究其内部结构和物理性质.为了验证全新的观测原理和资料处理方法,项目团队设计制造了一套原理样机,在一台商用天文望远镜的光路前端增加3面反射镜组,使其具有同时观测3个视场的能力.自2017年起在地面上开展了观测实验,获得了混合有3视场星象的图像.通过计算星象在前后图像上的位移实现了归属视场识别,使得观测效果与分视场独立观测等同,证明了用一台设备同时观测多视场的可行性.处理图像并通过3个视场中心的指向变化归算地球自转轴的空间指向,与理论值比较偏差平均约1′′,证明了观测原理和数据处理方法有效.对各种观测误差来源进行了分析,包含大气折射、仪器热稳定性和光学分辨能力的影响等,指出采用更长焦距的望远镜可以提高空间分辨率,优化形变控制可以提高观测稳定性.改进多视场同时观测中的光学设计也有助于精度的提高.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号