首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The data on the geological structure of different guyots on the Marcus-Wake rise with cobalt-bearing Fe–Mn crusts are discussed. Crusts are represented by three-layer aggregates composed of one lower phosphatized (I-1) and two upper non-phosphatized (II and III) layers. Fe-vernadite and Mn-feroxygite are the major ore minerals in all studied crusts and their layers. Small contents of vernadite, asbolane–buserite, and goethite are registered. Crusts of guyots on the rise are characterized by a stable concentration of heavy and rare metals (Cotot, Ni, Cu, Zn, Pb, Mo, and Cd) independently of their latitudinal location.  相似文献   

2.
Rare earth element (REE) geochemistry and mineralogy have been studied in the weathered crusts derived from the Early Yanshanian (Jurassic) biotite granites of Dabu and Dingnan, as well as in the Indosinian (Permian) muscovite–biotite granite of Aigao in southern Jiangxi province, China, and the weathered crusts and clay sediments on biotite granites in the Sanyo belt, SW Japan, that is, Okayama, Tanakami, and Naegi areas. In all of the weathered crusts, biotite and plagioclase commonly tend to decrease toward the upper part of the profile, whereas kaolinite and residual quartz and K‐feldspar increase. The weathered crusts of the Dingnan granites and some Naegi granites, which are characterized by the enrichment in light REE (LREE) in C horizons, have higher total REE (ΣREE) content than the parent REE‐enriched granites. Weathering of LREE‐bearing apatite and fluorocarbonates in the Dingnan granites and allanite and apatite in some Naegi granites may account for the leaching of LREE at the B horizons. The leached LREE must result in subsequent enrichment of LREE in the C horizons. The enrichment is probably associated with mainly adsorption onto kaolinite and partly formation of possible secondary LREE‐bearing minerals. In Japan it was found that REE mineralization occurs not in the weathered granitic crusts but in reworked clay sediments, especially kaolinite‐rich layers, derived mainly from the weathering materials of REE‐enriched granitic rocks. The clay sediments are more enriched in LREE, which likely adsorbed onto kaolinite. Concentration of heavy REE within almost all the weathered crusts and clay sediments, however, may reflect mainly residual REE‐bearing minerals such as zircon, which originated in the parent granitic rocks. The findings of the present study support the three processes for fractionation of the REE during weathering: (i) selective leaching of rocks containing both stable and unstable REE‐bearing minerals; (ii) adsorption onto clay minerals; and (iii) presence of possible secondary LREE‐bearing minerals.  相似文献   

3.
Based on the analysis of planktonic and benthic foraminiferal assemblages, geological dating of the major elements of the section (layers) in the Co-rich manganese crust of the Magellan seamounts has been accomplished. The ore crust layers were formed at the following age intervals: layer I-1 in the Late Paleocene-Early Eocene, layer I-2 in the Middle-first half of Late Eocene, layer II in the Middle-Late Miocene, and layer III in the Pleistocene. Relict layers of the older crust, which underlies the main section in some places, are dated at the Campanian-Maestrichtian and Late Paleocene(?). Data on foraminifers generally fit the results obtained previously based on the analysis of nannoplankton assemblages. Insignificant discrepancies in the datings require further refinement and explanation. Biostratigraphic investigations of the sedimentary cover made it possible to identify the Aptian-Turonian, Campanian-Maestrichtian, Late Paleocene-Eocene, and Miocene rock associations and the unlithified Pliocene-Quaternary sediments. Comparison of the structure and composition of ore crust layers with the coeval rocks of the sedimentary cover revealed that layers I-1 and I-2 were deposited at depths corresponding to the shelf-upper bathyal zone (shallower than 600 m). Relict layers could be formed at even shallower depths up to the photic zone. The upper layers II and III were formed under nearly present-day conditions.  相似文献   

4.
Doklady Earth Sciences - The main ore minerals of all layers of cobalt-rich ferromanganese crusts of Guyot Govorov of the Magellanic Mountains of the Pacific Ocean are poorly crystallized, poorly...  相似文献   

5.
The work aims to present new biostratigraphic data on Govorov, Vulkanolog, and Kocebu guyots of the western branch of the Magellan Seamounts (NW Pacific). The data were obtained during the voyage of R/V Gelendzhik in 2014. Analysis of the paleontological data on planktonic foraminifers, radiolarians, and corals allows us to distinguish several stratigraphic levels, ranging from Early Cretaceous to Pleistocene in age, which define the stages of geological development of the studied area. Based on the representative material on the planktonic foraminifers from layer I-2 of the ore crusts on Govorov guyot, it is established that this layer was deposited in the narrow age interval of 40.0–40.5 Ma. The data obtained clearly indicate the connection of the crust ore genesis on the seamounts with regional paleoceanic events.  相似文献   

6.
老挝甘蒙省钾镁盐矿床位于呵叻盆地的东隅,本文以该矿床ZK318钻孔的含矿段———下盐层为研究对象,对其开展了系统的矿物学和地球化学特征研究。结果表明,矿石矿物以石盐、钾石盐和光卤石为主,含少量方硼石和硬石膏。根据矿物与主量元素的分布特征,将下盐层分为5个次层,由下至上顺序为:盐岩层(石盐为主)→钾盐岩层(钾石盐为主)→光卤石岩层(光卤石为主)→薄盐岩层(石盐为主)→钾盐岩层(钾石盐为主)。微量元素Br值均大于200×10-6,表明卤水来源于海水;由盐岩层→钾盐岩层→光卤石岩层,B含量呈现出逐渐升高的趋势,表明B含量与卤水盐度呈线性关系。但顶部钾盐岩层的B含量高达890×10-6,与少量方硼石的存在相吻合,指示成矿卤水除了海水外,还有深部热液的贡献。按照卤化物卤水蒸发浓缩的顺序,光卤石是该卤水浓缩的最后阶段,但在光卤石沉积之后,又晶出一薄层石盐,表明曾经历过一次短暂的淡水补给。上、下两层钾石盐具有基本相同的Br含量,分别为1 790×10-6和1 792×10-6,且均直接沉积在石盐之上,故为原生钾石盐,而非光卤石的次生淋滤产物。认为甘蒙省钾镁盐矿床为海源陆相沉积,海水和深部热液是成钾物质的主要来源,钻孔中出露的两层钾石盐均为原生沉积。  相似文献   

7.
It is shown that the reaction ability of metal cations of ore minerals in Fe–Mn crusts of the Marcus Wake Rise increases in the following manner: (Co2+ < Cu2+ < Ni2+) < (Mg2+ < Mn2+ < K+ ≈ Ca2+ ≈ Na+). The composition of the exchange complex of the ore minerals is constant and includes these metal cations. Ca2+ and Na+ are major contributors to the exchange capacity of the ore minerals. The capacity of the ore minerals by cations of alkali and base metals is 0.43–0.60 and 2.08–2.70 mg-equiv/g, respectively. The exchange capacity of the ore minerals by cations of base metals increases linearly with the increase in the MnO2 content of the crust and does not depend on the geographical locations of the Marcus Wake guyots.  相似文献   

8.
Nickel and iron–cobalt ores from weathering crusts on ultramafic massifs in the Urals contain elevated PGE concentrations. Platinum group minerals first found in weathering crusts in Russia are primarily represented by Pt-palladium, native platinum, and compounds of Pd and Pt with Bi, Sb, and Te. Platinum group elements are characterized by a high differentiated mobility in the weathering profile. This is manifested by a difference in values of the PGE accumulation coefficient and a spatial separation of local accumulation zones of different PGE. This is also experimentally confirmed by different values of the PGE solubility in natural waters. An important factor of the formation of PGE-rich zones in weathering crusts at the Sakhara and Elizavet ore deposits is their substrate represented by the Sakhara and Uktus massifs of the Ural Platinum Belt. It is supposed that geochemical barriers for the PGE concentration in these weathering crusts were provided by the iron oxide zone and horizons enriched in manganese minerals.  相似文献   

9.
We present data on the location, chemical composition, and contents of trace elements in thin ferromanganese crusts at two sites of the submarine Vityaz’ Ridge: Diana and Bussol’ test grounds. The crusts abound in inclusions of grains of nonferrous (Cu, Zn, Pb, Sn, Ni, W) and noble (Au, Ag, Pd, Pt) metals in the form of native elements, sulfides, sulfates, oxides, or intermetallic compounds. The crusts at the Diana test ground contain mainly grains of nonferrous-metal minerals, and those at the Bussol’ test ground, mainly noble-metal minerals. There are also sites with Ni-rich (up to 3.5%) manganese crust. A detailed study of the ore crusts from the Vityaz’ Ridge showed that they are probably at the initial stage of formation.  相似文献   

10.
The Xiangquan Tl deposit, located in the northern part of the Middle–Lower Yangtze Valley metallogenic belt, eastern China, is the only known Tl-only deposit. It is hosted in micritic limestone, marl and mudstone of the Lower Ordovician Lunshan Formation. The orebodies are controlled by the Xiao–Xiaolongwang–Dalongwang anticline and two reverse faults, and are generally stratabound and lenticular. Tl is only ore metal contained in disseminated, massive, brecciated and banded ores. The ore is composed of Tl-bearing pyrite, and gangue minerals quartz, fluorite, barite and carbonate. Alteration minerals include fluorite, barite, fine grained quartz and carbonate. Tl occurs isomorphously replacing iron in the lattice of pyrite, and less commonly as tiny independent Tl-bearing minerals which may be lafossaite (TlAsS2) or lorandite (TlCl) appearing as 0.1–1 μm-sized cubic crystals. Xiangquan is a submarine sedimentary deposit and demonstrates that Tl, as a normally dispersed element, can form not only part of poly-metallic deposits but also as independent Tl deposits.  相似文献   

11.
北戴河红色风化壳地球化学特征及气候环境意义   总被引:2,自引:0,他引:2  
熊志方  龚一鸣 《地学前缘》2006,13(6):177-186
风化壳地球化学特征具有环境指示意义。用X射线荧光光谱法(XRF)和X射线衍射法(XRD)分别测试了秦皇岛北戴河燕山大学北侧红色风化壳(简称燕大风化壳)主量元素和粘粒粘土矿物。结果表明:除Ca外,Si、Al、Fe、Na、K的含量在风化壳上均有不同程度的波动,其中Si、Na、K波动轨迹基本一致,Al、Fe则与其相反,相关性分析显示SiO2与Al2O3、TFe、Fe2O3,Al2O3与TFe、Fe2O3,Na2O与CaO具有较好相关性;粘土矿物组合为1·4nm过渡矿物(25%~45%)+伊利石(10%~20%)+伊蒙混层矿物(20%~35%)+高岭石(15%~30%),矿物演化系列是长石、黑云母→(蛭石→1·4nm过渡矿物)→(伊利石)→高岭石。与粘土矿物以1∶1型高岭石为主的富铝化南方红色风化壳相比,燕大风化壳Si淋失度,Fe、Al富集度,矿物演化程度都较低,属硅铝化风化壳。燕大风化壳是上新世暖温带到北亚热带过渡型气候的风化产物,与现代秦皇岛暖温带半湿润型气候不同,这反映第四纪以来该区气候干旱因子增多。CIA、S/A等指示的风化强度异常表明,燕大风化壳形成后至少遭受过两次构造抬升,为剥蚀型风化壳,反映该区新构造运动间歇式上升的特点。  相似文献   

12.
广西镇圩式红土型金矿地质特征及成矿模式   总被引:2,自引:0,他引:2  
对镇圩式金矿矿床地质特征及矿物学的研究表明,该类矿床产于峰林洼地,岩溶漏斗等岩溶地貌中:赋矿主岩为红色中度一次强富铝风化壳,其风化壳剖面由下而上的变化特征为:粘土矿物由2:1型向1:1型变化,锰结核及铁的氧化物增多,硅、碱金属含量降低,铝、铁含量增加;自然金形状为不规则粒状、片状、树枝状、针状、浑圆状、次浑圆状、并常与锑钙石、针铁矿、软锰矿连生;金矿源体为叫曼式金矿。文章指出金矿由堆积、淋积作用形成,为岩溶洼地堆积、淋积改造红土型金矿、并建立了矿床成矿模式。  相似文献   

13.
白秧坪银铜多金属矿集区位于兰坪盆地北部。矿集区可分为东、西两个成矿带。赋矿地层主要为上三叠统三合洞组碳酸盐岩、第三系始新统保相寺组碎屑岩和下白垩统景星组碎屑岩。矿体主要以脉状、网脉状及透镜状形式产出。作者通过显微镜观察、电子探针和扫描分析等综合分析技术,确认白秧坪银铜多金属矿集区中矿物组成相当丰富,已鉴定出的矿物超过50种,既有大量硫化物、硫盐、氧化物、硫酸盐、碳酸盐,又有自然金属及金属互化物、卤化物等。除常见矿物为黄铁矿、毒砂、白铁矿、黄铜矿、方铅矿、闪锌矿、黝铜矿、砷黝铜矿、铜蓝、斑铜矿、辉铜矿、雌黄、菱铁矿、方解石、铁白云石、重晶石、天青石和石英外,作者还鉴定出一些银、钴、铋、镍、砷、锑的矿物,如自然铋、辉铋矿、辉银矿、辉砷钴矿、硫钴镍矿、硫铜铋矿、硫铋铜矿、辉砷镍矿、车轮矿、硫砷铜矿、单斜硫砷铅矿、灰硫砷铅矿等。矿石中矿物种类较多,组成较复杂,存在Co,Bi,Ni等元素的矿物,构成白秧坪银铜多金属矿集区的一大特色。在兰坪盆地白秧坪银铜多金属矿集区各矿段内,除了Cu、Pb、Zn构成工业矿体外,矿石中Ag、Co、Ni、Bi及As、Sb、Ba等元素的含量也相当高,可作为Cu-Pb-Zn-Ag-Co-Ni-Bi矿石来综合开发利用。白秧坪银铜多金属矿集区中Ag、Co、Ni、Bi等元素富集条件为低温、中低盐度,形成压力较小的浅成环境;成矿流体是一种富含CO2的Ca2+-Na+-SO24-Cl-类型、由大气降水演化而成的盆地热卤水。成矿物质主要来源于含有基性火山岩的兰坪盆地基底变质岩系。  相似文献   

14.
The nomenclature of replacement deposits is reviewed in terms of two processes, namely those involving the reaction between: (a) carbonate and siliceous rocks and (b) carbonate and unusual solutions, commonly, but not always, related to granitoids. ‘Wrigglite’ skarn is an example of a replacement deposit produced by process (b). It is highly characteristic rock consisting of alternating light layers of fluorite ± other F‐rich minerals and dark layers composed usually of Fe‐rich minerals or, rarely, Be‐rich minerals. The layers formed parallel or sub‐parallel to fractures, which are now veins, by a Leisegang‐type diffusion process. Repeated periods of fracturing, with growth away from sequentially produced fractures, produced an apparently chaotic ‘wrigglite’ skarn. The skarn is invariably enriched in Fe, F, Sn, Be, W, Bi and Zn. For ‘wrigglite’ to form, fluorine must be greater than 9 weight percent in the rock, and the intrusion of a Sn‐leucogranite ('A‐type') high into the crust is needed. Recognition of ‘wrigglite’ is important because (1) in some areas it is an ore of Sn (Mt Bischoff, Tas.), rare earth metals (Bayan Obo, China) or Be (Lost River, Alaska); (2) it indicates a high‐level environment of emplacement of a Sn‐granitoid; and (3) it indicates clearly that intricate layering can be produced by a diffusional process and not only by primary sedimentation.  相似文献   

15.
《International Geology Review》2012,54(11):1037-1045
Cambrian stratabound gold deposits in the western Qinling Mountains are hosted in a siliceous formation composed of black chert and carbonaceous slate. Studies have shown that Se is sufficiently high in abundance either in wall rocks or in gold ores as to reach economic grade. Locally, some independent Se ore bodies (Se >500 ppm) can be delineated. In gold ores, Se is present mainly as separate minerals, or as isomorphous solutions in sulfides. In addition, Se is positively correlated with Au. What is more important is that in the gold ores, native gold is commonly intimately inter-grown with selenium minerals. On the basis of this unique phenomenon, the authors hypothesize that gold and selenium may be transported by Au-S-Se or Au-Se complexes. The co-enrichment of Au and Se is attributed mainly to the boiling of ore fluids and their mixing with shallow-seated oxygen-bearing water.  相似文献   

16.
Mass cobalt-rich ferromanganese microcrusts and nodules similar in morphology and chemical composition to cobalt-rich ferromanganese deep-ocean crusts were found in Cenozoic volcanic rocks in southern Primorye. Research has shown that ore genesis of this type is genetically related to argillization and destruction of siliceous rocks by CO2-rich fluids, which is confirmed by experimental data on carbon erosion of iron-containing materials. Two types of this fluid ore genesis are recognized: (1) relatively high-temperature (vapor-condensate), related to late volcanic processes and fracture gas infiltration, and (2) low-temperature (vapor-liquid-condensate), controlled by degassing followed by carbon mobilization (gasification). Primarily colloidal ferromanganese segregations have high contents of Co, Ni, Pb, Cu, and Ce, typical of oceanic ore genesis. Regardless of the concentrations of these metals in the protoliths, their contents in microcrusts are similar (n-10n wt.%). This indicates the same ore genesis mechanism and similar sorption properties of the colloidal ferromanganese material formed. Barium- and cerium-rich ferromanganese microcrusts and nodules are abundant. Condensed drops of iron-containing platinum were found in apobasaltic nickel-rich ferromanganese segregations. There is a cerium paradox expressed as a minimum or a total lack of cerium among rare-earth phosphates associated with ferromanganese microcrusts. Fluid destruction and oxide metallization of ocean-floor basalts are assumed to be the main source of metals for oceanic ferromanganese crusts and nodules.  相似文献   

17.
The results of experimental studies of ion exchange properties of Co-bearing ferromanganese crusts in the Magellan Seamounts (Pacific Ocean) are discussed. Maximum reactivity in reactions with the participation of manganese minerals (Fe-vernadite, vernadite) is typical of Na+, K+, and Ca2+ cations, whereas minimum activity is recorded for cations Pb2+ and Co2+. The exchange complex of ore minerals in crusts is composed of Na+, K+, Ca2+, Mg2+, and Mn2+ cations. The exchange capacity of manganese minerals increases from the alkali metal cations to rare and heavy metal cations. Peculiarities of the affiliation of Co2+, Mn2+, and Mg2+ cations in manganese minerals of crusts are discussed. In manganese minerals, Co occurs as Co2+ and Co3+ cations. Metal cations in manganese minerals occur in different chemical forms: sorbed (Na+, K+, Ca2+, Mn2+, Co2+, Cu2+, Zn2+, Cd2+, and Pb2+); sorbed and chemically bound (Mg2+, Ni2+, Y3+, La3+, and Mo6+); and only chemically bound (Co3+). It is shown that the age of crust, its preservation time in the air-dry state, and type of host substrate do not affect the ion exchange indicators of manganese minerals. It has been established that alkali metal cations are characterized by completely reversible equivalent sorption, whereas heavy metal cations are sorbed by a complex mechanism: equivalent ion exchange for all metal cations; superequivalent, partly reversible sorption for Ba2+, Pb2+, Co2+, and Cu2+ cations, relative to exchange cations of manganese minerals. The obtained results refine the role of ion exchange processes during the hydrogenic formation of Co-bearing ferromanganese crusts.  相似文献   

18.
To improve the enrichment of the Thanetian marine phosphate ore deposit from the quarry of Bled El Hadba (Djebel Onk, Algeria) before its exploitation, we first conducted a joint study using different techniques for comparison. These studies reveal that magnetic minerals play a significant role within the matrix of the central productive unit which is squeezed between two other units. Magnetic separation procedures show that there are some positive correlations between magnetic susceptibility and grain size fraction (80–250 μm). These dolomite-rich fractions are more clearly separated. Different tools were used to characterize the magnetic minerals (X-ray, microprobe, differential scanning calorimetry, thermogravimetric and thermomagnetic analyses). They show correlations between magnetic phases and the presence of associated magnetic minerals within the matrix or included in the phosphate ore deposit. They enabled us to distinguish a series of magnetic minerals (magnetite, hematite, maghemite, goethite, ilmenite, pyrite, iron–titanium oxide and titanium oxide sulphate) and to determine that Fe and Ti are prevalent in the separated fractions, following the same variation as Mg. The phosphorous (phosphate) rate is higher in the non-magnetic material, especially in the layers that are rich in dolomitic carbonates (upper and lower units), which could be trapped within the dolomitic matrix, while Magnesium (dolomite) is more important in the magnetic fraction. The separation of phosphate elements and dolomite carbonates is effective and therefore the ore can be enriched through magnetic procedures. Comparison between products enriched by magnetic separation, flotation and calcination showed important differences, chemically, economically and technically speaking.  相似文献   

19.
安徽白岭金矿金的赋存状态研究   总被引:2,自引:0,他引:2  
白岭金矿位于下扬子台坳、长江褶断隆起带中段。金矿体赋存于三叠系中统铜头尖组中,矿体形态呈不规则脉状。矿石类型主要有以含金褐铁矿为主的氧化矿石和以含金黄铁矿为主的原生矿石两大类。载金矿物主要有黄铁矿、褐铁矿、石英、伊利石、黄铜矿等。通过矿相鉴定,单矿物含金分析、物相分析、多点分析、电子探针分析等,查明了金的赋存状态。金矿物以自然金为主,其次为银金矿。金的粒度较细,主要为中细粒显微金。金的嵌布类型有包体金、晶隙金、裂隙金。金的成色较高,平均为906.5。金主要呈矿物态存在。  相似文献   

20.
The Arsenopyrite Residue Stockpile (ARS) in Snow Lake, Manitoba contains approximately 250,000 tons of cyanide treated, refractory arsenopyrite ore concentrate. The residue was deposited between 1950 and 1959 in an open waste rock impoundment, and remained exposed until 2000, when the pile was capped with layers of waste rock and clay. During the time when the ARS was exposed to the atmosphere, arsenopyrite, pyrrhotite, pyrite and chalcopyrite were oxidized producing scorodite, jarosite and two generations of amorphous Fe sulfo-arsenates (AISA). These secondary phases attenuated some of the As released to pore water during oxidation in the upper layers of the ARS. The imposition of the cap prevented further oxidation. The secondary As minerals are not stable in the reduced environment that currently dominates the pile. Therefore, As currently is being released into the groundwater. Water in an adjacent monitoring well has concentrations of >20 mg/L total As with relative predominance of As(III).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号