首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
4种典型城市下垫面日平均温度、日最高温度、日最低温度的逐月变化特征总体与气温变化相似,不同下垫面问温度差异夏半年均大于冬半年。沥青、水泥、砂石和草地日平均温度、日最高温度全年均高于气温,日最低温度与气温差异不大,表明典型城市下垫面对大气具有一定的加热作用。气温、日照时数、总云量、日平均相对湿度等气象因子与4种下垫面的地表温度相关性显著。建立了4种下垫面各温度参数依赖于日平均、日最高、日最低气温、日照时数、日平均相对湿度和总云量等影响因子的回归模拟方程,因此利用精细化数值预报资料代入方程就可以得出城市沥青、水泥、砂石和草地4种下垫面地表温度,提高城市气象服务效率。  相似文献   

2.
利用2014~2015年阿坝州13站共730天08:00和20:00起报的SCMOC温度精细化指导预报资料,对比实况日最高(低)气温,进行预报质量检验。结果表明:日最高(低)气温预报准确率与预报时效成反比,两个时次预报的最低气温准确率高于最高气温,且最低气温预报准确率有明显的季节变化。08:00起报的日最低气温多出现负误差,其余预报最高(低)气温多出现正误差。日最低气温预报绝对误差与海拔高度有关。24h最高(低)气温预报绝对误差>4℃样本分析表明,温度平流、大气稳定度与非绝热过程对温度的影响明显,造成气温偏差的主要原因是降水及冷空气影响范围和强度,冷、暖平流影响偏差,高空槽强度和移动偏差等几方面。  相似文献   

3.
利用包头试验场2016年12月—2018年12月沥青、水泥、地砖、砂石路面温度、气温观测和同期气象站实况资料,统计分析了不同季节、不同天气状况下各种路面温度和气温的日变化特征,以及不同路面温度与气象因子的关系,采用逐步回归统计方法建立了不同季节不同路面温度预报模型并进行检验。结果表明,不同路面温度的日变化与季节和天空状况有密切关系,路面温度与平均气温、最高气温、最低气温呈显著正相关;与相对湿度呈负相关。基于不同路面温度预报方程的检验结果得出,预报准确率在82%~94%,相关系数在0.86~0.96,模型应用于路面温度预报业务。  相似文献   

4.
SCMOC温度精细化指导预报在陕西区域的质量检验   总被引:1,自引:0,他引:1  
王丹  高红燕  马磊  王建鹏  杨新 《气象科技》2014,42(5):839-846
利用2012年陕西区域99站共366天北京时间08:00和20:00起报的SCMOC温度精细化指导预报与实况资料的比较,检验分析了定时温度、日最高气温和日最低气温的预报质量。结果表明:陕西区域SCMOC温度精细化指导预报08:00起报的准确率高于20:00起报的,且预报准确率有明显的季节变化,夏、秋季节较高,冬、春季节较低,日最高(低)气温的预报准确率与预报时效成反比。地形高度影响温度预报准确率,二者之间的相关系数通过了显著性检验。08:00起报的48h内逐3h气温多出现负误差,20:00起报的多出现正误差。08:00起报的日最高气温和20:00起报的日最高(低)气温多出现负误差,08:00起报的日最低气温多出现正误差。从对典型天气过程的温度预报质量检验来看,强冷空气影响下的降温天气过程的温度预报难度较大,预报准确率较其他天气类型偏低一些。  相似文献   

5.
南宁市夏季不同下垫面温度特征分析与预报研究   总被引:4,自引:4,他引:4       下载免费PDF全文
对2000年至2002年4~9月南宁市下垫面表面温度观测资料的分析表明,下垫面温度明显高于百叶箱气温,尤其是日最高温度差异更大。而不同下垫面之间的温度变化,也有较大不同。下垫面温度的变化与其它气象因子密切相关。在上述分析的基础上,应用统计学方法建立了几种下垫面表面温度的预报方程。  相似文献   

6.
辽宁地区ECMWF模式气温预报检验及误差订正研究   总被引:1,自引:0,他引:1  
利用2016—2018年ECMWF细网格模式12—36 h内2 m温度预报产品,选取辽宁地区65个城镇站点观测资料,评估预报产品在不同季节的预报准确率,并按季节分析固定误差订正方法和最优滑动周期订正方法对提高准确率的作用。结果表明:ECMWF模式预报产品对辽宁地区气温预报的准确率表现为,ECMWF模式最高气温冬季预报最优(城镇站点预报准确率为81.5%),最低气温夏季预报最好(城镇站点预报准确率为84.3%);采用最优滑动周期订正后,2016—2018年辽宁地区的最高气温和最低气温准确率较ECMWF模式自身分别提高了19.7%和20.5%,最低气温的预报准确率提高程度优于最高气温;在整个空间分布中,ECMWF模式对辽宁中部平原地区最高(低)气温预报准确率高于东、西部地区,辽宁东北部和西南部以及东南部的长白山余脉影响区域准确率明显低于其他区域。同时,在各季中,最高气温和夏季最低气温的订正预报能力优于其他季节;在地面晴、雨两种特征下,对辽宁地区24 h气温预报进行订正检验表明,该检验结果对辽宁地区最高(低)气温订正有一定补充作用,尤其是冬季降水出现时,最高气温预报补充订正效果最为显著。  相似文献   

7.
利用T639模式预报产品和黑龙江省83个国家气象站气温实况观测资料,采用最优预报因子方法选取预报因子,应用多元回归方法建立逐站日最高气温和日最低气温的MOS预报方程; 对MOS、中央气象台指导预报(SCMOC)和T639三种气温预报产品的日最高气温和日最低气温预报效果进行对比检验分析,并用EOF方法检验预报与实况的时空变化特征一致性。结果表明: 与实况的时空变化一致性方面,MOS和SCMOC较好,T639略差; 预报效果方面,MOS和SCMOC对日最高气温和日最低气温的2 ℃预报准确率普遍高于T639,MOS的预报准确率在日最高气温方面高于SCMOC,在日最低气温方面低于SCMOC; MOS对T639气温预报产品改善效果明显,尤其对冬季日最低气温的预报改善效果十分显著; MOS较T639气温预报改善效果与T639模式预报效果呈负相关关系,主要表现为,MOS预报改善效果在T639预报准确率低的山区明显优于平原,在春、夏季,预报准确率较低的日最高气温明显优于日最低气温,在冬季,预报准确率较低的日最低气温优于日最高气温; MOS气温预报方法的预报性能较理想,SCMOC对黑龙江省预报难度较大的日最低气温预报效果较好。  相似文献   

8.
石家庄温度预报检验及影响因子分析   总被引:4,自引:0,他引:4       下载免费PDF全文
对石家庄市2004年11月-2008年3月的温度预报进行了质量检验。结果表明:石家庄最低气温和最高气温的平均绝对误差均低于2 ℃,均方根误差低于3 ℃,最低气温预报准确率明显优于最高气温。进而对温度预报误差较大的样本出现原因进行了逐日客观分析,并通过自然正交函数分解(EOF)法,对不同情形下石家庄及周边县站极端最高、最低气温EOF分解特征向量场的变化特征对比,推断出影响气温预报偏差的主要因子大致相同,焚风是导致温度预报出现较大误差的重要原因。  相似文献   

9.
通过对陕西智能网格气象预报系统(秦智)(下简称秦智系统)的温度、晴雨和暴雨预报准确率检验,发现秦智系统在佛坪地区的日最低气温预报准确率高于日最高气温预报准确率,误差≤2℃的平均准确率日最高气温为51.6%、日最低气温为79.8%,平均绝对误差日最高气温2.4℃、日最低气温1.3℃,说明秦智系统对佛坪地区的气温预报有具有较好的指导作用;日最高气温预报准确率最低的月份是5月、6月和9月、日最低气温预报准确率最低的是1月和4月;晴雨预报准确率最高的月份是10月,最低的是4月;秦智系统在佛坪的暴雨预报24 h TS评分为40%,命中率为50%,且预报时效越长TS评分和命中率越低,空报率和漏报率越高。气温预报准确率和晴雨预报准确率最低的三个站均在北部山区海拔1 000 m以上,说明地形因素对数值预报的准确性有一定影响。  相似文献   

10.
精细化气象要素温度指导预报在山西区域的误差及特征   总被引:1,自引:0,他引:1  
利用2009-2010年山西区域108站共730天精细化气象要素温度指导预报资料,对比日最高气温和日最低气温的预报误差,采用常规统计、EOF分析等方法研究指导预报误差的时间和空间分布特征,结果表明:山西区域的温度预报准确率比较稳定,但有明显的季节特点,夏季最高,秋季次之、冬春季相对偏低,日最高气温年平均正、负误差略高于日最低气温误差,春季大,冬秋次之,夏季小;正负误差值的空间分布与山西地形有一定的联系,日最高气温和日最低气温误差的分布特点具有明显的全区一致性.  相似文献   

11.
基于集合预报系统的日最高和最低气温预报   总被引:1,自引:0,他引:1  
熊敏诠 《气象学报》2017,75(2):211-222
根据欧洲中心集合预报系统2 m气温预报的集合统计值,提出了BP-SM方法,针对中国512个台站2016年3月的日最高(低)气温做预报分析。将集合预报系统的模式直接输出、BP和BP-SM方法得到的日最高(低)气温进行了比较,结果表明:预报时效越长,BP-SM方法较之BP方法的预报优势也更明显;在1至5 d的预报中,BP-SM方法显著降低了预报绝对误差,误差在2℃以内的准确率大部分在60%以上,部分站点达到90%;正技巧评分均值大多高于30%,在青藏高原东部和南部地区超过了60%。预报正技巧站点次数在绝对误差≤2℃(1℃)范围内有所提高,对日最高气温预报准确率的提高略好于日最低气温;BP-SM方法有效地降低了预报系统偏差,较大预报误差出现次数显著减少。   相似文献   

12.
石家庄城市与郊县站地面平均最低、最高气温差异   总被引:3,自引:0,他引:3  
应用石家庄地区17个站1955—2006年逐日最低、最高气温资料,统计分析了16个郊县站与石家庄市区站最低、最高气温的差值。结果表明:各郊县站年平均最低、最高气温均比石家庄市站低,最低气温偏低0.17~2.07℃,16个站平均偏低1.02℃;最高气温偏低0.01~0.55℃,16个站平均偏低0.28℃。郊县站平均最低气温偏低程度在冬季更明显,1月平均达到1.69℃,夏季偏低程度比较弱,但最弱的7月也有0.49℃;最高气温的偏低程度也在冬季明显,但季节性差异没有最低气温大。不论最低气温,还是最高气温,各县(市)站与石家庄市区站之间的差异均存在明显的随时间增大现象,最低气温20世纪90年代初以来增大尤其明显。石家庄市区站地面最低、最高气温记录反映出明显的城市热岛效应影响。  相似文献   

13.
The statistical scheme is proposed for the forecast of surface air temperature and humidity using operative weather forecasts with 3–5-day lead time from the best forecasting hydrodynamic models as well as the archives of forecasts of these models and observational data from 2800 weather stations of Russia, Eastern Europe, and Central Asia. The output of the scheme includes the forecasts of air temperature for the standard observation moments with the period of 6 hours and extreme temperatures with the lead times of 12–120 hours. The accuracy of temperature and humidity forecasts for the period from July 2014 till June 2017 is much higher than that for the forecasts of original hydrodynamic models. The skill scores for extreme temperature forecasts based on the proposed method are compared with the similar results of the Weather Element Computation (WEC) forecasting scheme and forecasts by weathermen.  相似文献   

14.
基于数值模式误差分析的气温预报方法   总被引:1,自引:0,他引:1       下载免费PDF全文
采用欧洲中期天气预报中心(ECMWF)全球确定性预报模式地面气温和国家地面站点观测资料,对模式初值场误差、历史误差以及卡尔曼滤波预测误差与实况误差之间的相关性进行分析,设计了4种回归方案订正日最高、最低气温预报偏差,并与ECMWF、中央气象台和全国城镇的预报产品进行了检验对比。结果表明:采用了模式近1~3 d最高(最低)气温和模式最高(最低)气温历史平均误差、初值场误差以及卡尔曼滤波反演误差作为预报因子的改进方案效果最优,经对其2017年日最高和最低气温的预报检验,预报准确率较ECMWF原始模式预报有较明显提高,也明显优于中央气象台指导预报。在空间分布方面,其对地形较为复杂地区的改进效果更好。同时,与当前业务中质量最好的全国城镇预报相比,最高气温预报平均绝对偏差(Mean Absolute Error,MAE)较全国城镇预报低8.24%~13.97%,预报准确率提高1.24%~3.57%,日最低气温平均绝对偏差较城镇预报低9.43%~17.69%,预报准确率提高1.77%~2.72%。在3 d的预报中,对24 h时效内预报相对于48 h和72 h的改进幅度更大,订正效果更加明显。  相似文献   

15.
利用龙川站2008-2012年地面观测资料、欧洲中心数值预报产品,采用常规统计预报方法(逐步回归),将最高(低)气温实况作为预报对象,把可能影响气温变化的气象要素作为预报因子,分月建立未来24~ 72 h最高(低)气温的MOS预报方程,通过对2013年全年的检验预报表明:未来24~72 h最高(低)气温预报平均绝对误差均在2.0℃以内.  相似文献   

16.
Public weather services are trending toward providing users with probabilistic weather forecasts, in place of traditional deterministic forecasts. Probabilistic forecasting techniques are continually being improved to optimize available forecasting information. The Bayesian Processor of Forecast (BPF), a new statistical method for probabilistic forecast, can transform a deterministic forecast into a probabilistic forecast according to the historical statistical relationship between observations and forecasts generated by that forecasting system. This technique accounts for the typical forecasting performance of a deterministic forecasting system in quantifying the forecast uncertainty. The meta-Gaussian likelihood model is suitable for a variety of stochastic dependence structures with monotone likelihood ratios. The meta-Gaussian BPF adopting this kind of likelihood model can therefore be applied across many fields, including meteorology and hydrology. The Bayes theorem with two continuous random variables and the normal-linear BPF are briefly introduced. The meta-Gaussian BPF for a continuous predictand using a single predictor is then presented and discussed. The performance of the meta-Gaussian BPF is tested in a preliminary experiment. Control forecasts of daily surface temperature at 0000 UTC at Changsha and Wuhan stations are used as the deterministic forecast data. These control forecasts are taken from ensemble predictions with a 96-h lead time generated by the National Meteorological Center of the China Meteorological Administration, the European Centre for Medium-Range Weather Forecasts, and the US National Centers for Environmental Prediction during January 2008. The results of the experiment show that the meta-Gaussian BPF can transform a deterministic control forecast of surface temperature from any one of the three ensemble predictions into a useful probabilistic forecast of surface temperature. These probabilistic forecasts quantify the uncertainty of the control forecast; accordingly, the performance of the probabilistic forecasts differs based on the source of the underlying deterministic control forecasts.  相似文献   

17.
Based on the observed 2-year temperature data for four kinds of typical urban underlying surfaces, including asphalt, cement, bare land and grass land, the annual variations and influencing factors of land surface temperature are analyzed. Then fitting equations for surface temperature are established. It is shown that the annual variation of daily average, maximum and minimum temperature and daily temperature range on the four urban underlying surfaces is consistent with the change in air temperature. The difference of temperature on different underlying surfaces in the summer half year (May to October) is much more evident than that in the winter half year (December to the following April). The daily average and maximum temperatures of asphalt, cement, bare land and grass land are higher than air temperature due to the atmospheric heating in the daytime, with that of asphalt being the highest, followed in turn by cement, bare land and grass land. Moreover, the daily average, maximum and minimum temperature on the four urban underlying surfaces are strongly impacted by total cloud amount, daily average relative humidity and sunshine hours. The land surface can be cooled (warmed) by increased total cloud amount (relative humidity). The changes in temperature on bare land and grass land are influenced by both the total cloud amount and the daily average relative humidity. The temperature parameters of the four land surfaces are significantly correlated with daily average, maximum and minimum temperature, sunshine hours, daily average relative humidity and total cloud amount, respectively. The analysis also indicates that the range of fitting parameter of a linear regression equation between the surface temperature of the four kinds of typical land surface and the air temperature is from 0.809 to 0.971, passing the F-test with a confidence level of 0.99.  相似文献   

18.
The Weather Research and Forecasting (WRF) model was compared with daily surface observations to verify the accuracy of the WRF model in forecasting surface temperature, pressure, precipitation, wind speed, and direction. Daily forecasts for the following two days were produced at nine locations across southern Alberta, Canada. Model output was verified using station observations to determine the differences in forecast accuracy for each season.

Although there were seasonal differences in the WRF model, the summer season forecasts generally had the greatest accuracy, determined by the lowest root mean square errors, whereas the winter season forecasts were the least accurate. The WRF model generally produced skillful forecasts throughout the year although with a smaller diurnal temperature range than observed. The WRF model forecast the prevailing wind direction more accurately than other directions, but it tended to slightly overestimate precipitation amounts. A sensitivity analysis consisting of three microphysics schemes showed relatively minor differences between simulated precipitation as well as 2?m surface temperatures.  相似文献   

19.
数值模式直接输出和经模式后处理得到的预报误差比较,是延伸期逐日要素预报应用基础。针对中国2 583个站点在2020年春季11~30天的日最高温度预报,根据欧洲数值中心的集合预报输出,首先,使用BP-SM(Back-Propagation-Self memory)法和回归法,进行确定性预报订正效果比较;结果表明BP-SM法和回归法都明显降低了预报绝对误差;在11~14天预报中,BP-SM法得到的平均绝对误差为3.3~3.6oC,预报准确率超过35%,订正效果更优。其次,基于模式直接输出和BP-SM法获得的概率预报,使用CRPSS (continuous ranked probability skill score)进行了可预报性分析。结果表明,在地形复杂地区,经过订正,预报准确率明显改善。对于延伸期逐日要素预报,合理的模式后处理方法是降低预报误差和提高预报能力的重要环节。  相似文献   

20.
Two synoptic-statistical methods for forecasting daily maximum surface ozone concentrations are proposed based on the relations between surface ozone and meteorological variables in the Moscow region. The methods use current ozone measurements and forecasts of meteorological variables and of synoptic situation. Statistically, the methods provide better forecast results than climatic and persistence methods. Compared with the persistence forecast, the above methods reduce the variance of the forecast error from 1.5 to 2 times. The most significant predictors for forecasting daily maximum surface ozone concentration with lead times of one to three days for Moscow are the forecast time (Julian day of the year), prognostic temperature, relative humidity, indices of the meteorological pollution potential of the atmosphere (MPP), and surface ozone concentration observed on the previous day. The forecast efficiency is demonstrated using the 2006 observational data from the stations of the Institute of Atmospheric Physics of the Russian Academy of Sciences-Moscow State University and Mosecomonitoring State Nature Protection Organization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号