首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The physical processes acting on charged microscopic dust grains in the Jovian magnetosphere are examined. Such small dust grains are believed to be injected continuously into the magnetosphere via volcanic activity on Io. It is shown that electromagnetic forces dominate the dust particle dynamics, and that these particles behave adiabatically, in the sense that the guiding centre approximation to their motion applies. Based on this fact, the diffusion across field lines, caused by random charge fluctuations of the dust grains, can be determined. This diffusion is the major cross field transport mechanism and determines the dispersion of dust grains from Io throughout the inner Jovian magnetosphere. Other physical processes (radiation pressure drag, Coulomb drag, sputtering) are also examined regarding their importance for particle transport.  相似文献   

2.
The interaction of the Jovian energetic radiation belt electrons, and the Jovian plasma, with an ambient dust population is examined. Firstly the distribution of dust, ejected from Io, in the inner magnetosphere is calculated. Using the mass loss in submicron particles of ~13g/sec, which is required to model the intensity and shape of the Jovian ring in the model of Morfill etal. (1980b), it is possible to quantitatively calculate losses of magnetospheric ions and electrons due to direct collisions with charged dust particles as well as multiple Coulomb scattering with resultant losses in the Jovian atmosphere. It is shown that the magnitude and radial dependence of the losses are sufficient to explain the electron measurements, although the possibility that some other process may be more effective cannot be ruled out. The same dust population has, on the other hand, no significant effect on the plasma, which should therefore be transported essentially loss free, except within the Jovian ring, if there are no other processes involved. Comparison with the data shows that loss free transport outside the ring does indeed satisfy the measurement constraints.  相似文献   

3.
The stability to temporal variations of the Jovian dust ring is a property which may soon be measured, and can in principle give a clue as to the origin of the ring. In this analysis fluctuations in the ring topology and intensity are determined over various relevant time scales, assuming the origin model proposed by Johnson etal. (1980) and Morfill etal. (1980a, b) to apply. It is concluded that the ring is a quasi-permanent and quasi-stable feature of the Jovian system.  相似文献   

4.
It is shown that Birkeland current and vorticity in the magnetosphere are intimately related, suggesting the importance of taking explicit account of vorticity, particularly velocity shear, when considering magnetospheric motions. An equation of motion for the magnetosphere coupled to the ionosphere is derived. It is suggested that experience with MHD fluids generally might fruitfully be brought to bear on certain problems in the magnetosphere to answer the question, not ‘why a sheet of Birkeland current,’ but rather ‘why a localised velocity shear.’  相似文献   

5.
Using a global numerical model, we have studied how the present Martian magnetosphere may have looked in the past when the planet had a global intrinsic magnetic field. A Mars version (HYB-Mars) of the self-consistent quasi-neutral hybrid model was used which treats the ions as particles and the electrons as a massless charge-neutralizing fluid. We compare four cases where an intrinsic dipole magnetic field was 0 nT (the present situation), 10, 30, and 60 nT at the surface of Mars along the magnetic equator. We find that the 10 nT dipolar magnetic field already results in a magnetosphere which in many respects is more Earth-like than, a non-magnetized, “induced” magnetosphere. However, the 10 nT dipole magnetosphere is still relatively strongly connected to the interplanetary magnetic field, while the 30 nT dipole case, and especially the 60 nT dipole case, results in a magnetosphere whose morphology is determined predominantly by the Martian intrinsic magnetic field. A change of the magnetosphere due to a decreasing dipole magnetic field strength from 60 to 0 nT could have happened during the history of Mars when a globally magnetized Mars turned into the present, globally non-magnetized, planet.  相似文献   

6.
7.
Observations of sodium D-line emission from Io and the magnetosphere of Jupiter are reported. A disk-shaped cloud of sodium is found to exist in the Jovian magnetosphere with an inner edge at about 4R and an outer edge at about 10R . The gravitational scale height above the equatorial plane is a few Jovian radii. The data are interpreted in terms of a sputtering model, in which the sodium required to maintain the cloud is sputtered off the surface of Io by trapped energetic radiation-belt protons. Conditions on the atmospheric density are obtained. The Keplerian orbits attainable by such escaping sputtered atoms can provide the observed spatial distribution. The required 500-keV proton flux required to provide the 1–10 keV protons which will sputter the sodium at the surface of Io is consistent with the limiting trapped flux determined by ion-cyclotron turbulence.Publication No. 1410, Institute of Geophysics and Planetary Physics, University of California, Los Angeles 90024, Cal., U.S.A.  相似文献   

8.
The study of VLF waves at ground based stations is an important source of information on particles trapped in the magnetosphere. By various techniques it is also possible to measure plasma densities, electric fields and monitor energetic particle injection. By studying the propagation of waves beneath the ionosphere it is possible to study particle precipitation from the magnetosphere. In this paper we summarise some of the techniques and results obtained from the study of VLF waves at the South African research station in Antarctica.  相似文献   

9.
AXIOM: advanced X-ray imaging of the magnetosphere   总被引:1,自引:0,他引:1  
Planetary plasma and magnetic field environments can be studied in two complementary ways—by in situ measurements, or by remote sensing. While the former provide precise information about plasma behaviour, instabilities and dynamics on local scales, the latter offers the global view necessary to understand the overall interaction of the magnetospheric plasma with the solar wind. Some parts of the Earth’s magnetosphere have been remotely sensed, but the majority remains unexplored by this type of measurements. Here we propose a novel and more elegant approach employing remote X-ray imaging techniques, which are now possible thanks to the relatively recent discovery of solar wind charge exchange X-ray emissions in the vicinity of the Earth’s magnetosphere. In this article we describe how an appropriately designed and located X-ray telescope, supported by simultaneous in situ measurements of the solar wind, can be used to image the dayside magnetosphere, magnetosheath and bow shock, with a temporal and spatial resolution sufficient to address several key outstanding questions concerning how the solar wind interacts with the Earth’s magnetosphere on a global level. Global images of the dayside magnetospheric boundaries require vantage points well outside the magnetosphere. Our studies have led us to propose ‘AXIOM: Advanced X-ray Imaging of the Magnetosphere’, a concept mission using a Vega launcher with a LISA Pathfinder-type Propulsion Module to place the spacecraft in a Lissajous orbit around the Earth–Moon L1 point. The model payload consists of an X-ray Wide Field Imager, capable of both imaging and spectroscopy, and an in situ plasma and magnetic field measurement package. This package comprises a Proton-Alpha Sensor, designed to measure the bulk properties of the solar wind, an Ion Composition Analyser, to characterise the minor ion populations in the solar wind that cause charge exchange emission, and a Magnetometer, designed to measure the strength and direction of the solar wind magnetic field. We also show simulations that demonstrate how the proposed X-ray telescope design is capable of imaging the predicted emission from the dayside magnetosphere with the sensitivity and cadence required to achieve the science goals of the mission.  相似文献   

10.
As a result of his polar expeditions at the beginning of this century, Kristian Birkeland determined that intense ionospheric currents were associated with the aurora. Birkeland suggested that these currents originated far from the Earth and that they flowed ointo and away from the polar atmosphere along the geomagnetic field lines. The existence of such field-aligned or Birkeland currents was disputed because it was not possible to unambiguously identify current systems that are field-aligned (as suggested by Alfvén, 1939, 1940) and those which are completely contained in the ionosphere (as developed by Vestine and Chapman, 1938) with surface magnetic field observations. The presence of Birkeland currents has been absolutely confirmed with satellite-borne particle and magnetic field experiments conducted over the past two decades. These satellite observations have determined the large-scale patterns, flow directions, and intensities of Birkeland currents in the auroral and polar regions, and their relationship to the orientation and magnitude of the interplanetary magnetic field. The Birkeland currents are directly associated with visible and UV auroral forms observed with satellites. The results obtained from a variety of recently launched satellites are discussed here. These include Sweden's first satellite, VIKING, which has provided evidence for resonant Alfvén waves on the same geomagnetic field lines that guide stationary Birkeland currents. These observations demonstrate the important role that these currents play in the coupling of energy between the interplanetary medium and the lower ionosphere and atmosphere.Paper dedicated to Professor Hannes Alfvén on the occasion of his 80th birthday, 30 May 1988.  相似文献   

11.
A quantitative estimate of the electric fields induced by the time dependent ring current is made incorporating the drifts and induced electric fields in a self-consistent manner. It has been shown that in the ring current region, the results of the self-consistent calculations deviate substantially from the first order estimates hitherto obtained. Since for a rapidly varying ring current, the induced electric field can be of the same order as the convection electric field in the magnetosphere, these deviations have to be taken into account in substorm studies.  相似文献   

12.
The mutual influence between two whistler mode waves, through cyclotron resonant interaction of each wave with the same set of energetic electrons, is analysed both theoretically and by computer simulations ; this two-wave interaction mechanism seems to be an important process in understanding recently observed phenomena in Siple Station VLF multi-wave injection experiments. A criterion is established to estimate the threshold for the critical frequency spacing (for given wave amplitudes) for a significant mutual interaction between two monochromatic waves to occur. This criterion is based on the overlap of coherence bandwidths associated with the trapping domains of each wave and it takes into account the geomagnetospheric medium inhomogeneity. The effects of a perturbing second wave on electrons trapped by a first wave is discussed, considering the general situation of varying-frequency waves, and a simulation model is used to track the motion of test-electrons in the two-waves field. Conditions leading to detrapping and subsequent trapping by the second wave of previously first-wave trapped electrons are analysed and suggest the possibility of this phenomenon to play an important role in frequency entrainment and energy exchange between two waves.  相似文献   

13.
The adiabatic motion of charged particles in the magnetosphere has been investigated using Mead-Fairfield magnetospheric field model (Mead and Fairfield, 1975). Since the motion of charged particles in a dipolar field geometry is well understood, we bring out in this paper some important features in characteristic motion due to non-dipolar distortions in the field geometry. We look at the tilt averaged picture of the field configuration and estimate theoretically the parameters like bounce period, longitudinal invariant and the bounce averaged drift velocities of the charged particle in the Mead-Fairfield field geometry. These parameters are evaluated as a function of pitch angle and azimuthal position in the region of ring current (5 to 7 Earth radii from the centre of the Earth) for four ranges of magnetic activity. At different longitudes the non-dipolar contribution as a percentage of dipole value in bounce period and longitudinal invariant show maximum variation for particles close to 90° pitch angles. For any low pitch angle, these effects maximize at the midnight meridian. The radial component of the bounce averaged drift velocity is found to be greatest at the dawn-dusk meridians and the contribution vanishes at the day and midnight meridians for all pitch angles. In the absence of tilt-dependent terms in the model, the latitudinal component of the drift velocity vanishes. On the other hand, the relative non-dipolar contribution to bounce averaged azimuthal drift velocity is very high as compared to similar contribution in other characteristic parameters of particle motion. It is also shown that non-dipolar contribution in bounce period, longitudinal invariant and bounce averaged drift velocities increases in magnitude with increase in distance and magnetic activity.  相似文献   

14.
Many types of ULF pulsations observed at geosynchronous orbit exhibit properties of standing shear Alfvén waves. Observation of the harmonic mode, polarization state and azimuthal wave number is crucial for determining the source of energy responsible for excitation of these waves. In recent years it has become possible to identify the harmonic mode of standing waves from dynamic spectral analysis, as well as simultaneous observations of electric and magnetic fields of the waves or a comparison between plasma mass density estimated from the frequency of the waves and that observed by direct measurement. It is then more reasonable to classify pulsations according to their physical properties, including the harmonic mode, polarization state, azimuthal wave number, and localization in occurrence, than according to the conventional scheme based on the wave form and period range. From analysis of magnetic pulsations observed at geosynchronous orbit, at least two distinctively different types of waves have been identified. One is azimuthally polarized waves simultaneously excited at the fundamental and several harmonics of a standing Alfvén wave which are observed throughout the day side. They have relatively small azimuthal numbers (less than 10) and propagate tailward. They are likely to be excited by the interaction of the solar wind with the magnetopause or bow shock. Another type is radially polarized waves most strongly excited at the second harmonic. They are observed mainly on the afternoon side. Bounce resonance of a few keV ions has been suggested as the mechanism for excitation of the radially polarized waves.  相似文献   

15.
Equations governing the coupling of the scalar and vector potentials for a resistive electron-positron plasma in a strong magnetic field are derived. It is shown that in the presence of magnetic shear, a tearing instability may occur. The latter can lead to magnetic field line reconnection and the formation of magnetic islands which could affect the dynamics of the pulsar magnetosphere.  相似文献   

16.
Several substorms were observed at Explorer 45 in November and December 1971, and January and February 1972, while the satellite was in the evening quadrant near L = 5. These same substorms were identified in ground level magnetograms from auroral zone and low latitude stations. The satellite vector magnetic field records and rapid run ground magnetograms were examined for evidence of simultaneous occurrence of Pi2 magnetic pulsations. Pulsations which began abruptly were observed at the satellite during 7 of the 13 substorms studied and the pulsations occurred near the estimated time of substorm onset. These 7 pulsation events were also observed on the ground and 6 were identified in station comments as Pi2. All of the events observed were principally compressional waves, that is, pulsations in field magnitude. There were also transverse components elliptically polarized counter-clockwise looking along the field line. Periods observed ranged from 40 to 200 sec with 80 sec often the dominant period.  相似文献   

17.
We have considered the electrodynamic effects on small Al2O3 spherules dumped into the Earth's magnetosphere in large quantities during solid rocket propellant burns. The charges acquired by these grains in all regions of the terrestrial environment (plasmasphere, magnetosphere, and solar wind) are modest. Consequently electrodynamic effects are significant only at the lower end of the dust size spectrum (R g0.1 m). In that case, the electrodynamic forces conspire with solar radiation pressure to eliminate the grains from the magnetosphere in a comparatively short time. Although not studied here in detail, we anticipate a similar fate for fine micrometeoroids entering the Earth's magnetosphere, with the electro-dynamic effects playing an even more important role.Paper dedicated to Professor Hannes Alfvén on the occasion of his 80th birthday, 30 May 1988.  相似文献   

18.
The magnetosphere of Jupiter has been the subject of extensive research in recent years due to its detectable radio emissions. Observations in the decimetric radio band have been particular helpful in ascertaining the general shape of the Jovian magnetic field, which is currently believed to be a dipole with minor perturbations. Although there is no direct evidence for thermal plasma in the magnetosphere of Jupiter, theoretical considerations about the physical processes that must occur in the ionosphere and magnetosphere surrounding Jupiter have lead to estimates of the thermal plasma distribution. These models of the Jovian magnetic field and thermal plasma distribution, specify the characteristic plasma and cyclotron frequencies in the magnetosplasma and thereby provide a basis for estimating thelocal electromagnetic and hydromagnetic noise around Jupiter. Spatial analogs of the well-known Clemmow-Mullaly-Allis (CMA) diagrams have been constructed to identify the loci of electron and ion resonances and cutoffs for the different field and plasma models. Regions of reflection, mode coupling, and probable amplification are readily identified. The corresponding radio noise properties may be estimated qualitatively on the basis of these various electromagnetic and hydromagnetic wave mode regions. Frequency bands and regions of intense natural noise may be estimated. On the basis of the models considered, the radio noise properties around Jupiter are quite different from those encountered in the magnetosphere around the Earth. Wave particle interactions are largely confined to the immediate vicinity of the zenographic equatorial plane and guided propagation from one hemisphere to the other apparently does not occur, except for hydromagnetic modes of propagation. The characteristics of these local signals are indicative of the physical processes occurring in the Jovian magnetosphere. Thus, as a remote sensing tool, their observation will be a vital asset in the exploration of Jupiter.  相似文献   

19.
An energy analysis is performed on two explicit models, due to Jackson, of a pulsar with aligned magnetic and rotational axes. The unknown parameters of these models are determined by calculating the minimum total energy states of the models. It is found that the minimum energy analysis favors states with extended, dynamically active magnetospheres with a high degrees of corotation. By calculating total power input to the magnetosphere via collisions in the stellar crust, and the total power radiated due to azimuthal drift motion, it is determined that the minimum energy states are the only states where a power balance can be achieved. Consideration of a local power balance condition and dissipative flows in the magnetosphere shows that neither model is completely self-consistent, but one is considerably better than the other. Properties of both models and implications for other models are discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号