首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The North Taymyr ice-marginal zone (NTZ) is a complex of glacial, glaciofluvial and glaciolacustrine deposits, laid down on the northwestern Taymyr Peninsula in northernmost Siberia, along the front of ice sheets primarily originating on the Kara Sea shelf. It was originally recognised from satellite radar images by Russian scientists; however, before the present study, it had not been investigated in any detail. The ice sheets have mainly inundated Taymyr from the northwest, and the NTZ can be followed for 700–750 km between 75°N and 77°N, mostly 80–100 km inland from the present Kara Sea coast.The ice-marginal zone is best developed in its central parts, ca. 100 km on each side of the Lower Taymyr River, and has there been studied by us in four areas. In two of these, the ice sheet ended on land, whereas in the two others, it mainly terminated into ice-dammed lakes. The base of the NTZ is a series of up to 100-m-high and 2-km-wide ridges, usually consisting of redeposited marine silts. These ridges are still to a large extent ice-cored; however, the present active layer rarely penetrates to the ice surface. Upon these main ridges, smaller ridges of till and glaciofluvial material are superimposed. Related to these are deltas corresponding to two generations of ice-dammed lakes, with shore levels at 120–140 m and ca. 80 m a.s.l. These glacial lakes drained southwards, opposite to the present-day pattern, via the Taymyr River valley into the Taymyr Lake basin and, from there, most probably westwards to the southern Kara Sea shelf.The basal parts of the NTZ have not been dated; however, OSL dates of glaciolacustrine deltas indicate an Early–Middle Weichselian age for at least the superimposed ridges. The youngest parts of the NTZ are derived from a thin ice sheet (less than 300 m thick near the present coast) inundating the lowlands adjacent to the lower reaches of the Taymyr River. The glacial ice from this youngest advance is buried under only ca. 0.5 m of melt-out till and is exposed by hundreds of shallow slides. This final glaciation is predated by glacially redeposited marine shells aged ca. 20,000 BP (14C) and postdated by terrestrial plant material from ca. 11,775 and 9500 BP (14C)–giving it a last global glacial maximum (LGM; Late Weichselian) age.  相似文献   

2.
Recent studies in the Arkhangelsk region, northwest Russia, have identified at least three consecutive tills all associated with the last Valdaian (Weichselian) glaciation. The Scandinavian ice sheet deposited a Late Valdaian till (ca. 17 ka BP), whereas two tills were deposited in the Early–Middle Valdaian by the Barents/Kara Sea ice sheet (ca. 45–60 ka BP) and an older ice sheet with an eastern centre (ca. 74 ka BP). This article expands on previous stratigraphical work on the discrimination of regional till units by a combination of compositional characteristics and directional properties. Tills associated with the Scandinavian ice sheet were deposited by a glacier advancing from west or northwest, transporting predominantly material from the Fennoscandian shield and the White Sea area. The Barents/Kara Sea ice sheet moved from the north and northeast, whereas the oldest ice advance came from the east–southeast. Although, the two oldest tills both contain material with an eastern provenance, the Viryuga Till is dominated more by local carbonate-rich material. This study demonstrates that detailed investigation of till units facilitate the distinction of glacial events imperative for the reconstructing of the last glaciation in northern Russia.  相似文献   

3.
4.
We present a mass balance model for Eurasia which is based on the calculation of accumulation from a moisture balance concept. The model is forced with 500 hPa temperatures from GCM time slices at LGM and present day. The model simulates key characteristics, such as control on the size of ice sheets through the advection of moisture, asymmetric ice sheets due to advection of moisture and orography, and the drying of ice sheets when they grow. A simulation of the Eurasian Ice Sheet through a full glacial cycle shows that the model reproduces realistic ice sheets that compare well with geomorphological data. During the Middle Weichselian and the Late Weichselian, the model picks up the trend that the Scandinavian part of the ice grows towards the south and east whilst the ice sheet covering the Barents and Kara Seas remains relatively stable. However, the model seriously underestimates the observed ice extent in the Baltic area. Uncertainties in the temperature and the wind field limit the reliability of regional modelling results.  相似文献   

5.
Recent observations showing substantial diurnal changes in velocities of glaciers flowing into the ocean, measured at locations far inland of glacier grounding lines, add fuel to the ongoing debate concerning the ability of glaciers to transmit longitudinal-stress perturbations over large distances. Resolution of this debate has major implications for the prediction of glacier mass balance, because it determines how rapidly a glacier can respond dynamically to changes such as weakening or removal of an ice shelf. Current IPCC assessment of sea-level rise takes little account of such changes, on the assumption that dynamic responses would be too slow to have any appreciable effect on ice discharge fluxes. However, this assumption must be questioned in view of observations showing massive increases in glacier velocities following removal of parts of the Larsen Ice Shelf, Antarctica, and of others showing diurnal velocity changes apparently linked to the tides.Here, I use a simple force-perturbation model to calculate the response of glacier strain rates to tidal rise and fall, assuming associated longitudinal-force perturbations are transmitted swiftly far inland of the glacier grounding line. Results show reasonable agreement with observations from an Alaskan glacier, where the velocity changes extended only a short distance up-glacier. However, for larger Antarctic glaciers, big velocity changes extending far upstream cannot be explained by this mechanism, unless ice-shelf “back forces” change substantially with the tides.Additional insight will require continuous measurement of velocity and strain-rate profiles along flow lines of glaciers and ice shelves. An example is suggested, involving continuous GPS measurements at a series of locations along the centre line of Glaciar San Rafael, Chile, extending from near the calving front to perhaps 20 km inland. Tidal range here is about ± 0.8 m, which should be sufficient to cause a variation in ice-front velocity of ± 2 cm h− 1 about its average value of 75 cm h− 1, assuming local seawater depth of 150 m and glacier thickness of 200–400 m.  相似文献   

6.
Beach and shoreface sediments deposited in the more than 800-km long ice-dammed Lake Komi in northern European Russia have been investigated and dated. The lake flooded the lowland areas between the Barents–Kara Ice Sheet in the north and the continental drainage divide in the south. Shoreline facies have been dated by 18 optical stimulated luminescence (OSL) dates, most of which are closely grouped in the range 80–100 ka, with a mean of 88±3 ka. This implies that that the Barents–Kara Ice Sheet had its Late Pleistocene maximum extension during the Early Weichselian, probably in the cold interval (Rederstall) between the Brørup and Odderade interstadials of western Europe, correlated with marine isotope stage 5b. This is in strong contrast to the Scandinavian and North American ice sheets, which had their maxima in isotope stage 2, about 20 ka. Field and air photo interpretations suggest that Lake Komi was dammed by the ice advance, which formed the Harbei–Harmon–Sopkay Moraines. These has earlier been correlated with the Markhida moraine across the Pechora River Valley and its western extension. However, OSL dates on fluvial sediments below the Markhida moraine have yielded ages as young as 60 ka. This suggests that the Russian mainland was inundated by two major ice sheet advances from the Barents–Kara seas after the last interglacial: one during the Early Weichselian (about 90 ka) that dammed Lake Komi and one during the Middle Weichselian (about 60 ka). Normal fluvial drainage prevailed during the Late Weichselian, when the ice front was located offshore.  相似文献   

7.
Fifty-two kilometres of multi-channel seismic reflection data were acquired from the southern McMurdo Ice Shelf (SMIS) during potential drill site investigations for the Antarctic Drilling (ANDRILL) program. The survey was acquired atop 110 to 220 m of floating ice and extended across ablation and accumulation zones of the ice shelf. Seismic processing was tailored to the ice shelf environment, including: datum static corrections to account for changes in the thickness and average velocity of the near-surface firn layer, and changes in the surface elevation across the survey area; residual static corrections to account for near-surface ice shelf irregularities; and two-step predictive deconvolution to suppress ice and firn layer multiples. A model for the ice shelf thickness was also incorporated in the interval velocity model during depth conversion to ensure that the ice shelf structure did not impose non-static shifts on the seismic section.The depth converted CMP stacked sections reveal several N to NE trending normal faults, that offset reflective horizons by up to 150 m within the lower part of the section and form a broad east-dipping, half-graben structure. The seafloor possesses trough and arch morphology in parallel with the half-graben structure. These features are interpreted as the southern extension of the Terror Rift. The rift succession comprises a dislocated (?)early-Miocene synrift package and a relatively undeformed (?)late-Miocene post-rift package separated by an erosional unconformity. The post-rift package infills and onlaps the rift topography, and drapes over the graben system, reaching a maximum thickness of 400 m. Throughout the post-rift phase, the basin was also influenced by Neogene volcanism, evidenced by three small volcanic features within the seismic profiles, and associated successions of inferred volcanic material. An angular unconformity within the post-rift succession is interpreted as a flexural horizon related to the load of Mount Discovery and/or Mount Morning. Up to 150 m of flexural moat fill occurs above this surface at ~ 20 km from the load centres. The post-rift succession also includes several glacio-geomorphic features, the orientation and morphology of which indicate an approximately SW to NE ice flow direction during a mid-Miocene grounding event and a SE to NW ice flow direction during Quaternary ice sheet grounding events.The thickness and lower extent of the rift succession was not able to be determined because signal-to-noise ratio and vertical resolution were low at these depths. Strata from an earlier, Paleogene, rift episode may underlie the Terror Rift succession, or it may be directly underlain by acoustic basement. A Paleogene rift episode has previously been proposed based on the occurrence of Eocene fossiliferous erratics around the margin of the SMIS and the structural setting revealed by the SMIS seismic reflection profiles is consistent with this hypothesis.  相似文献   

8.
The Pyoza River area in the Arkhangelsk district exposes sedimentary sequences suitable for study of the interaction between consecutive Valdaian ice sheets in Northern Russia. Lithostratigraphic investigations combined with luminescence dating have revealed new evidence on the Late Pleistocene history of the area. Overlying glacigenic deposits of the Moscowian (Saalian) glaciation marine deposits previously confined to three separate transgression phases have all been connected to the Mikulinian (Eemian) interglacial. Early Valdaian (E. Weichselian) proglacial, lacustrine and fluvial deposits indicate glaciation to the east or north and consequently glacier damming and meltwater run-off in the Pyoza area around 90–110 ka BP. Interstadial conditions with forest-steppe tundra vegetation and lacustrine and fluvial deposition prevailed at the end of the Early Valdaian around 75–95 ka BP. A terrestrial-based glaciation from easterly uplands reached the Pyoza area at the Early to Middle Valdaian transition around 65–75 ka BP and deposited glaciofluvial strata and subglacial till (Yolkino Till). During deglaciation, laterally extensive glaciolacustrine sediments were deposited in ice-dammed lakes in the early Middle Valdaian around 55–75 ka BP. The Barents–Kara Sea ice sheet deposited the Viryuga Till on the lower Pyoza from northerly directions. The ice sheet formed the Pyoza marginal moraines, which can be correlated with the Markhida moraines further east, and proglacial lacustrine deposition persisted in the area during the first part of the Middle Valdaian. Glacio-isostatic uplift caused erosion followed by pedogenesis and the formation of a deflation horizon in the Middle Valdaian. Widely dispersed periglacial river plains were formed during the Late Valdaian around 10–20 ka BP. Thus, the evidence of a terrestrial-based ice sheet from easterly uplands in the Pyoza area suggests that local piedmont glaciers situated in highlands such as the Timan Ridge or the Urals could have developed into larger, regionally confined ice sheets. Two phases of ice damming and development of proglacial lakes occurred during the Early and Middle Valdaian. The region did not experience glaciation during the Late Valdaian.  相似文献   

9.
A digital 3D-reconstruction of the Baltic Ice Lake's (BIL) configuration during the termination of the Younger Dryas cold phase (ca. 11 700 cal. yr BP) was compiled using a combined bathymetric–topographic Digital Terrain Model (DTM), Scandinavian ice sheet limits, Baltic Sea Holocene bottom sediment thickness information, and a paleoshoreline database maintained at the Lund University. The bathymetric–topographic DTM, assembled from publicly available data sets, has a resolution of 500 × 500 m on Lambert Azimuthal Equal Area projection allowing area and volume calculations of the BIL to be made with an unprecedented accuracy. When the damming Scandinavian ice sheet margin eventually retreated north of Mount Billingen, the high point in terrain of Southern central Sweden bordering to lower terrain further to the north, the BIL was catastrophically drained resulting in a 25 m drop of the lake level. With our digital reconstruction, we estimate that approximately 7800 km3 of water drained during this event and that the ice dammed lake area was reduced by ca. 18%. Building on previous results suggesting drainage over 1 to 2 years, our lake volume calculations imply that the freshwater flux to the contemporaneous sea in the west was between about 0.12 and 0.25 Sv. The BIL reconstruction provides new detailed information on the paleogeography in the area of southern Scandinavia, both before and after the drainage event, with implications for interpretations of geological records concerning the post-glacial environmental development.  相似文献   

10.
We utilize a regional climate model with detailed land surface processes (RegCM2) to simulate East Asian monsoon climates at 0 ka, 6 ka and 21 ka BP, and evaluate the changes in hydrology process, including vapor transportation, precipitation, evapotranspiration and runoff in the eastern and western China during these periods. Results indicate that the Tibetan Plateau climate presents a wet–cold status during the LGM while it exhibits a wet–warm climate at 6 ka BP. The LGM wetter climate over the Tibetan Plateau mainly results from the increased vapor inflow through its south boundary, while the increase in the vapor import over the Tibetan Plateau at 6 ka BP mostly sources from its west boundary. The increase in the LGM runoff over the Tibetan Plateau is mainly caused by the decrease in evapotranspiration, while the increase in runoff at the 6 ka BP mainly by the enhanced precipitation. Eastern China (including southern China) presents a dry status during the LGM, which precipitation and runoff decreases significantly due largely to weakened Asian summer monsoon that results in the decreased vapor inflow through the south boundary of eastern China. The variation pattern in the hydrological cycle in eastern China is contrary to that in western China during the LGM. The increase in precipitation and runoff at 6 ka BP in eastern China is tightly related to the strong Asian summer monsoon that leads to increased vapor import through the south boundary. Long term decrease trend in precipitation and runoff in northern China since the last 20 000 years may be attributed to the steady increase in vapor export through the east boundary as a result of the changes of East Asian monsoon and the adjustments of local atmospheric circulations in this area.  相似文献   

11.
The Eurasian Weichselian glaciation is studied with the SICOPOLIS ice-sheet model and UKMO PMIP climate anomaly forcings. A set of sensitivity tests are completed, including runs in cold-ice mode, different positive-degree-day (PDD) factors and modified climatic data-sets. The model set-up with present-day climatology modified by a glacial index brings forth an areally correct Last Glacial Maximum (LGM) extent in the western areas, but the ice-sheet volume is too small compared to reconstructions from rebound rates. Applying modified climate data results in similar extent as indicated by the Quaternary Environment of the Eurasian North (QUEEN) Late Weichselian ice-sheet reconstruction. The simulation results display freshwater fluxes from melting and calving in phase with Heinrich events H3 at 27, H2 at 22, and H1 at 14 ka ago. These peaks correspond to fast flow areas, with main activity at 27 and 22 ka ago in the Nordic Channel area and later in the Bear Island and Storfjorden region. The activity of these areas seems to be shifting from south to north from LGM to the Holocene. The freshwater pulse at 19–18.5 ka could correspond to Dansgaard–Oeschger oscillation, as well as ice volume flux peaks around 18–17 ka ago on the western margin of the ice sheet.  相似文献   

12.
The land surface of what is now the Barents Sea region may have been eroded to a sub-aerial platform prior to the Quaternary, due to both tectonic uplift-induced and sea-level lowering-induced erosion processes. The Barents Sea was then further eroded into its present form by the subsequent action of ice sheets. Two bedrock configurations, representing the pre-Quaternary sub-aerial Barents Shelf topography and the largely submarine morphology of the present day, were used as input to a glaciological ice sheet model so that the dynamic evolution of the maximum-sized ice sheets, caused solely by a change in bedrock elevation, could be identified. The ice-sheet model was run under constant glacial environmental conditions, until mass balance stability was reached, over both bedrock configurations. The simple parabolic ice sheet surface, which formed on a flat sub-aerial bedrock platform, was found to be significantly different in dynamic character compared with an ice sheet developed on the present submarine bedrock topography. In this latter situation, the central ice dome is drained by ice streams in Bjørnøyrenna, Storfjordrenna and smaller outlet glaciers in the north of the ice sheet.  相似文献   

13.
We have coupled a climate model (ECBilt-CLIO-VECODE) and a hydrological model (STREAM) offline to simulate palaeodischarge of nineteen rivers (Amazon, Congo, Danube, Ganges, Krishna, Lena, Mackenzie, Mekong, Meuse, Mississippi, Murray–Darling, Nile, Oder, Rhine, Sacramento–San Joaquin, Syr Darya, Volga, Volta, Zambezi) for three time-slices: Early Holocene (9000–8650 BP), Mid-Holocene (6200–5850 BP) and Recent (1750–2000 AD). To evaluate the model's skill in retrodicting broad changes in mean palaeodischarge we have compared the model results with palaeodischarge estimates from multi-proxy records. We have compared the general trends inferred from the proxy data with statistical differences in modelled discharge between the three periods, thereby developing a technique to assess the level of agreement between the model and proxy data. The quality of the proxy data for each basin has been classed as good, reasonable or low. Of the model runs for which the proxy data were good or reasonable, 72% were in good agreement with the proxy data, and 92% were in at least reasonable agreement. We conclude that the coupled climate-hydrological model performs well in simulating mean discharge in the time-slices studied. The discharge trends inferred from the proxy and model data closely follow latitudinal and seasonal variations in insolation over the Holocene. For a number of basins for which agreement was not good we have identified specific mechanisms which could be responsible for the discrepancy, primarily the absence of the Laurentide ice sheet in our model. In order to use the model in an operational sense within water management studies it would be useful to use a higher spatial resolution and a daily time-step.  相似文献   

14.
Uranium series dating has been carried out on secondary uranyl silicate minerals formed during sub-glacial and post-glacial weathering of Proterozoic uraninite ores in south west Finland. The samples were obtained from two sites adjacent to the Salpauselkä III ice marginal formation and cover a range of depths, from the surface to more than 60 m. Measured ages fall into three distinct groups, 70–100 ka, 28–36 ka and < 2500 yr. The youngest set is associated with surface exposures and the crystals display clear evidence of re-working. The most likely trigger for uranium release at depths below the surface weathering zone is intrusion of oxidising glacial melt water. The latter is often characterised by very high discharge rates along channels, which close once the overpressure generated at the ice margin is released. There is excellent correspondence between the two Finnish sites and published data for similar deposits over a large area of southern and central Sweden. None of the seventy samples analysed gave a U–Th age between 40 and 70 ka; a second hiatus is apparent at 20 ka, coinciding with the Last Glacial Maximum. Thus, the process responsible for uranyl silicate formation was halted for significant periods, owing to a change in geochemical conditions or the hydrogeological regime. These data support the presence of interstadial conditions during the Early and Middle Weichselian since in the absence of major climatic perturbations the uranium phases at depth are stable. When viewed in conjunction with proxy data from mammoth remains it would appear that the region was ice-free prior to the Last Glacial Maximum.  相似文献   

15.
Growth patterns of the last ice age coral terraces at Huon Peninsula   总被引:1,自引:0,他引:1  
At Huon Peninsula, Papua New Guinea, prolific coral growth during the last-glacial was episodic and in response to a series of sea-level rises. The resultant step-like coral terraces are currently situated from 20 m up to 140 m above sea-level due to continuous tectonic uplift of the Peninsula. The sea-level rises were in response to periodic partial disintegration of Northern Hemisphere ice sheets associated with severe climate swings and occurred within decadal timescales. The relatively rapid 15 m to 35 m rise in sea-levels exposed new head-room for corals to colonize. The resulting terrace structures contain individual corals that do not appear to have grown sequentially in time and with elevation. Additionally, following the peak, sea level fell relatively slowly over several thousand years and corals grew and filled in the flanks of the terrace such that younger corals now occupy lower elevations. We have labeled these structures “pack-up” reefs. This is in contrast to coral terraces formed during major sea-level rises from glacial to interglacial or glacial to interstadial transitions where the rate of sea level rise is commensurate with coral growth rates and corals can keep up with sea-level rise by growing on top of each other in a time orderly sequence. Deriving sea-level information from pack-up terraces is difficult and is likely to be ambiguous. The periodic fluctuations in climate were associated with atmospheric radiocarbon swings that seem to have varied smoothly with time. The same corals that show a scatter in stratigraphic temporal ordering appear regularly distributed in time and with radiocarbon content attesting to the veracity of the age measurements and at the same time confirm the disordered distribution of corals in “pack-up” type reefs.  相似文献   

16.
Ice-rafted debris (IRD) (>2 mm), input in eight sediment cores along the Eurasian continental margin (Arctic Ocean), have been studied over the last two glacial/interglacial cycles. Together with the revised chronologies and new micropaleontological data of two cores from the northern Barents Sea (PS2138) and northeastern Kara Sea (PS2741) spanning Marine Isotope Stages (MIS) 6 to 1, the IRD data give new insights into the glacial history of northern Eurasian ice-sheets over the last 150 ka. The chronologies of the cores are based on stable isotope records, AMS 14C datings, paleomagnetic and biostratigraphic data.Extensive episodes of northern Barents Sea ice-sheet growth, probably to the shelf edge, occurred during the late Weichselian (MIS 2) and the Saalian (MIS 6). Major IRD discharge at the MIS 4/3-transition hints to another severe glaciation, probably onto the outer shelf, during MIS 4. IRD-based instabilities of the marine-based ice margin along the northern Barents Sea between MIS 4 and 2 are similar in timing with North Atlantic Heinrich events and Nordic Seas IRD events, suggesting similar atmospheric cooling over a broad region or linkage of ice-sheet fluctuations through small sea-level events.In the relatively low-precipitation areas of eastern Eurasia, IRD peak values during Termination II and MIS 4/3-transition suggest a Kara Sea ice-sheet advance onto the outer shelf, probably to the shelf edge, during glacial MIS 6 and 4. This suggests that during the initial cooling following the interglacials MIS 5, and possibly MIS 7, the combined effect of sustained inflow of Atlantic water into the Arctic Ocean and penetration of moisture-bearing cyclones into easterly direction supported major ice build-up during Saalian (MIS 6) and Mid-Weichselian (MIS 4) glaciation. IRD peak values in MIS 5 indicate at least two advances of the Severnaya Semlya ice-sheet to the coast line during the Early Weichselian. In contrast, a distinct Kara Sea ice advance during the Late Weichselian (MIS 2) is not documented by the IRD records along the northeastern Kara Sea margin.  相似文献   

17.
The climatological signal of δ18O variations preserved in ice cores recovered from Puruogangri ice field in the central Tibetan Plateau (TP) was calibrated with regional meteorological data for the past 50 years. For the period AD 1860–2000, 5-yearly averaged ice core δ18O and a summer temperature reconstruction derived from pollen data from the same ice core were compared. The statistical results provide compelling evidence that Puruogangri ice core δ18O variations represent summer temperature changes for the central TP, and hence regional temperature history during the past 600 years was revealed. A comparison of Puruogangri ice core δ18О with several other temperature reconstructions shows that broad-scale climate anomalies since the Little Ice Age occurred synchronously across the eastern and southern TP, and the Himalayas. Common cold periods were identified in the 15th century, 1625–1645 AD, 1660–1700 AD, 1725–1775 AD, 1795–1830 AD, 1850–1870 AD, 1890–1920 AD, 1940–1950 AD, and 1975–1985 AD. The period 1725–1775 AD was one of the most prolonged cool periods during the past 400 years and corresponded to maximum Little Ice Age glacier advance of monsoonal temperate glaciers of the TP.  相似文献   

18.
The relationship between the Ricker Hills Tillite (RHT), which represents the northernmost outcrop of lithified continental glacial deposits in Victoria Land, is discussed with respect to the glacial landscape assemblage of the Ricker Hills, a nunatak at the internal border of the Transantarctic Mountains. A warm-based ice sheet deposited the tillite and induced syn- to post-depositional glacial deformation under wet conditions both of the tillite and of the bedrock. The thickness of the ice sheet on the nunatak is estimated to have been 600 m, at most. The area had been deeply eroded before deposition of the RHT as documented by the low elevation of tillite outcrops located in overdeepened depressions of the nunatak. Micropaleontological analysis evidences only the presence of Permian to Jurassic palynomorphs. X-ray diffraction and SEM–EDS analyses of clay minerals in the RHT indicate continental chemical weathering under wet conditions after the RHT deposition. As documented by clay mineral assemblage variation in CRP drillholes, the progressive cooling of the Antarctic continent allowed chemical weathering in “warm” conditions until the Late Oligocene period in southern Victoria Land, leading to a chronological constrain for RHT deposition. Conservatively estimating the sea level to have been between the tillite outcrops and the erosional trimline limiting horns in the Ricker Hills, at the time of RHT deposition, we suggest that the maximum uplift of the area would not have exceeded 900–1500 m since at least Late Oligocene.  相似文献   

19.
An estimate of the glacier ice volume in the Swiss Alps   总被引:1,自引:0,他引:1  
Changes in glacier volume are important for questions linked to sea-level rise, water resource management, and tourism industry. With the ongoing climate warming, the retreat of mountain glaciers is a major concern. Predictions of glacier changes, necessarily need the present ice volume as initial condition, and for transient modelling, the ice thickness distribution has to be known. In this paper, a method based on mass conservation and principles of ice flow dynamics is applied to 62 glaciers located in the Swiss Alps for estimating their ice thickness distribution. All available direct ice thickness measurements are integrated. The ice volumes are referenced to the year 1999 by means of a mass balance time series. The results are used to calibrate a volume–area scaling relation, and the coefficients obtained show good agreement with values reported in the literature. We estimate the total ice volume present in the Swiss Alps in the year 1999 to be 74 ± 9 km3. About 12% of this volume was lost between 1999 and 2008, whereas the extraordinarily warm summer 2003 caused a volume loss of about 3.5%.  相似文献   

20.
Data on the amount and composition of organic carbon were determined in sediment cores from the Kara and Laptev Sea continental margin, representing oxygen isotope stages 1–6. The characterization of organic matter is based on hydrogen index (HI) values, n-alkanes and maceral composition, indicating the predominance of terrigenous organic matter through space and time. The variations in the amount and composition of organic carbon are mainly influenced by changes in fluvial sediment supply, Atlantic water inflow, and continental ice sheets. During oxygen isotope stage (OIS) 6, high organic carbon contents in sediments from the Laptev Sea and western East Siberian Sea continental margin were probably caused by the increased glacial erosion and further transport in the eastward-flowing boundary current along the continental margin. During OIS 5 and early OIS 3, some increased amounts of marine organic matter were preserved in sediments east of the Lomonosov Ridge, suggesting an influence of nutrient-rich Pacific waters. During OIS 2, terrigenous organic carbon supply was increased along the Barents and western Kara Sea continental margin caused by extended continental ice sheets in the Barents Sea (Svalbard to Franz Josef Land) area and increased glacial erosion. Along the Laptev Sea continental margin, on the other hand, the supply of terrigenous (organic) matter was significantly reduced due to the lack of major ice sheets and reduced river discharge. Towards the Holocene, the amount of total organic carbon (TOC) increased along the Kara and Laptev Sea continental margin, reaching average values of up to 0.5 g C cm−2 ky−1. Between about 8 and 10 ka (9 and 11 Cal ka), i.e., during times when the inner shallow Kara and Laptev seas became largely flooded for the first time after the Last Glacial Maximum, maximum supply of terrigenous organic carbon occurred, which is related to an increase in coastal erosion and Siberian river discharge. During the last 8000 years, the increased amount of marine organic carbon preserved in the sediments from the Kara and Laptev Sea continental margin is interpreted as a result of the intensification of Atlantic water inflow along the Eurasian continental margin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号