首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The U-Tapao Canal is the main source of freshwater draining into the outer part of Songkhla Lake, which is the most important estuarine lagoon in Thailand. Songkhla Lake is located in southern Thailand between latitudes 7°08' and 7°50' N and longitudes 100°07' and 100°37' E. Acetic acid (HOAc)-soluble Cu, Fe, Mn, Pb, and Zn and the total concentration of these metals along with Al concentration, organic carbon, carbonate, sand, silt, and clay contents were determined in 4 sediment cores obtained at selected intervals from the mouth of the canal to 12 km upstream. Readily oxidizable organic matter in the cores varies from 1.52% to 7.30% and is generally found to decrease seaward. Total concentrations of Al (61.7–99.0 g kg−1; 2.29–3.67 mol kg−1), Cu (12.4–28.2 mg kg−1; 195–444 μmol kg−1), Fe (25.2–42.0 g kg−1; 451–752 mmol kg−1), Mn (0.22–0.49 g kg−1; 4.0–8.9 mmol kg−1), Pb (16.7–43.1 mg kg−1; 80.6–208 μmol kg−1), and Zn (48.6–122.7 mg kg−1; 0.74–1.88 mmol kg−1) vary to a certain extent vertically and seaward in the U-Tapao Canal core sediments. These concentrations are at or near natural levels and show no indication of anthropogenic contamination.Overall, the data show that total metal concentrations in the surface and near surface core sediments are enriched in varying degrees relative to Al in the order of Zn>Mn>Pb>Fe>Cu. Chemical partitioning shows that the enrichment in the surface and near surface sediments is related to the relatively high proportion of the total metal concentrations (Mn>Zn>Fe>Cu>Pb) that occur in the acetic acid-soluble (nondetrital) fraction, and they generally decrease with depth. Nondetrital Cu, Pb, and Zn likely derive from those metals held in ion exchange positions, certain carbonates, and from easily soluble amorphous compounds of Mn and perhaps those of Fe. Diagenetic processes involving Mn and to a lesser extent, Fe compounds, as well as the vertical changes in the oxidizing/reducing boundaries, appear to be the most important factors controlling the behavior of the metals in these cores. Organic matter and the aluminosilicate minerals, however, appear to be less important carriers of the metals studied.  相似文献   

2.
Estuaries have long been thought to be effective traps for river-borne contaminants; however, accurately predicting removal efficiencies remains problematic. In the Quinnipiac River, CT, marsh system, patterns of metal accumulation (Ag, Cd, Cu, Pb) in sediments were used to estimate heavy metal removal efficiencies. Linear and multivariate regression models were fit to sediment metal concentrations to estimate removal curves and surfaces, which avoided the large temporal variability commonly encountered when using direct water column measurements. Second order regressions normalized to the shortest distance to the river channel were found to have the best fit (r>0.67) with the lowest standard error (<32%). The heavy metal removal efficiencies estimated by comparing total metal accumulation in marsh sediments with riverine flux were Ag=21%, Cd=6%, Cu=14%, and Pb=17%, which are comparable to the maximum removal efficiency of riverine suspended particulate matter (28%).  相似文献   

3.
Hudson Bay is a large, estuarine, shelf-like sea at the southern margin of the Arctic, where changes in seasonal ice cover and river discharge appear already to be underway. Here we present lignin data for dated sediments from eleven box cores and evaluate sources of terrigenous carbon, transport pathways, and whether terrigenous organic matter has been influenced by recent environmental change. Lignin yields (0.04 to 1.46 mg/100 mg organic carbon) decreased from the margin to the interior and from south to north, broadly reflecting the distribution of river inputs. Lignin compositional patterns indicated distinct regional sources with boreal forest (woody gymnosperm) vegetation an important source in the south, vs. tundra (non-woody angiosperm) in the north. Lignin patterns suggest redistribution of a fine-grained, mineral-associated fraction of the southern-derived terrigenous carbon to the northeast part of the Bay and ultimately into west Hudson Strait with the Bay's cyclonic coastal circulation. A small component of the carbon makes it to the central basins of Hudson Bay but most of the terrigenous organic material in that area appears to derive from resuspension of older, isostatically-rebounding coastal and inner shelf deposits. Most modern plant debris appears to be retained near river mouths due to hydrodynamic sorting, with the exception of the southwest inner shelf, where these materials extend > 30 km from shore. Temporal changes in the composition of terrigenous organic carbon recorded in most of the southern Hudson Bay cores perhaps reflect increases in erosion and cross-shelf transport from coastal deposits, possibly mediated by change in ice climate. In contrast, temporal changes in the northwest may relate to changes in the supply of modern plant debris under recent warmer conditions. On the western shelf, changes may relate to ice climate and the distribution of northern coastal water and/or changes in the delivery of materials by the Churchill River due to water diversion. Although the cores show evidence of change related to the ice climate, there is little evidence that ice itself transports terrigenous organic carbon within the system.  相似文献   

4.
Recent data on the sources of organic carbon buried in the ocean have emphasized the probable importance of terrigenous organic matter in burial budgets of deltaic depocenters. The many markers used to assess relative importance of marine vs. terrestrial sources each have ambiguities. We use the ratio of bromine to organic carbon (Br:OC) as a source indicator for organic matter in the Mississippi delta. Progressive increases in bromine concentrations from the river to the slope indicate increasing content of marine-derived organic matter. Quantitative estimates of marine vs. terrigenous organic matter using Br:OC ratios in a two-endmember mixing model are consistent with recent estimates using a combination of three other source markers [Gordon, E.S., Goñi, M.A. 2003. Sources and distribution of terrigenous organic matter delivered by the Atchafalaya River to sediments in the northern Gulf of Mexico. Geochim. Cosmochim. Acta, 67:2359–2375]. The Br:OC vs. δ13C relationship indicates seaward increase in δ13C without proportionate incorporation of marine organic matter, consistent with recent arguments that isotopically depleted terrestrial detritus derived from C3 plants is separated from C4-derived terrigenous organic matter during transport. Decreasing Br:OC ratios downcore at many sites that have significant amounts of marine organic matter indicate that the marine organic matter is preferentially lost during burial diagenesis. This preferential loss constrains the contribution of organic matter burial in deltaic environments to global removal of Br.  相似文献   

5.
To investigate organic matter source and reactivity in the Zhujiang River (Pearl River)Estuary and its adjacent areas, particulate organic carbon (POC), particulate hydrolysable amino acids (PHAA), and Chl a during two cruises in July 1999 and July 2000 were measured. The highest POC and PHAA concentration was observed in the waters with maximum Chl a. The spectra distribution,relative content (dry weight in milligram per gram), PHAA-C% POC and other indicators such as the ratios of amino acids vs. amino sugars (AA/AS) and glucosamine vs. galactosamine (Glum/Gal) suggested that particulate amino acids in the water column and sediments in the Zhujiang River Estuary were mainly derived from biogenic processes rather than transported from terrestrial erosion. In inner estuary where high turbidity was often observable, organic matter was mainly contributed by re-suspension of bottom sediments with revealed zooplankton, microbial reworked characteristics, which suggest that these organic matters were relatively “old“. In the estuarine brackish region, organic matter in water column is mainly contributed by relatively fresh, easily degradable phytoplankton derived organic matter.During physical - biological processes within the eastuary, organic matter derived from phytoplankton was subjected to alteration by zooplankton grazing and bacterial reworking.  相似文献   

6.
Concurrent distributions of dissolved and suspended particulate organic carbon (DOC and POCsusp), nitrogen (DON and PONsusp) and phosphorus (DOP and POPsusp), and of suspended particulate inorganic phosphorus (PIPsusp), are presented for the open ocean water column. Samples were collected along a three-station transect from the upper continental slope to the abyssal plain in the eastern North Pacific and from a single station in the Southern Ocean. The elemental composition of surface sedimentary organic matter (SOM) was also measured at each location, and sinking particulate organic matter (POMsink) was measured with moored sediment traps over a 110-d period at the abyssal site in the eastern North Pacific only. In addition to elemental compositions, C : N, C : P and N : P ratios were also calculated. Surface and deep ocean concentrations of dissolved organic matter (DOM) and inorganic nutrients between the two sites displayed distinct differences, although suspended POM (POMsusp) concentrations were similar. Concentrations of DOM and POMsusp displayed unique C, N and P distributions, with POMsusp concentrations generally about 1–2 orders of magnitude less than the corresponding DOM concentrations. These differences were likely influenced by different biogeochemical factors: whereas the dissolved constituents may have been influenced more by the physical regime of the study site, suspended particulate matter may have been controlled to a greater extent by biological and chemical alteration. Up to 80% of total particulate P in POMsusp, POMsink and SOM consisted of PIP. For all organic matter pools measured, elemental ratios reveal that organic P is preferentially remineralized over organic C and organic N at both sites. Increases in C : P and N : P ratios with depth were also observed for DOM at both sites, suggesting that DOP is also preferentially degraded over C and N as a function of depth. A simple one-dimensional vertical eddy diffusion model was applied to estimate the contributions of dissolved and suspended particulate organic C, N and P fluxes from the upper mixed layer into the permanent thermocline. Estimated vertical DOM fluxes were 28–63% of the total organic matter fluxes; POMsusp and POMsink fluxes were 8–20 and 28–52% of the total.  相似文献   

7.
Transport processes were studied in a gully between a salt marsh and an estuary. After storm tides, ebb currents in the gully reached high values. It is concluded that particulate matter (both organic and inorganic) are imported into the marsh. Coarse organic debris is exported during storm tides, but this amount is low when compared with the primary production on the marsh. Exports are shown for dissolved organic carbon, ammonia, phosphate and silica, while nitrate and possibly nitrite are imported. Organic matter derived from in situ production and net import is buried and partly mineralized in the marsh.  相似文献   

8.
The role of organic matter in the sorption capacity of marine sediments   总被引:1,自引:0,他引:1  
Zhanfei Liu  Cindy Lee 《Marine Chemistry》2007,105(3-4):240-257
Past studies have suggested that desiccation enhances hydrophobicity of salt marsh sediment, and that drying and rewetting sediment can be used to investigate sorption mechanisms of amino acids and other organic compounds [Liu, Z., Lee, C., 2006. Drying effects on sorption capacity of coastal sediment: The importance of architecture and polarity of organic matter. Geochim. Cosmochim. Acta 70, 3313–3324]. Here we further develop this technique to study sorption of hydrophobic and hydrophilic organic compounds in a wide range of marine sediments. Our results show that hydrophilic compounds sorb strongly to wet coastal sediments; in dried sediments, sorption of hydrophilic compounds decreases, while sorption of hydrophobic compounds is greatly enhanced. Small compounds with aromatic rings sorb more in dried than wet coastal sediments, suggesting that aromatic groups have a stronger effect on sorption than polar groups like amino and carboxyl moieties. Sorption of lysine, glutamic acid and putrescine decreases greatly when sediment is pretreated with KCl, indicating the importance of cation ion exchange. However, α-amino acids sorb much more than corresponding β- or γ-amino acids, and l-alanine sorbs more than d-alanine, suggesting that amino group location and chiral selectivity play an important role in sorption. Comparison of lysine and tyrosine sorption in different sediments indicates that source and diagenetic state of organic matter are important factors determining sorption capacity. Lysine sorbs much more to organic detritus from salt marsh sediment than to fresh Spartina root materials, marine particles, lignin or humic acids, indicating the importance of structural integrity in sorption. Desorption hysteresis of glutamic acid, putrescine and lysine (in dried sediment) suggests the presence of enzyme-type sorption sites of high sorption energy or multiple binding mechanisms. Taken together, these findings suggest that organic matter plays the major role in amino acid sorption in organic-rich sediments.  相似文献   

9.
Carbon and nitrogen stable isotope ratios of particulate organic matter (POM) were studied approximately weekly during spring and summer 2003 and 2004 in the Gulf of Trieste (northern Adriatic Sea) in order to track the temporal variations and differences between two years. In parallel, particulate organic carbon (POC) and particulate nitrogen (PN), phytoplankton biomass (chlorophyll a), and N and P nutrients were monitored. All studied parameters, especially N and P nutrients and chlorophyll a, showed higher concentrations and larger variability in spring 2004. As a consequence the macroaggregates were produced in late spring 2004. The C and N isotope composition of POM was not directly linked to phytoplankton biomass dynamics. The δ13CPOC values covaried with temperature. In 2004, δ13CPOC variations followed the δ15NPN values as well as the δ13CDIC values which were probably more dependent on the photosynthetic use of 12C. Variations in δ15NPOM values were most probably the consequence of variations in N nutrient sources used in phytoplankton assimilation. The significant correlation between δ15NPN values and nitrate concentrations in 2004 implies intense nitrate assimilation in the presence of higher nitrate concentration. This suggests nitrate as the key nutrient in the »new primary production«, later producing macroaggregates with a mean δ13C and δ15N values of − 19‰ and 5‰, respectively. A low fractionation factor ε, < 1‰, lower than that reported in other marine and lacustrine systems, was found probably to be a consequence of distinct phytoplankton species, i.e. several classes of autotrophic nanoflagellates, and specific growth conditions present in the Gulf of Trieste. The tentative use of C isotope composition of POM revealed a higher contribution of allochthonous organic matter in 2004 compared to 2003 due to higher riverine inflow.  相似文献   

10.
Phaeodactylum tricornutum was grown in filtered natural seawater enriched with nitrate, phosphate, and silicate only (control) or with exudates from itself, from Emiliania huxleyi (a coccolithophore micro-alga), Porphyra spp. (a red macro-alga) or Enteromorpha spp. (a green macro-alga). Cathodic (and anodic) stripping voltammetry (C(A)SV) were used to determine the concentrations of trace metals, both in the medium and in the algae, as well as total Cu-complexing organic ligands in the medium and, among these, some thiols (compounds identified as cysteine- or as glutathione by CSV). Exudates of different marine micro- and macro-algae could cause allelopathic effects in P. tricornutum cultures. Cell yield of P. tricornutum was increasingly promoted by exudates of E. huxleyi >Porphyra >Enteromorpha. Although exudates strongly complex Cu (and probably other metals), their presence promoted Cu uptake. Significant changes of Ni, Cd, Fe, Zn and Mn uptake by P. tricornutum were also observed in the presence of exudates of different algal species. In addition, both intensity of production and nature of exudates released by P. tricornutum were markedly influenced by the presence of exudates of other algae, the allelopathic effects being very specific (variable from one species to another). Allelopathy will probably also occur in the aquatic environment, although to a lesser extent than in cultures, particularly during bloom events and may have effects on both chemical speciation and bioavailability of chemicals to phytoplanktonic species. Such changes might cause the predominance of some species over other species. Therefore, in future in vitro culture studies with the purpose of using them as models of the real environment, more attention should be paid to the role of algal exudates, in order to improve the environmental relevance and significance of the results.  相似文献   

11.
The behavior and budget of Mn, Cd and Cu in the Gironde estuary were investigated through data from both the water column (WC) and sediment depth profiles. In the estuarine freshwater reaches, Mn and Cd removal from and Cu addition to the dissolved phase occurs with a magnitude equivalent to 10%, 30% and 25% of their respective annual fluvial gross dissolved input, respectively. In the saline estuary, diffusive benthic outflow is the main source of dissolved Mn (74% of the total gross dissolved input within the estuary) to the WC. In contrast, Cd (96%) and Cu (89%) are mainly released into the dissolved phase of the WC from fluvial, estuarine and dredging-related particles through complexation (Cd) and organic carbon mineralization (Cu). Anthropogenic activities (sediment dredging) induce pore water inputs, particulate sulfide oxidation and sediment resuspension, significantly contributing to the metal budget of the WC. The related amounts of metals released could be equivalent to 20–50% (Cd) and up to 70% (Cu) of their respective net dissolved addition. Mass balances suggest that a large part of the metals previously released into the dissolved phase from processes within the estuary are removed by suspended particles due to (co-)precipitation of Fe/Mn (oxy)hydroxides and scavenging on autochthonous organic matter. On an annual basis, the Gironde estuary acts as a net sink of dissolved Mn, removing 60% of the dissolved fluvial inputs, and as a net source of dissolved Cd and Cu, contributing ∼ 85% and 20–45% to the dissolved Cd and Cu fluxes to the ocean.  相似文献   

12.
The sources and distribution of organic matter (OM) in surface waters and sediments from Winyah Bay (South Carolina, USA) were investigated using a variety of analytical techniques, including elemental, stable isotope and organic biomarker analyses. Several locations along the estuary salinity gradient were sampled during four different periods of contrasting river discharge and tidal range. The dissolved organic carbon (DOC) concentrations of surface waters ranged from 7 mg l−1 in the lower bay stations closest to the ocean to 20 mg l−1 in the river and upper bay samples. There was a general linear relationship between DOC concentrations and salinity in three of the four sampling periods. In contrast, particulate organic carbon (POC) concentrations were significantly lower (0.1–3 mg l−1) and showed no relationship with salinity. The high molecular weight dissolved OM (HMW DOM) isolated from selected water samples collected along the bay displayed atomic carbon:nitrogen ratios ([C/N]a) and stable carbon isotopic compositions of organic carbon (δ13COC) that ranged from 10 to 30 and from −28 to −25‰, respectively. Combined, such compositions indicate that in most HMW DOM samples, the majority of the OM originates from terrigenous sources, with smaller contributions from riverine and estuarine phytoplankton. In contrast, the [C/N]a ratios of particulate OM (POM) samples varied significantly among the collection periods, ranging from low values of 5 to high values of >20. Overall, the trends in [C/N]a ratios indicated that algal sources of POM were most important during the early and late summer, whereas terrigenous sources dominated in the winter and early spring.In Winyah Bay bottom sediments, the concentrations of the mineral-associated OM were positively correlated with sediment surface area. The [C/N]a ratios and δ13COC compositions of the bulk sedimentary OM ranged from 5 to 45 and from −28 to −23‰, respectively. These compositions were consistent with predominant contributions of terrigenous sources and lesser (but significant) inputs of freshwater, estuarine and marine phytoplankton. The highest terrigenous contents were found in sediments from the river and upper bay sites, with smaller contributions to the lower parts of the estuary. The yields of lignin-derived CuO oxidation products from Winyah Bay sediments indicated that the terrigenous OM in these samples was composed of variable mixtures of relatively fresh vascular plant detritus and moderately altered soil OM. Based on the lignin phenol compositions, most of this material appeared to be derived from angiosperm and gymnosperm vascular plant sources similar to those found in the upland coastal forests in this region. A few samples displayed lignin compositions that suggested a more significant contribution from marsh C3 grasses. However, there was no evidence of inputs of Spartina alterniflora (a C4 grass) remains from the salt marshes that surround the lower sections of Winyah Bay.  相似文献   

13.
The extent to which marine organic matter is associated with surfaces and the consequences of such associations for organic matter remineralization are the focus of considerable attention. Since extracellular enzymes operating outside microbial cells are required to hydrolyze organic macromolecules to sizes sufficiently small for substrate uptake, the effects of surface interactions–on enzymes as well as on substrates–for hydrolytic activity also require investigation. We used a simplified laboratory system consisting of a free (dissolved) polysaccharide (pullulan) and the same polysaccharide tethered to agarose beads to restrict mobility, plus the corresponding free enzyme (pullulanase) and the same enzyme sorbed to montmorillonite (Mte), to investigate systematically the consequences of surface associations of enzymes and of substrates on hydrolytic activity. Changes in substrate molecular weight were monitored with time to measure the course of enzymatic hydrolysis. Although hydrolysis of free substrate was nearly complete after 2 min incubation with the free enzymes, the sorbed enzymes also effectively hydrolyzed free substrate, and the data suggest that they retained activity longer in solution compared to the free enzymes. Sorbed enzymes progressively hydrolyzed the free substrate from > 50 kD to lower molecular weights during a 24 h incubation, with a final product distribution on average showing only 1.4% and 10.3% of substrate still in the > 50 kD and 10 kD size classes, while 46.6%, 29.3%, and 12.5% of substrate was in the 4 kD, monomer, and free tag size classes, respectively. This product distribution was very similar to that of the free substrate/free enzyme experiment. Tethering the substrate to agarose beads led to lower substrate release (2–3% of total substrate after 98 h incubation) into solution compared to the free substrate case. For tethered substrates, the state of the enzyme (free or sorbed) measurably affected the molecular weight distribution of the hydrolysis products, with free enzymes producing a higher fraction of high molecular weight hydrolysis products (28.7 ± 5.4% of substrate > 50 kD at the end of the incubation) compared to sorbed enzymes (11.6 ± 2.8% of substrate > 50 kD at the end of the incubation.) Tethered substrates were also hydrolyzed in a sediment slurry from surface sediments from Cape Lookout Bight, North Carolina; 0.1% of total substrate was released by enzymes naturally present in 1 cm3 of sediment after 144 h incubation, demonstrating that the enzymes naturally present in marine sediments are also capable of accessing tethered substrates. These investigations suggest that surface associations of enzymes in marine systems may extend the active lifetime of such enzymes, providing an opportunity for hydrolysis over longer periods of time and producing a different size spectrum of hydrolysis products relative to free enzymes. Furthermore, in well-mixed systems, surface-associated enzymes can hydrolyze substrates whose mobility is restricted, highlighting the importance of processes such as resuspension and bioturbation on organic matter remineralization.  相似文献   

14.
Heterotrophic bacterial and phytoplankton biomass, production, specific growth rates, and growth efficiencies were studied in the Northern region of the Cananéia–Iguape estuarine system, which has recently experienced an intense eutrophication due to anthropogenic causes. Two surveys were carried out during spring and neap tide periods of the dry season of 2005 and the rainy season of 2006. This region receives large freshwater inputs with organic seston and phosphate concentrations that reach as high as 1.0 mg l−1 and 20.0 μM, respectively. Strong decreasing gradients of seston and dissolved inorganic nutrients were observed from the river/estuary boundary to the estuary/coastal interface. Gradients were also observed in phytoplankton and bacterial production rates. The production rates of phytoplankton were 5.6-fold higher (mean 8.5 μg C l−1 h−1) during the dry season. Primary production rates (PP) positively correlated with salinity and euphotic depth, indicating that phytoplankton productivity was light-limited. On the other hand, bacterial biomass (BB) and production rates (BP) were 1.9- and 3.7-fold higher, respectively, during the rainy season, with mean values of up to 40.4 μg C l−1 and 7.9 μg C l−1 h−1, respectively. Despite such a high BP, bacterial abundance remained <2 × 106 cells ml−1, indicating that bacterial production and removal were coupled. Mean specific growth rates ranged between 0.9 and 5.5 d−1. BP was inversely correlated with salinity and positively correlated with temperature, organic matter, exopolymer particles, and particulate-attached bacteria; this last accounted for as much as 89.6% of the total abundance. During the rainy season, BP was generally much higher than PP, and values of BP/PP > 20 were registered during high freshwater input, suggesting that under these conditions, bacterial activity was predominantly supported by allochthonous inputs of organic carbon. In addition, BB probably represented the main pathway for the synthesis of high-quality (low C:N) biomass that may have been available to the heterotrophic components of the plankton food web, particularly nanoheterotrophs.  相似文献   

15.
We report a simplified synthesis, and some performance characteristics, for 8-hydroxyquinoline (8-HOQ) covalently bonded to a chemically resistant TosoHaas TSK vinyl polymer resin. The resin was used to concentrate trace metals from stored, acidified seawater samples collected from Jellyfish Lake, an anoxic marine lake in the Palau Islands. The Mn, Fe, and Zn profiles determined from the 8-HOQ resin extraction were similar to those determined using Chelex-100 resin. The Zn and Cd profiles did not exhibit removal by sulfide “stripping” in contrast to other anoxic marine basins. The profiles of Co and Ni also exhibited elevated concentrations in the anoxic hypolimnion. The solution speciation and saturation states for the metals were calculated using revised metal-bisulfide stability constants. The calculations suggest that the MS(HS) species dominates the solution speciation for Mn, Co, Ni, Zn, Cd, and Pb. Cu(I) is modeled as the CuS or Cu(HS)2 species, while Fe(II) behaves as the free Fe2+ cation. The Mn, Co, Ni, Cu and Cd concentrations appeared to be at least 10-fold undersaturated, while the Fe(II), Zn, and Pb concentrations were close to saturation with respect to their metal sulfides.  相似文献   

16.
对2006年2,5,8,11月份长江口海域表层水体中的悬浮颗粒物(SPM)进行稳定氮同位素分析,根据不同季节、不同区域内其1δ5N值的变化研究水体中氮的迁移、转化等生物地球化学过程,揭示其环境行为,从而对该海域的氮循环机制进行探索。研究发现:该海域悬浮颗粒有机物的稳定氮同位素组成(1δ5Np)分布范围较宽,在0.6‰~8.2‰之间,具有明显的时空分布特点,反映了不同程度的陆源输入和氮的生物地球化学过程的影响。口门内,表层水体中1δ5Np的变化主要受长江径流的陆源输入影响,生物地球化学作用影响较弱;最大浑浊带,水体中的悬浮颗粒有机氮受微生物的降解活动影响明显,各季节均存在不同程度的颗粒物分解作用;外海区,陆源输入减弱,悬浮颗粒物的δ15Np值主要受微藻的同化吸收作用以及一定程度的颗粒物分解作用影响。  相似文献   

17.
To understand the role that physical processes play on the biogeochemical cycles of estuaries, we conducted intense field studies of the turbidity maximum region within a partially mixed estuary (Winyah Bay, SC, USA) under contrasting conditions of river discharge, tides and wind. Water samples and hydrographic data were collected at different depths and locations along the main channel over several tidal cycles during several cruises to Winyah Bay. Tidal variations in current speed, salinity, total suspended solid concentrations were measured within each cruise and were consistent with estuarine circulation processes. Salinity and total suspended solid concentrations ranged from 0 to 32 and from 20 to over 500 mg L−1, respectively, with the highest salinity and total suspended solid values measured during periods of low river discharge. In fact, comparison of tidally averaged salinity and total suspended solid concentrations revealed marked differences among cruises that were negatively correlated to river discharge and SW wind speed. Moreover, significant contrasts in the chemical compositions of suspended particles were evident among periods of contrasting river discharge and wind regime. For example, the weight percent organic carbon content of suspended particles ranged from 1 to over 6% and displayed a positive correlation with river discharge. Similarly, both the molar carbon to nitrogen ratios (10 to 20 mol:mol) and stable carbon isotopic compositions (−25 to −29%) of the suspended organic matter varied significantly as a function of discharge and wind. Such trends indicate that in Winyah Bay low river discharge and steady SW winds promote resuspension of bed sediments from shallow regions of the estuary. These materials contain highly altered organic matter and their incorporation into the water column leads to the observed trends in suspended particle concentrations and compositions. Furthermore, these conditions result in net landward fluxes of salt, sediment and particulate organic matter throughout most of the water column, promoting efficient trapping of materials within the estuary. Our results illustrate the fundamental connection between physical forcings, such as discharge and wind, sediment transport processes and the cycling of biogeochemical materials in estuarine environments.  相似文献   

18.
Concentrations of thiol compounds, copper-complexing ligands, and total dissolved copper were followed over the course of 1 year (October 2002 until September 2003) in the Elizabeth River, Virginia to evaluate seasonality. Copper-complexing ligand concentrations were determined by competitive ligand equilibration-adsorptive cathodic stripping voltammetry (CLE/ACSV). Thiol detection was carried out by high performance liquid chromatography (HPLC) and calibration using a suite of nine thiol compounds (cysteine, glutathione, mercaptoacetic acid, 2-mercaptoethanesulfonic acid, 2-mercaptoethanol, 2-mercaptopropionic acid, 3-mercaptopropionic acid, mercaptosuccinic acid, and monothioglycerol). Total dissolved copper concentrations reached a January low of 13.1 nM to a June high of 24.7 nM and were found to vary seasonally with higher concentrations occurring from June to September. With a low of 26 nM during April to a high of 56 nM in October, copper-complexing ligand (average log KCuL of 12.0 ± 0.2) concentrations displayed a similar seasonal pattern to that of total dissolved copper. Free cupric ion concentrations remained below 1.5 pM for a majority of the year except during March, April, and December when values reached pM levels greater than 1.5. Six of the nine thiol compounds surveyed were detected in the Elizabeth River samples and ranged in concentration from below detectable concentrations (< 5 nM) to individual highs ranging from 25.3 to168.5 nM. The thiol compound concentrations displayed a clear seasonality fluctuating at below detection limits during November to February then increasing with increasing surface water temperatures from March to July. CLE/ACSV was used to assess whether or not the suite of thiol compounds detected by HPLC could contribute to the copper-complexing ligand pool. Conditional stability constants for each one of six thiol standards (average log KCuL  12.1 ± 0.5) were found to be statistically equivalent to the naturally occurring copper-complexing ligands (average log KCuL  12.0 ± 0.2). This suggests that these thiol compounds could act as copper-complexing ligands in natural samples and could contribute to the copper-complexing ligand pool detected by CLE/ACSV. This study involving seasonality of copper-complexing ligands and thiols in an industrialized, urban estuary underscored several points that have to be substantiated in future research efforts including copper-complexing ligands sources and the role that thiol compounds as well as other unidentified organic compounds play in the copper-complexing ligand pool.  相似文献   

19.
Diatoms play a significant role in the global carbon cycle through their role in biogenic silica production and the transport of organic matter to the seafloor. Recent work has shown that silicified diatom frustules contain a significant amount of organic matter, and that the proportion of diatom-bound organic matter increases with depth in the water column and sediments. Here, we investigate the association between organic matter and the mineral phase. We used a combination of scanning transmission X-ray microscopy (STXM) and carbon X-ray absorption near-edge structure (XANES) spectroscopy to characterize the distribution and composition of organic matter in frustules of the diatom Cylindrotheca closterium and a biomimetic silica gel. To our knowledge, this study represents the first successful attempt to simultaneously image and obtain chemical information about the organic matter within a diatom frustule using X-ray spectromicroscopy near the carbon edge. Organic carbon, most likely protein, was distributed throughout the frustules and was not removed by harsh chemical treatment. The physical structure of the frustules appeared to be related to the chemical composition of this organic matter, with aromatic or unsaturated carbon being concentrated in the most intricately patterned regions of the frustule. A similar physical and chemical structure was observed in a biomimetic silica gel precipitated spontaneously with polylysine. These results are consistent with the theory that organic constituents of diatom frustules direct silica precipitation and become incorporated within the silica matrix as it forms. The relationship between organic matter composition and silica morphology, the failure of harsh chemical treatments to remove this organic matter, and the spontaneous nature of the co-precipitation of silica and organic matter indicate some chemical interaction between the siliceous and organic components of diatom frustules. Frustule-bound organic matter should therefore be protected from decomposition in the water column or diagenetic alteration in sediments unless the frustule dissolves.  相似文献   

20.
This study investigates the benthic microbial responses to organic matter (OM) variations in quantity and sources in two shallow water bays (Fortaleza and Ubatuba Bays) on the SE coast of Brazil on six occasions during the year. The pelagic and benthic compartments of the bays were evaluated by: (i) nutrients and chlorophyll a (Chl a) in the water column; (ii) quantity and sources of OM in the sediment (Chl a, total organic carbon and total nitrogen and lipid biomarker composition); and (iii) microbial biomass in sediments as an indicator of active benthic response. Although there were changes in water‐column nutrients during the year, Chl a was fairly constant, suggesting a regular supply of microalgae‐derived OM to the sea bottom. Based on the composition of lipid biomarkers in sediments, OM sources were classified as mostly marine and with high contributions of labile (microalgae‐derived) OM. Labile OM composition varied from diatoms in the summer to phytoflagellates in the winter and tended to accumulate in areas protected by physical disturbances in one of the bays. Microbial biomass followed this trend and was 160% higher in protected than in exposed areas. This study suggests that the coupling between labile OM and benthic microbial biomass occurs primarily in protected areas, irrespective of the time of the year. Since meio‐ and macrofaunal assemblages depend upon secondary microbial production within the sediments, this coupling may have an important role for the benthic food‐web.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号