首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Nitrate pollution of groundwater in Toyserkan,western Iran   总被引:5,自引:2,他引:3  
A total of 95 groundwater samples were collected from Toyserkan, western Iran to assess the chemical composition and nitrate (NO3 ) status of groundwater. The most prevalent water type is Ca–HCO3 followed by water types Ca–Mg–HCO3. In comparison with the World Health Organization (WHO) drinking water guideline of 50 mg l−1 for NO3 , a total of nine wells (9.5%) showed higher concentrations. In 36% of samples (34) NO3 concentration was low (<20 mg l−1), and in 53.7% of samples (51), in the range of 20–50 mg l−1. The samples were classified into four groups based on NO3 and chloride (Cl) concentrations. Of the samples, 40% were classified as group 4 and were relatively high in Cl and NO3 (Cl > 47 mg l−1, NO3  > 27 mg l−1). The high correlation between NO3 and Cl (r = 0.86, p < 0.01) is consistent with a manure source, resulting from the practice of adding salt to animal feed. Pollution of groundwaters appeared to be affected by the application of inorganic fertilizer at greater than agronomic rates, Cl-salt inputs, and irrigation practice.  相似文献   

2.
The hydrogeochemistry of 26 wells belonging to ten different aquifers in the county of Ensenada, Baja California, is studied. These wells are all used to supply the rural communities in the region, which comprise ~37,000 inhabitants, excluding the city of Ensenada. High total dissolved solids (TDS) concentrations (maximum 7.35 g l−1) indicate that salt is a ubiquitous contaminant in the aquifers due to seawater intrusion. The aquifers that support extensive agriculture activities (Maneadero, San Quintín, San Simón and El Rosario) are characterized by higher N–NO3 concentrations (maximum 20 mg l−1) derived from fertilizers. Fluoride concentrations exceed the 1.5 mg l−1 Mexican official limit in only four wells. The enrichments of F in the southern aquifers are thought to be associated to water–rock interactions controlled mainly by Na–Ca equilibrium reactions with fluorite, as suggested from high dissolved Na concentrations in these waters. In the northern aquifer of Maneadero, no enrichment of Na is found and a geothermal source for F is likely. Water is hard to moderately hard, with Ca/Mg ratios >1. Although drinking water directly from the tap is not a common practice in these localities, most sources have concentrations of major ions and TDS that exceed the Mexican official limits.  相似文献   

3.
Symptoms of dental fluorosis have been observed in rural communities located in the Sierras Pampeanas de Córdoba, a mountainous area in Central Argentina. The clinical assessment was performed in the Charbonier Department, where the fluoride (F) intake was determined to be 3.90 ± 0.20 mg day−1 (n = 16). In this community, mild and severe fluorosis reach an incidence of 86.7% (total teeth surface = 636 teeth) among the children population. To determine the origin and distribution of fluorine in natural waters from the Charbonier Department and nearby regions, sampling was performed in the area covering the San Marcos River basin. The obtained results show that F concentrations vary between ~1 to ~2.5 mg l−1, with an outlier value of 8 mg l−1. The spatial distribution of F shows that the lowest concentrations are found at the basin’s catchments. Maximum values are located in two sectors of the basin: the Charbonier depression in the eastern part and at the San Marcos village, downstream the main collector, in the western part of the basin. In these two regions, the F contents in ground- and surface waters are >2.0 mg l−1 and nearly constant. Dissolved F in natural waters from the study area has its origin in the weathering of F-bearing minerals present in the region’s dominant lithology. The extent of mineral weathering is mostly determined by the residence time of water within the aquatic reservoir. Longer residence times and a major solid–water interaction lead to enhanced release of F. This explains the higher F concentrations found in basin areas with lower run off. The removal of F from water appears to occur by neither fluorite precipitation, nor by adsorption. Hence, variations in F concentrations seem to be more related to regional hydrological conditions.  相似文献   

4.
The source of fluoride toxicity in Muteh area,Isfahan, Iran   总被引:1,自引:0,他引:1  
Endemic dental fluorosis has been observed in most inhabitants of three villages of Muteh area, located in northwest of Isfahan province, with mottled enamel related to high levels of fluoride in drinking water (1.8–2.2 ppm). Forty-seven groundwater samples from six villages were collected and fluoride concentrations along with physico-chemical parameters were analyzed. Fluoride concentration in this area varies from 0.2 to 9.2 mg/l with highest fluoride level at Muteh gold mine (Chahkhatun mine). Fluoride concentration positively correlates with pH and HCO3 indicating that alkaline pH provides a suitable condition for leaching of fluoride from surrounding rocks. The district is mainly covered by three lithological units, namely, metamorphic and granite rocks, alluvial sediments, and carbonate rocks. Factor analysis shows that parameters can be classified into four components: electrical conductivity (EC), total dissolved solids (TDS), Cl, Na+ and K+, pH and F, SO4 2−and Mg2+, HCO3 and Ca2 +. The groundwaters from the three geological units were compared using Mann–Whitney U test. The order of median fluoride concentration is: metamorphic and granite rocks > alluvial sediments > carbonate rocks. Hence, the fluoride content is most probably related to fluoride-bearing minerals such as amphibole and mica group minerals in metamorphic and granitic rocks. The concentration of fluoride in drinking water wells located near the metamorphic complex in Muteh area is above 2 ppm.  相似文献   

5.
This investigation aims to evaluate the concentration of dissolved radon in drinking water and to assess the associated radiation doses for infants, children and adults in Bhiwani district of Haryana The radon concentrations were measured in 82 drinking water samples collected from 32 villages/towns in the Bhiwani district. The measurements were performed by RAD7, an electronic radon detector manufactured by Durridge Company Inc. The mean radon concentration ranged between 1.3 ± 0.4 and 13.4 ± 2.2 Bq l-1. The mean radon concentrations from two locations exceeded the maximum contamination level (MCL) of 11 Bq l-1 recommended by United States Environmental Protection Agency. The total annual effective doses due to ingestion and inhalation of radon in drinking water varied from 10.1 to 104.4 μSv y-1 for infants, 5.8 to 59.6 μSv y-1 for children and 6.6 to 67.7 μSv y-1 for adults and the average values were found to be 46.3, 26.5 and 30.1 μSv y-1, respectively.  相似文献   

6.
A field survey was conducted to identify potential hyperaccumulators of Pb, Zn or Cd in the Beichang Pb/Zn mine outcrop in Yunnan Province, China. The average total concentrations of Pb, Zn, and Cd in the soils were up to 28,438, 5,109, and 52 mg kg−1, respectively. A total of 68 plant species belonging to 60 genera of 37 families naturally colonizing the outcrop were recorded. According to metal accumulation in the plants and translocation factor (TF), Silene viscidula was identified as potential hyperaccumulator of Pb, Zn, and Cd with mean shoot concentrations of 3,938 mg kg−1 of Pb (TF = 1.2), 11,155 mg kg−1 of Zn (TF = 1.8) and 236 mg kg−1 of Cd (TF = 1.1), respectively; S. gracilicanlis (Pb 3,617 mg kg−1, TF = 1.2) and Onosma paniculatum (Pb 1,837 mg kg−1, TF = 1.9) were potential Pb hyperaccumulators. Potentilla griffithii (Zn 8,748 mg kg−1, TF = 1.5) and Gentiana sp. (Zn 19,710 mg kg−1, TF = 2.7) were potential Zn hyperaccumulators. Lysimachia deltoides (Cd 212 mg kg−1, TF = 3.2) was a potential Cd hyperaccumulator. These new plant resources could be used to explore the mechanisms of Pb, Zn and/or Cd hyperaccumulation, and the findings could be applied for the phytoremediation of Pb, Zn and/or Cd-contaminated soils.  相似文献   

7.
In order to assess the extent of groundwater contamination by nitrate (NO3 –N) and to provide information about the deterioration of the groundwater quality in Zhangye Oasis, Northwest China, a study was conducted in this area. The mean value of NO3 –N concentrations in groundwater samples was 10.66 ± 0.19 mg l−1. NO3 –N concentrations exceeding 10 mg l−1 (the threshold for drinking water set by the World Health Organization) were found in 32.4% of 71 wells, and were 13, 33.3, 52.4 and 50.0% in the groundwater samples from drinking wells, irrigation wells, hand-pumping wells and groundwater table observation wells, respectively. The result showed that the groundwater samples that had NO3 –N concentrations exceeding the threshold for drinking water were mostly collected from a depth of less than 20 m. Groundwater NO3 –N concentrations in areas used for the cultivation of vegetables, seed maize and intercropped maize were significantly higher than those in urban or paddy areas. NO3 –N contamination of groundwater in areas with sandy soil was more severe than in those with loam soil.  相似文献   

8.
Heavy metal pollution and their fractionations in the sediments of Changjiang River in Nanjing Reach was monitored for cadmium (Cd), lead (Pb), zinc (Zn), chromium (Cr), and copper (Cu). Moreover, the biological enrichment of metals by riverine plants was studied. The results demonstrated there were highly significant variations among different sampling stations for the concentrations of tested metals. The highest range was for Cu (38.8–120.4 mg kg−1), followed by Cr (74.4–120.0 mg kg−1), Zn (80.9–121.1 mg kg−1), Ni (26.0–55.5 mg kg−1), Pb (15.8–46.7 mg kg−1) and Cd (0.28–0.48 mg kg−1). Cd was the element with highest biological enrichment factor (BEF). The highest BEF of Cd in Erigeron bonariensis reached 3.0, indicating a significant Cd enrichment in this aquatic plant. In addition, 60% of Cd was found in reducible fraction and exchangeable and acid-soluble fraction, which was consistent with its high mobility. The consistency of Cd fraction in sediment and suspended particle indicated they came from the same source. Accumulated Cd concentration calculated according to the release curve showed significant relativity with the total Cd concentration in the sediment.  相似文献   

9.
The study was designed to establish the distributions of trace metals, dissolved organic carbon, and inorganic nutrients as well as to assess the extent of anthropogenic inputs into the Narmada and Tapti rivers. Water and sediment qualities are variable in the rivers, and there are major pollution problems at certain locations, mainly associated with urban and industrial centers. The metal concentrations of samples of the aquatic compartments investigated were close to the maximum permissible concentration for the survival of aquatic life, except for higher values of Cu (5–763 μg l−1), Pb (24–376 μg l−1), Zn (24–730 μg l−1), and Cr (70–740 μg l−1) and for drinking water except for elevated concentrations of metals such as Pb, Fe (850–2,060 μg l−1), Cr, and Ni (20–120 μg l−1). In general, the concentrations of trace metals in the rivers vary down stream which may affect the “health” of the aquatic ecosystem and may also affect the health of the rural community that depends on the untreated river water directly for domestic use. The assessment of EF, I geo, and PLI in the sediments reveals overall moderate pollution in the river basins.  相似文献   

10.
In a typical modern agricultural Zone of southeastern China, Haining City, 224 topsoil samples were collected from paddy fields to measure the total concentrations of copper (Cu), lead (Pb), zinc (Zn), cadmium (Cd), chromium (Cr), mercury (Hg), arsenic (As) and cobalt (Co). The total concentrations ranged from 15.30 to 78.40 mg kg−1 for Cu, 20.10 to 41.40 mg kg−1 for Pb, 54.98 to 224.4 mg kg−1 for Zn, 0.04 to 0.24 mg kg−1 for Cd, 54.90 to 197.1 mg kg−1 for Cr, 0.03 to 0.61 mg kg−1 for Hg, 3.44 to 15.28 mg kg−1 for As, and 7.17 to 19.00 mg kg−1 for Co. Chemometric techniques and geostatistics were utilized to quantify their spatial characteristics and define their possible sources. All eight metals had a moderate spatial dependency except that Pb had a strong spatial dependency. Both factor analysis and cluster analysis successfully classified the eight metals into three groups or subgroups, the first group included Cu, Zn and Cr, the second group included Cd, As and Co, and the last group included Pb and Hg. The Cu, Zn and Cr concentrations in majority samples were higher than their local background concentrations and they were highly correlated (r > 0.80), indicating that they had similar pollution source and anthropic factor controlled their spatial distribution; the Cd, As and Co concentrations in majority samples were lower than their local background concentrations, indicating that the source of these elements was mainly controlled by natural factors; the mean concentration of Pb exhibited generally low level, close to its local background concentration, the Hg concentration in about half of samples was higher than its local background concentration, and they were poor correlated with the other metals, indicating that the source of Pb and Hg was common controlled by natural factor and anthropic factor.  相似文献   

11.
The Cu–Co–Ni Texeo mine has been the most important source of Cu in NW Spain since Roman times and now, approximately 40,000 m3 of wastes from mine and metallurgical operations, containing average concentrations of 9,263 mg kg−1 Cu, 1,100 mg kg−1 As, 549 mg kg−1 Co, and 840 mg kg−1 Ni, remain on-site. Since the cessation of the activity, the abandoned works, facilities and waste piles have been posing a threat to the environment, derived from the release of toxic elements. In order to assess the potential environmental pollution caused by the mining operations, a sequential sampling strategy was undertaken in wastes, soil, surface and groundwater, and sediments. First, screening field tools were used to identify hotspots, before defining formal sampling strategies; so, in the areas where anomalies were detected in a first sampling stage, a second detailed sampling campaign was undertaken. Metal concentrations in the soils are highly above the local background, reaching up to 9,921 mg kg−1 Cu, 1,373 mg kg−1 As, 685 mg kg−1 Co, and 1,040 mg kg−1 Ni, among others. Copper concentrations downstream of the mine works reach values up to 1,869 μg l−1 and 240 mg kg−1 in surface water and stream sediments, respectively. Computer-based risk assessment for the site gives a carcinogenic risk associated with the presence of As in surface waters and soils, and a health risk for long exposures; so, trigger levels of these elements are high enough to warrant further investigation.  相似文献   

12.
This study was carried out to analyze groundwater quality in selected villages of Nalbari district, Assam, India, where groundwater is the main source of drinking water. 40 groundwater samples collected from hand pumps and analyzed for pH, EC, TDS, Ca2+, Mg2+, Na+, K+, HCO3 , SO4 2−, Cl and F. Chemical analysis of the groundwater showed that mean concentration of cations in (mg/L) is in the order Ca2+ > Mg2+ > Na+ > K+ while for anions it is HCO3  > Cl > SO4 2− > F. Fluoride concentration was recorded in the range of 0.02–1.56 mg/L. As per the desirable and maximum permissible limits for fluoride in drinking water recommended by WHO and by Bureau of Indian Standards (BIS), which is 1.5 mg/L, the groundwater of about 97% of the samples were found to be suitable for drinking purpose. The suitability of the groundwater for irrigation purpose was investigated by some determining factors such as sodium adsorption ratio, soluble sodium percentage, Kelly’s ratio and electrical conductivity. The value of the sodium absorption ratio and electrical conductivity of the groundwater samples were plotted in the US Salinity laboratory diagram for irrigation water. Most of the groundwater samples fall in the field of C2S1 and C3S1 indicating medium to high salinity and low sodium water, which can be used for irrigation on almost all types of soil with little doubt of exchangeable sodium. The hydrochemical facies shows that the groundwater is Ca-HCO3 type.  相似文献   

13.
Among several salt lakes in the Thar Desert of western India, the Sambhar is the largest lake producing about 2 × 105 tons of salt (NaCl) annually. The “lake system” (lake waters, inflowing river waters, and sub-surface brines) provides a unique setting to study the geo-chemical behavior of uranium isotopes (238U, 234U) in conjunction with the evolution of brines over the annual wetting and evaporation cycles. The concentration of 238U and the total dissolved solids (TDS) in lake water increase from ~8 μg L−1 and ~8 g L−1 in monsoon to ~1,400 μg L−1 and 370 g L−1, respectively, during summer time. The U/TDS ratio (~1 μg g−1 salt) and the 234U/238U activity ratio (1.65 ± 0.05), however, remain almost unchanged throughout the year, except when U/TDS ratio approaches to 3.8 at/or beyond halite crystallization. These observations suggest that uranium behaves conservatively in the lake waters during the annual cycle of evaporation. Also, uranium and salt content (TDS) are intimately coupled, which has been used to infer the origin and source of salt in the lake basin. Furthermore, near uniform ratios in evaporating lake waters, when compared to the ratio in seawater (~0.1 μg g−1 salt and 1.14 ± 0.02, respectively), imply that aeolian transport of marine salts is unlikely to be significant source of salt to the lake in the present-day hydrologic conditions. This inference is further consistent with the chemical composition of wet-precipitation occurring in and around the Sambhar lake. The seasonal streams feeding the lake and groundwaters (within the lake’s periphery) have distinctly different ratios of U/TDS (2–69 μg g−1 salt) and 234U/238U (1.15–2.26) compared to those in the lake. The average U/TDS ratio of ~1 μg g−1 salt in lake waters and ~19 μg g−1 salt in river waters suggest dilution of the uranium content by the recycled salt and/or removal processes presently operating in the lake during the extraction of salt for commercial use. Based on mass-balance calculations, a conservative estimate of "uranium sink" (in the form of bittern crust) accounts for ~5 tons year−1 from the lake basin, an estimate similar to its input flux from rivers, i.e., 4.4 tons year−1.  相似文献   

14.
The Sarcheshmeh copper mine smelter plant is one of the biggest copper producers in Iran. Long-time operation of about 25 years of the smelter plant causes release of potentially toxic heavy metals into the environment. In this paper, geochemical distribution of toxic heavy metals in 28 soil samples was evaluated around the Sarcheshmeh smelter plant. Soils developed over the nonmineralized and uncontaminated areas have an average background concentration of 41.25 mg kg−1 Cu, 26.6 mg kg−1 As, 12.7 mg kg−1 Pb, 0.9 mg kg−1 Sb, 1.9 mg kg−1 Mo, 1.7 mg kg−1 Sn, 0.2 mg kg−1 Cd, 0.15 mg kg−1 Bi, 235 mg kg−1 S and 73.4 mg kg−1 Zn, respectively. As a result of smelting process, the upper soil layers (0–5 cm) were polluted by Cu (>1,397 mg kg−1), Cd (>3.42 mg kg−1), S (>821 mg kg−1), Mo (>10.3 mg kg−1), Sb (>11.7 mg kg−1), As (>120.6 mg kg−1), Pb (>83.8 mg kg−1), Zn (>214.9 mg kg−1), and Sn (>3.7 mg kg−1), respectively. These values are much higher than the normal concentration of the elements in the uncontaminated soil layers. The elemental values decrease with distance travelled away of the smelter plant, especially at minimum wind direction. Furthermore, high contaminated values of Cu (8,430 mg kg−1), As (500 mg kg−1), Pb (331 mg kg−1), Mo (61 mg kg−1), Sb (56.2 mg kg−1), Zn (664 mg kg−1), Cd (17.2 mg kg−1), Bi (13.4 mg kg−1), and S (3,780 mg kg−1) were observed in the upper soil layers close to the smelting waste dumps. Sequential extraction analysis shows that about 270 mg kg−1 Cu, 28 mg kg−1 Pb, 50.33 mg kg−1 Zn, and 47.84 mg kg−1 As were adsorbed by Fe and Mn oxides. The carbonate phases include 151 mg kg−1 Cu, 28 mg kg−1 Pb, 25 mg kg−1 Zn, and 32.99 mg kg−1 As. Organic matter adsorbed 314.6 mg kg−1 Cu and 29.18 mg kg−1 Zn.  相似文献   

15.
The Guadalupe Valley aquifer is the only water source for one of the most important wine industries in Mexico, and also the main public water supply for the nearby city of Ensenada. This groundwater is monitored for major ion, N-NO3, P-PO4, Fe, As, Se, Mo, Cd, Cu, Pb, Zn and Sb concentrations, as well as TDS, pH, dissolved oxygen and temperature. High concentrations of N-NO3 (26 mg l−1), Se (70 μg l−1), Mo (18 μg l−1) and Cu (4.3 μg l−1) suggest that groundwater is being polluted by the use of fertilizers only in the western section of the aquifer, known as El Porvenir graben. Unlike the sites located near the main recharge area to the East of the aquifer, the water in El Porvenir graben has low tritium concentrations (<1.9 TU), indicating a pre-modern age, and thus longer water residence time. No significant variations in water quality (generally <10%) were detected throughout 2001–2002 in the aquifer, suggesting that reduced rainfall and recharge during this dry period did not significantly affect water quality. However, the wells nearest to the main recharge area in the Eastern aquifer show a slight but constant increase in TDS with time, probably as a result of the high (∼200 L S−1) uninterrupted extraction of water at this specific recharge site. Relatively high As concentrations for the aquifer (10.5 μg l−1) are only found near the northern limit of the basin associated with a geological fault.  相似文献   

16.
Hydrogeochemical investigations are carried out in and around Perumal Lake, Cuddalore district, South India in order to assess its suitability in relation to domestic and agricultural uses. The water samples (surface water = 16; groundwater = 12) were analyzed for various physicochemical attributes like pH, electrical conductivity (EC), sodium (Na+), potassium (K+), calcium (Ca2+), magnesium (Mg2+), chloride (Cl), bicarbonate (HCO3 ), sulfate (SO4 2−), phosphate (PO4), silica (H4SiO4) and total dissolved solids (TDS). Major hydrochemical facies were identified using Piper trilinear diagram. Hydrogeochemical processes controlling the water chemistry are water–rock interaction rather than evaporation and precipitation. Interpretation of isotopic signatures reveals that groundwater samples recharged by meteoric water with few water–rock interactions. A comparison of water quality in relation to drinking water quality standard proves that the surface water samples are suitable for drinking purpose, whereas groundwater in some areas exceeds the permissible limit. Various determinants such as sodium absorption ratio (SAR), percent sodium (Na%), residual sodium carbonate (RSC) and permeability index (PI) revealed that most of the samples are suitable for irrigation.  相似文献   

17.
Fluorine speciation in topsoils of three active volcanoes of Sicily (Italy)   总被引:1,自引:0,他引:1  
Fluorine is one of the many environmental harmful elements released by volcanic activity. The content of total oxalate-extractable and water-extractable fluorine was determined in 96 topsoils of three active volcanic systems of southern Italy (Mt Etna, Stromboli and Vulcano). Total fluorine (F) content (F TOT) ranges from 112 to 7,430 mg kg−1, F extracted with oxalate (F OX) ranges from 16 to 2,320 mg kg−1 (2–93% of F TOT) and F extracted with distilled water ( ) ranges from 1.7 to 159 mg kg−1 (0.2–40 % of F TOT). Fluorine in the sampled topsoils derives both from the weathering of volcanic rocks and ashes and from the enhanced deposition due to volcanic gas emissions either from open-conduit passive degassing (Mt Etna and Stromboli) or from a fumarolic field (Vulcano). Fluorine accumulation in the studied soils does not generally present particular environmental issues except for a few anomalous sites at Vulcano, where measured contents could be dangerous both for vegetation and for grazing animals.  相似文献   

18.
The aim of this study was to evaluate soil pollution by heavy metals in an irregular settlement built on a dumpsite. The soil samples were analyzed for Cd, Cr, Cu, Pb and Ni. None of the concentrations found for the heavy metals analyzed were higher than the established Mexican official standards for contaminated soils. The mean concentrations found for the analyzed metals were as follows: 1.4 mg kg−1 for Cd, 4.7 in mg kg−1 for Cr, 304 mg kg−1 for Cu, 74 mg kg−1 for Pb and 6 mg kg−1 for Ni. The results of the geoacummulation index values show that the site was very polluted with Cu and Pb (class 7), polluted to strongly polluted with Ni (class 4); moderately polluted to polluted with Cd (class 3), and moderately polluted with Cr (class 1). The correlation analysis shows a high correlation between Pb and Cu (r 2 = 0.98), which would be explained if the main source of the polluting heavy metals was the result of electrical wire burning to recover Copper. Principal component analysis shows three principal components. The first main component (PC1) encompasses Cr, Cd, Pb and Cu. These heavy metals most likely have their origins from the open burning of municipal solid waste, tires and wire. The other two components are encompassed by Cr (PC2) and Ni (PC3). The sources of these pollutants are more likely related to the corrosion of junk metal objects and automobile use.  相似文献   

19.
Mercury (Hg) is one of the elements with increasing environmental significance. A total of 22 samples (soils, rocks and gels) were collected along a 6 km transect around the Valdeazogues River valley in the southwest of the Iberian Peninsula (Almadén, Spain). Samples were characterized by different soil types of depositional sequences associated with mining tailings, type and system tracts: 15 surface soil samples included in the transect; 3 of a Haploxerept soil profile developed on slates; 2 of quartzite and slates rocks (reference rocks in the area). Moreover, two of a gel substance (in the lower tract of the river). Soil samples were analyzed for Hg, Cu, Ni, Cr, V, Pb, Cd and As, as well as for organic matter, pH abrasion and calcium carbonate content. All samples were collected from the Almadén mining district. The level of occurrence of the elements (especially Hg) and the effect of some properties on its concentration distributions were investigated. The total mercury contents varied in the range 7,315–3.44 mg kg−1. The mean concentration of total mercury in soils and rocks was 477.03 mg kg−1dry mass. This value is very high compared to the regional background value of other areas. Only rarely is it higher than 1%: in one sample (7,315 mg kg−1) it was almost eight times in comparison with the affected zones, with a high value of 1,000 mg kg−1. Significant differences between samples were found in the total content of mercury. A large percentage of the samples registered detectable levels of V, Cr, Ni, Pb, As and Cu. Cd readings were below the detectable range for all samples tested. Cr mean concentration was 216.95 mg kg−1 (minimun concentration 86, maximun 358); V mean concentration was 119.09 mg kg−1 (minimun concentration 69, maximun 1,209); As mean concentration was 51.24 mg kg−1 (minimun 13.3 and maximun 319.4); Ni mean concentration was 45.64 mg kg−1 (minimun concentration 21.2 and maximun 125.6); Cu mean concentration was 33.25 mg kg−1 (minimun concentration 19.3 and maximun 135); Pb mean concentration was 15.19 mg kg−1 (minimun 1.12 and maximun 1013). Metal distribution generally showed spatial variability ascribed to significant anthropogenic perturbation by mining tailing type. Hg showed vertical profile characterized by surface enrichment, with concentrations in the upper layer (93.7–82.2 mg kg−1 in front of 3.4 of the rock value) exceeding, in several occasions, the background value. The results obtained denote a potential toxicity of some heavy metals in some of the studied samples. Water-soluble mercury could enter the aquatic system and accumulate in sediments. Mercury and other heavy metals contamination depended on the duration and intensity of mining activities.  相似文献   

20.
Physiological responses and metal accumulation in Vallisneria spiralis L. exposed to copper and cadmium contaminated sediment were examined at different metal concentrations and the influence of humic acids on copper and cadmium accumulation was also studied. The plants of V. spiralis accumulated high amount of copper and cadmium. The maximum accumulation of 396 and 114 mg kg−1 DW copper were found in the roots and shoots, respectively, at 614 mg kg−1 DW after 21 days’ copper exposure; they were 63.8 and 48.0 mg kg−1 DW for cadmium at 88.69 mg kg−1 DW. The plants showed decrease in chlorophyll content with the increasing concentration of copper/cadmium in sediment. With addition of humic acids from 3.09 to 7.89 g kg−1 DW, both copper and cadmium accumulation in V. spiralis were significantly inhibited (p < 0.01). The cadmium concentrations of roots and shoots of plant decreased 26.4–50.3 and 14.3–33.0% under cadmium treatments, respectively; copper accumulation decreased much more with 44.0–77.0 and 35.0–62.7%, respectively. It was concluded that V. spiralis appeared to be an ideal candidate for the phytoremediation of copper and cadmium polluted sediments, and humic acids had an important role in regulating copper and cadmium bioavailability and toxicity in sediments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号